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Dynamic and static properties of the invaded cluster algorithm
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Simulations of the two-dimensional Ising and three-state Potts models at their critical points are performed
using the invaded cluster~IC! algorithm. It is argued that observables measured on a sublattice of sizel should
exhibit a crossover to Swendsen-Wang~SW! behavior forl sufficiently less than the lattice sizeL, and a scaling
form is proposed to describe the crossover phenomenon. It is found that the energy autocorrelation time
t«( l ,L) for an l 3 l sublattice attains a maximum in the crossover region, and a dynamic exponentzIC for the

IC algorithm is defined according tot«,max;LzIC
. Simulation results for the three-state model yieldzIC

50.34660.002, which is smaller than values of the dynamic exponent found for the SW and Wolff algorithms
and also less than the Li-Sokal bound. The results are less conclusive for the Ising model, but it appears that
zIC,0.21 and possibly thatt«,max; ln L so thatzIC50—similar to previous results for the SW and Wolff
algorithms.@S1063-651X~99!00902-2#

PACS number~s!: 05.50.1q, 02.70.Lq
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I. INTRODUCTION

Monte Carlo ~MC! methods used to simulate classic
spin systems, such as Potts models, fall primarily into t
broad classes: local-update algorithms and cluster a
rithms. Algorithms with local update rules, such as the M
tropolis algorithm, provide an efficient means of simulati
these spin systems in noncritical regions. Near a seco
order phase transition, however, where long-range corr
tions are present, relaxation times increase rapidly with s
tem size. This phenomenon, known as critical slowing dow
may be characterized by a dynamic exponentz according to
t;Lz, wheret is the autocorrelation time measured at cr
cality ~roughly, the time necessary to generate a statistic
independent configuration! and L is the system size. Local
update algorithms typically have values ofz slightly greater
than 2 and, therefore, are impractical for simulating la
systems near a critical point.

Cluster algorithms, on the other hand, such as
Swendsen-Wang~SW! @1# algorithm, employ nonlocal up
date moves, flipping clusters of spins of linear extent co
parable to the correlation length. This technique significan
reduces critical slowing down, and thus makes cluster a
rithms preferable for simulating spin systems near a crit
phase transition. Recent numerical estimates of the SW
namic exponent for two-dimensional ferromagneticq-state
Potts models arezSW'0.25@2# for the Ising (q52) case and
zSW'0.52 @3# for q53.

Although there currently exists no theoretical means
which the dynamic exponent of a SW-type algorithm may
calculated, there is a rigorous lower bound. The Li-So
@4–6# bound, as it has come to be known, states thatzSW

>a/n for q-state Potts models, wherea andn are the usual
static critical exponents for the specific heat and correla
length, respectively. We note that the numerical values gi
above are consistent with this bound, since, in two dim
sions,a/n50(ln) for q52 anda/n52/5 for q53. For the
PRE 591063-651X/99/59~2!/1425~10!/$15.00
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remainder of this paper we will continue to focus on t
Ising and three-state Potts models in two dimensions, s
these are the two most carefully studied cases.

We now turn to the invaded cluster~IC! @7–10# algorithm,
a recent approach based on invasion percolation, for simu
ing equilibrium critical points. This algorithm has the uniqu
property that it ‘‘self-organizes’’ to the critical point. There
fore, no a priori knowledge of the critical temperature
required; instead,Tc is an output of the algorithm. In addi
tion, due to an intrinsic negative-feedback mechanism,
IC algorithm equilibrates very quickly in the sense that th
modynamic quantities are measured to be near their equ
rium values within a few MC steps~after starting, say, from
a completely ordered state!.

Initial studies@8# seemed to indicate that the IC algorith
suffers no critical slowing down for the Ising model. Fo
both d52 andd53, the integrated autocorrelation timet«

was observed to decrease withL, while tm remained constan
~within error bars!, where« is the energy per spin, andm is
the fraction of spins in the largest cluster.~We omit the usual
‘‘int’’ subscript on t, since we deal almost exclusively wit
integrated as opposed to exponential autocorrelation tim!
The decrease oft« with L was also observed for three- an
four-state Potts models in two dimensions, but in these ca
critical slowing was evident in the behavior oftm . In Ref.
@8# the dynamic exponents were estimated to bezm'0.28 for
q53 andzm'0.63 for q54, each of which is less than th
Li-Sokal bound onzSW for its respective value ofq.

In this paper, we repeat these studies forq52 andq53
in two dimensions using larger lattice sizes and an impro
method@3# of estimatingt. We also investigate theL depen-
dence of the ‘‘specific-heat-like’’ quantityc(L)[Ldvar(«).
~In the canonical ensemblec is the specific heat, but the sam
is not true for the IC ensemble.! In addition, we measure
t«( l ,L), the integrated autocorrelation time for the ener
per spin«( l ,L) measured on anl 3 l sublattice of the whole
1425 ©1999 The American Physical Society
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L3L lattice, as well asc( l ,L)[ l dvar„«( l ,L)…. While the
motivations for these experiments are discussed in more
tail in Sec. III, the central idea is that we expect the nega
feedback to diminish for length scalesl ,L, leading to sub-
system behavior that differs from that of the whole syste
We argue in Sec. III that, forl sufficiently less thanL, we
should observe a crossover to SW behavior for observa
measured on a sublattice of sizel. Upon investigating the
crossover region, we find thatc( l ,L) has a simple scaling
form and give an estimate of the length scale at whichc( l ,L)
crosses over to its SW analog, namely, the specific hea
an l 3 l system.

The results are less conclusive in the case of the dyna
variablet«( l ,L), but it appears that crossover to SW beha
ior does occur and that the crossover length fort«( l ,L) dif-
fers from that forc( l ,L) and is likely the same forq52 and
q53. In addition, the crossover phenomenon leads t
maximum int«( l ,L) asl is varied for a givenL. We argue in
Sec. III that the dynamic exponentzIC of the IC algorithm is
appropriately defined byt«,max;LzIC

. For the three-state
Potts model we give a numerical estimate forzIC that is
smaller than a recent estimate@3# of zSW and also less than
the Li-Sokal bound onzSW. For the Ising model the result
are less conclusive, but it appears thatzIC,0.21 and possibly
thatt«,max; ln L so thatzIC50—similar to the state of affairs
for the SW algorithm@2#.

The remainder of this paper is organized as follows.
Sec. II we provide some background on the invaded clu
algorithm and discuss results of previous IC simulations
Sec. III we discuss the crossover phenomenon in greate
tail and propose a scaling form to relate observables m
sured on sublattices using the IC algorithm to correspond
quantities for the SW algorithm. We describe our IC sim
lations of the Ising and three-state Potts models in Sec
and discuss the results in Sec. V. Section VI contains
conclusions.

II. INVADED CLUSTER ALGORITHM
FOR CRITICAL POTTS MODELS

In order to understand how the IC algorithm works, w
first review the SW algorithm for Potts models. The ferr
magneticq-state Potts Hamiltonian is

H52(
^ i , j &

ds i ,s j
, ~2.1!

where s iP$0,1, . . . ,q21% and the sum is over neares
neighbor spin pairs.~Note that the Ising model is just th
special caseq52.)

Given an initial spin configuration, the SW algorithm pr
ceeds as follows: First, satisfied bonds are occupied w
probability p512e2b, with b51/T, where a bond joining
two spinsi and j is defined to besatisfiedif and only if s i
5s j . Unsatisfied bonds are never occupied. Next, clus
of spins connected by occupied bonds are identified,
each cluster is ‘‘flipped,’’ i.e., independently and uniform
assigned a new random spin value from$0,1, . . . ,q21%.
~Note that a cluster can consist of a single spin.! Finally,
after statistics have been collected, occupied bonds
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e

.

es

or

ic
-

a

n
er
n
e-
a-
g
-
V
r

-

th

rs
d

re

erased and the whole process is repeated. It can easil
shown that the SW algorithm satisfies detailed balance
the canonical ensemble.

The IC algorithm uses invasion percolation to gener
the spin clusters to be flipped. Given an initial spin config
ration, the first step is to assign a random order to the bo
of the lattice. The bonds are then examined, and satis
bonds occupied one at a time in this order. If a bond join
two clusters is occupied, they are combined into one. Clu
growth continues until some stopping condition is fulfille
In this paper, we consider the topological spanning con
tion, which dictates that growth be stopped as soon as s
cluster winds around the system in one of thed directions.
As soon as spanning is detected, clusters~including the span-
ning cluster! are flipped exactly as in the SW algorithm
statistics are collected, bonds erased, and the proces
peated.

To understand why the IC algorithm self-organizes to
critical point, we definef to be the ratio of the number o
occupied bonds to the number of satisfied bonds when s
cluster first spans the system. It has been argued@7,8,10#
that, as the system sizeL approaches infinity, the distribution
of f approaches ad function atpc[12e2bc, wherebc is the
inverse critical temperature. Though not a rigorous proof,
argument proceeds as follows. First, we note thatpc is the
threshold for percolation on the satisfied bonds of a criti
spin configuration@11#. Thus, given a spin configuration tha
is typical of the critical point, the fractionf of satisfied bonds
that must be occupied to achieve spanning is close topc .
Second, we observe that each iteration of the IC algorithm
identical to an iteration of the SW algorithm withp5 f .
Therefore, performing an iteration of the IC algorithm on
critical spin configuration is equivalent to performing an
eration of the SW algorithm withp'pc , and thus the system
will remain near the critical point.

If, instead, the system is started in the low-temperat
phase, the number of satisfied bonds will be larger than
typical of Tc . Therefore, a smaller fractionf will need to be
occupied to achieve spanning. In this case, an IC iteratio
equivalent to a SW iteration withp,pc , i.e., T.Tc , and
therefore the system is pushed towardTc from below. Simi-
larly, if the system is started in the high-temperature phas
is pushed towardTc from above. Thus, in summary, a syste
in a noncritical state is pushed toward criticality, while
system in a critical state remains near criticality withT fluc-
tuating aboutTc .

Because of this negative-feedback mechanism, the IC
gorithm self-organizes to the critical point with noa priori
knowledge ofTc . Instead,Tc is obtained as an output of th
algorithm, via the relation̂ f &512e21/Tc. For example, re-
sults of IC simulations for the 2d Ising model yield an esti-
mate ofTc'1.1355@7# when extrapolated toL5`, as com-
pared to the exact result for an infinite system,Tc
51.1346 . . . .

Since every configuration generated by the IC algorit
mustcontain a spanning cluster, it is clear that the algorith
does not sample the canonical ensemble for a system of fi
volume. We refer to the stationary distribution sampled
the IC algorithm as the IC ensemble. If we assume tha
L→` the distribution off approaches ad function atpc and
that the volume fraction of the spanning cluster goes to ze
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local observables such as internal energy and magnetiza
will approach their infinite-volume critical values in th
limit. Simulation results@7,8,10# support this hypothesis. Fo
example, results of IC simulations for the 2d Ising model
yield an estimate for the energy per spin of«c'21.706@7#
when extrapolated toL5`, as compared to the exact resu
for an infinite system,«c521.7071 . . . .

Some finite-volume fluctuations in the IC ensemble, ho
ever, are very different from those in the canonical ensem
For example, in the canonical ensemble the quantityc(L)
[Ldvar(«) is the specific heat which diverges asLa/n at the
critical point—a logarithmic divergence for the Ising mod
in two dimensions. In the IC ensemble, however,c(L) is
observed@7# to increase roughly linearly withL for the 2d
Ising model. These differences can be traced to fluctuat
in the effective temperature~measured byf! in the equilib-
rium state. In the next section, we will examine more clos
the roles played by temperature fluctuations and
negative-feedback mechanism in determining the prope
of the IC algorithm.

III. CROSSOVER TO SWENDSEN-WANG BEHAVIOR

As described in the preceding section, the negati
feedback mechanism, inherent in the IC algorithm, drives
system to criticality by effectively adjusting the temperatu
after each iteration. As previously mentioned, this mec
nism leads to differences in theL dependence of severa
dynamic and static quantities from that observed for the
algorithm. Now, however, we consider anl 3 l sublattice
within the L3L lattice. Since the energy of a subsystem
sizel !L is weakly correlated with that of the whole system
the negative feedback mechanism is less effective for
subsystem. A ‘‘warm’’ ~relative to Tc) subsystem in a
‘‘cool’’ system will be further warmed by the next IC itera
tion. As a result, the energy autocorrelation time for the s
system may be longer than for the whole system.

The observation that an iteration of the IC algorithm
equivalent to an iteration of the SW algorithm withp5 f
provides further insight into IC dynamics. In particular, if th
distribution of f approaches ad function asL→`, then any
finite subsystem of an infinite system will behave exactly
it would under SW dynamics. In short, forl sufficiently
smaller thanL, the subsystem does not ‘‘know’’ it is bein
updated by the IC and not the SW algorithm. Thus we exp
that, in the limit L→`, all static and dynamic quantitie
measured on a subsystem of finite sizel will approach the
values measured for the SW algorithm for a subsystem of
same size. It also follows that, for fixedL, there is a cross-
over from SW to IC behavior at intermediate values ofl. For
example, the integrated autocorrelation timet«( l ,L) for the
energy per spin in a subsystem of sizel should initially in-
crease withl as l zSW

for l !L, reach a maximum, and the
decrease asl is increased further into the range where t
negative-feedback mechanism becomes significant.

We can estimate the length scale at which the crosso
occurs as follows. In the canonical ensemble, the tempera
uncertainty of the critical region scales with system sizeL as
dT;L21/n. In the IC ensemble, however, temperature flu
tuations are governed by the negative-feedback mecha
as described above. In Ref.@10# it was found that the stan
ion
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dard deviation of f scales as s( f );L2b with b
'0.46 (0.30) for q52 (3) as compared with 1/n
51 (6/5), respectively. Since the SW algorithm samp
from the canonical ensemble and since we expect SW be
ior for subsystems of sizel !L, crossover between the IC
and SW regimes should occur when the temperature un
tainties from the two sources are comparable. Thus, fo
givenL, we expect crossover at a subsystem sizel c given by
l c;Lbn.

Therefore, in light of the previous arguments, we hypo
esize that the crossover from IC to SW behavior may
described by the scaling relationship

AIC~ l ,L !5A`
SW~ l !FA~ l /Ly!, ~3.1!

whereA`
SW( l ) is any observable measured for the SW alg

rithm on anl 3 l sublattice immersed in an infinite system
AIC( l ,L) is the same observable measured for the IC al
rithm on anl 3 l sublattice of anL3L lattice,FA is a scaling
function with the property thatFA(x)→1 as x→0, and y
5bn. A word of caution concerning boundary conditions
in order here. We defineA0

SW(L) to be an observable mea
sured for the SW algorithm on anL3L lattice with periodic
boundary conditions. Although we expectA`

SW( l )/A0
SW( l ) to

approach a constant forl→`, the constant will in genera
not be exactly 1 due to the different boundary conditions

In this paper, we also seek to define a meaningful
namic exponentzIC for the IC algorithm that may be com
pared with exponents for other algorithms as well as with
Li-Sokal bound. It is not obvious how to do this since th
energy autocorrelation timet« for the entire system was ob
served@8# to decrease withL. However, this is not the whole
story since we have argued above that correlations betw
successive IC configurations should decay more slowly
length scalesl ,L. Since we would likezIC to describe theL
dependence of the slowest mode, we suggest that it is
maximum value oft«( l ,L) attained for a givenL that is
relevant. Thus we definezIC according to

t«,max;LzIC
. ~3.2!

In the next section, we describe simulations designed to m
surezIC and to test the scaling hypothesis@Eq. ~3.1!# for the
static variablec( l ,L) as well as for the dynamic variabl
t«( l ,L).

IV. DESCRIPTION OF SIMULATIONS

We used the invaded cluster algorithm with the topolo
cal spanning rule to simulate the two-dimensional Ising a
three-state Potts models at their critical points for syste
ranging in size fromL532 toL51024. Starting from a com-
pletely ordered state, we performed a number of relaxa
steps to allow the system to reach equilibrium atTc and then
collected data for four observables: the energy per spin«,
the ratio f of occupied to satisfied bonds, the fractionm of
spins in the largest cluster, and the susceptibilityx, given by
the sum of the squared cluster sizes divided by the t
number of spins. In addition to measuring the mean va
and variance for each observable, we also measured the
tocorrelation function and used this to calculate integra
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autocorrelation times. For a given observableA, the~normal-
ized! autocorrelation function at a given time stept can
be calculated from a sequence ofn MC measurements
$A( j ); j 51, . . . ,n% according to

GA~ t ![

(
j 51

n2t

@A~ j !2^A&#@A~ j 1t !2^A&#

(
j 51

n

@A~ j !2^A&#2

, ~4.1!

where^A& is the mean value ofA.
The integrated autocorrelation time for the observableA is

defined by

tA[
1

2
1(

t51

`

GA~ t !. ~4.2!

Obviously, in practice, the sum must be truncated at so
reasonable value oft. Following the recommendation of Re
@3#, we define

tA~ tA* ![
1

2
1(

t51

tA*

GA~ t ! ~4.3!

and choose the cutofftA* to be the smallest integer such th
tA* >ktA(tA* ), where k is a constant whose value will b
discussed shortly. If the autocorrelation function has the s
ing form GA(t)5G(t/texp), where texp is the exponential
autocorrelation time, then choosing the cutoff in this man
will insure thattA(tA* ) is proportional totA . Thus estimates
of zA will not be biased by truncating the sum att5tA* .

One also would like the values oftA(tA* ) to approximate
tA as accurately and precisely as possible, and here there
tradeoff between excluding noise and including as much
the signal as possible. In Ref.@3# it is shown that ifGA(t) is
roughly a single exponential, then choosing a value ofk in
the range 4–6 would achieve the optimal compromise
n/t in the range 104–106 that we used in our simulations
However, althoughGA(t) is well approximated by a single
exponential in the case of the SW algorithm, this is not t
for the IC algorithm@8#. For this reason, and since we a
willing to accept slightly larger statistical uncertainties
order to reduce systematic errors, we usedk510 in all our
calculations.

In light of the discussion in Sec. III, we also collecte
data for several subsystem sizes for eachL. Here we concen-
trated on the energy per spin, measuring^«( l ,L)&,
var„«( l ,L)…, and t«( l ,L) for subsystem sizes ranging from
l 51 to l 5L/2 for eachL. The subsystems are squares
sharing a single corner of the lattice.

Error bars on all quantities were calculated using
blocking method. Each run was partitioned intok contiguous
blocks ofn MC steps each, and the individual blocks treat
as independent runs. Although this is an approximation
will be a good one provided thatn is large compared to the
system’s longest relaxation time. As an example of
blocking method, we obtain the value for, say,tm by first
calculatingtm

( i ) for each blocki. We then calculate the mea
e

l-

r

s a
f

r

e

l

e

d
it

e

tm̄[
1

k(i 51

k

tm
~ i ! ~4.4!

and its standard error

s~tm̄![
A(

i 51

k

~tm
~ i !2tm̄!2

k~k21!
~4.5!

and report the resulttm5tm̄6s(tm̄).
For bothq52 andq53, one long run was initially per-

formed for each lattice sizeL, and the blocking method
implemented as just described.~Three independent runs wer
performed for the caseq52, L51024.) The number of
blocks used ranged from 100 forL532 down to 10 forL
51024, and the numbern of MC steps per block ranged
from 53103 to 13105. In each case,n was greater than the
longest observed autocorrelation time for the given sys
by at least a factor of 103 (104 for the smaller lattices!,
thereby making the assumption of independent blocks, u
in calculating the error bars, a reasonably good one.
number of equilibration steps performed at the beginning
each run also exceeded the longest observedt by a factor of
103 in all cases.

In these initial runs, we collected data for subsystem si
l P$1,2,4, . . . ,L/2% as well as for the whole system (l 5L).
In order to estimatezIC as defined in Eq.~3.2!, we sought to
obtain an accurate value fort«,max(L) for eachL. Therefore,
once we had learned, from the initial runs, the approxim
subsystem sizel max at whicht«( l ,L) attains a maximum, we
then performed between one and three additional indep
dent runs for each system and collected data for eve
spaced values ofl near our rough estimate ofl max. The entire
experiment required about five months of CPU time on
single processor of a dual-processor 266MHz Pentium
Linux workstation. We used the machine-supplied rand
number generator coupled with a shuffling procedure as
scribed in Ref.@10#.

V. DISCUSSION OF RESULTS

The first quantity we consider is the static variablec(L)
[Ld var(«) ~see Table I!. In the canonical ensemble,c(L) is
the specific heat which diverges, at the critical point, as lL
for q52 and asLa/n with a/n52/5 for q53. We see from
Fig. 1, however, that the situation is quite different for the

TABLE I. c[Ldvar(«) and s( f ) for the IC algorithm for the
2d Ising and three-state Potts models, where« is the energy per
spin, f is the ratio of occupied to satisfied bonds, andL is the lattice
size.

L c(q52) c(q53) s( f )(q52) s( f )(q53)

32 3.288~3! 5.067~4! 0.05100~4! 0.06991~4!

64 6.038~6! 11.239~7! 0.03657~3! 0.05508~2!

128 11.87~2! 26.24~2! 0.02626~3! 0.04367~3!

256 24.03~8! 63.0~1! 0.01886~4! 0.03482~4!

512 48.4~3! 155.0~6! 0.01352~7! 0.02781~9!

1024 99.7~6! 390~2! 0.00977~4! 0.0223~1!
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ensemble, as first observed in Ref.@7#. We assume that the
asymptotic behavior is given by a power lawc(L);Lw and
fit a line to a plot of log10c(L) vs log10L as shown in Fig. 1.
Note that where error bars are not visible they are sma
than the symbol height. As is always the case when trying
ascertain asymptotic behavior from simulations at finiteL,
there can be some debate as to which, if any, data po
should be omitted from the fit because of corrections to s
ing. Here and elsewhere in our analysis, we proceed by d
ping points one at a time in order of increasingL until either
~i! a reasonably good fit is obtained,~ii ! the fit ceases to
improve significantly with further cuts, or~iii ! we are left
with only three data points. We employ standard, weigh
x2 fitting, using the confidence level~CL! as our goodness
of-fit measure, and consider a fit to be ‘‘reasonably good’
CL>10%. @The confidence level is the probability that ax2

as poor as the measured value would occur, assuming
the underlying model is correct and that the measurem
errors are normally distributed@12#. ~Note that the confi-
dence level is denoted by the symbolQ in Ref. @12#.!#

For the Ising model, a fit to the last four data pointsL
>128) yieldsw51.02060.003 (CL516%) in agreemen
with the observationw'1 reported in Ref.@7#. In the case of
the three-state Potts model, a fit to the last three points g
w51.31360.008, but, because of the poor confidence le
~2%! and the upward curvature visible in the data, this va
should probably just be regarded as a lower bound onw for
q53. We emphasize that the error bars on these and su
quent exponent estimates are purely statistical in nature
do not reflect the uncertainty of extrapolating to infinite sy
tem size.

Turning now to the dynamic variables~see Table II!, we
plot the logarithms of the autocorrelation timest« , t f , tm ,
andtx versus log10L for q52 in Fig. 2 and forq53 in Fig.
3. Forq52 we find thatt« andt f decrease withL ~perhaps
in a rather complicated fashion! and tm and tx remain ap-

FIG. 1. log10c(L) vs log10L for the IC algorithm, plotted for the
2d Ising and three-state Potts models. Here,c(L)[Ldvar(«),
where« is the energy per spin andL is the lattice size. The solid
~dashed! line is a linear fit to theq52 (q53) data for 128<L
<1024 (256<L<1024) and has slope 1.020~1.313!.
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proximately constant for the range ofL values used in our
simulations. These results are in agreement with initial
servations@7# that led to speculation of no critical slowing
For q53, however, we observe critical slowing in the beha
ior of tm and tx . Fits to the data forL>64 yield zm
50.19160.004 (CL525%) and zx50.20660.005 (CL
520%), but it seems likely thattm;tx in the asymptotic
limit. We note that the value ofzm is somewhat smaller than
the previous estimatezm'0.28 @8#.

Next we considert«( l ,L), the integrated autocorrelatio
time for the energy per spin«( l ,L) measured on anl 3 l
sublattice of the wholeL3L lattice. As expected from the

TABLE II. Integrated autocorrelation times for the IC algorith
for the 2d Ising and three-state Potts models.« is the energy per
spin,f is the ratio of occupied to satisfied bonds,m is the fraction of
spins in the largest cluster,x is the susceptibility, andL is the lattice
size.

q L t« t f tm tx

2 32 0.546~1! 0.1828~7! 0.857~3! 0.798~2!

2 64 0.499~2! 0.1275~7! 0.852~3! 0.795~3!

2 128 0.443~2! 0.0845~7! 0.859~3! 0.802~3!

2 256 0.384~3! 0.070~3! 0.869~8! 0.807~7!

2 512 0.305~3! 0.065~3! 0.88~1! 0.82~1!

2 1024 0.260~3! 0.033~2! 0.90~1! 0.83~1!

3 32 0.832~2! 0.1835~5! 1.303~4! 1.208~4!

3 64 0.821~2! 0.1742~4! 1.435~4! 1.351~4!

3 128 0.753~2! 0.1369~5! 1.629~7! 1.552~7!

3 256 0.635~3! 0.1071~8! 1.89~1! 1.81~1!

3 512 0.516~5! 0.079~1! 2.13~3! 2.08~3!

3 1024 0.407~4! 0.053~1! 2.38~5! 2.32~5!

FIG. 2. log10t vs log10L for the IC algorithm, wheret is the
integrated autocorrelation time and 32<L<1024 is the lattice size,
plotted for the 2d Ising model for the energy per spin«, the ratiof
of occupied to satisfied bonds, the fractionm of spins in the largest
cluster, and the susceptibilityx.
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discussion in Sec. III, we see that asl is increased for a given
L, t«( l ,L) increases, reaches a maximum, and then
creases, as shown in Fig. 4 forq52 and in Fig. 5 forq
53.

To find t«,max and its locationl max for a given L ~see
Table III!, we fit a parabola to the region of the curve ne
the maximum. In order to do this objectively, we began,
eachL, by omitting the data point with the smallest value
t« and performing the fit. We then dropped the point with t
next smallestt« , refit, and continued in this fashion until~i!

FIG. 3. log10t vs log10L for the IC algorithm, wheret is the
integrated autocorrelation time and 32<L<1024 is the lattice size
plotted for the 2d three-state Potts model for the energy per spin«,
the ratiof of occupied to satisfied bonds, the fractionm of spins in
the largest cluster, and the susceptibilityx.

FIG. 4. The integrated autocorrelation timet«( l ,L) for the en-
ergy per spin«( l ,L) measured on anl 3 l sublattice of anL3L
lattice, plotted vs log10l for L5128,256,1024 for the IC algorithm
in the case of the 2d Ising model.
e-

r
r

a CL of 50% or greater was obtained and~ii ! the values of
t«,max and l max that were obtained by dropping an addition
point remained within error bars of the current best-fit v
ues.

We then attempted to determine the dynamic expon
zIC, defined in Eq.~3.2!, by fitting a line to a plot of
log10t«,max(L) versus log10L for q52 andq53. The results
are shown in Fig. 6 along with results fort«

SW taken from
Baillie and Coddington@2# for q52 and from Salas and
Sokal @3# for q53. We note that the increase oft«,max(L)
with L for q52 is the first observation of critical slowing fo

FIG. 5. The integrated autocorrelation timet«( l ,L) for the en-
ergy per spin«( l ,L) measured on anl 3 l sublattice of anL3L
lattice, plotted vs log10l for L5128,256,1024 for the IC algorithm
in the case of the 2d three-state Potts model.

TABLE III. l max and autocorrelation times for the 2d Ising and
three-state Potts models.L is the lattice size,l max andt«,max

IC are the
location and height, respectively, of the maximum in Figs. 4 and
t«

SW and t«
Wolff are the integrated energy autocorrelation times

the SW and Wolff algorithms.

q L lmax t«,max
IC t«

SW a t«
Wolff b

2 32 8.36~5! 1.962~3! 4.016~5! 1.815~3!

2 64 13.89~8! 2.319~2! 4.90~1! 2.225~6!

2 128 21.1~4! 2.694~7! 5.87~2! 2.654~12!

2 256 32.2~3! 3.133~6! 6.87~3! 3.076~24!

2 512 51.2~6! 3.60~1! 8.0~1!

2 1024 75.9~9! 3.90~2!

3 32 9.53~7! 4.206~8! 13.28~6! 8.76~4!

3 64 15.9~2! 5.55~1! 19.5~1! 13.08~16!

3 128 25.1~2! 7.17~1! 28.5~1! 19.5~3!

3 256 37.0~3! 9.003~7! 40.8~2! 27.7~8!

3 512 63.2~9! 11.46~5! 58.5~6!

3 1024 90~1! 14.5~1! 82.2~2!

aFrom Ref.@2# for q52 and Ref.@3# for q53.
bFrom Ref.@2#.
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the IC algorithm in the case of the Ising model.
For q52 the autocorrelation times for the IC algorith

are nearly the same as for the Wolff algorithm and sma
than those for the SW algorithm by a factor of about 2~see
Table III!, but theL dependence is similarly obscure. A goo
fit to a power law could not be obtained for the IC data
q52. The line shown in the figure, having slope'0.21, is
the best fit forL>64, but it clearly does not describe the da
very well. The best power-law fit to the SW data for 64<L
<512 ~also shown in the figure! yieldszIC'0.25 as reported
in Ref. @2#. Although the fit is considerably better than th
for the IC data, the CL is still poor (,0.1%), and the bette
fit might be primarily due to the absence of data forL
51024 in the SW case.

Since it has been suggested@13# that t«
SW increases loga-

rithmically with L rather than as a power ofL, Baillie and
Coddington also fit their data to a logarithm with somewh
better results (CL513%). For the IC algorithm, a logarith
mic fit is still atrocious, albeit somewhat better than t
power law. Later in this section we consider the possibi
that we have underestimated the error bars ont«,max, which,
of course, could result in a poor fit even if the underlyi
model had been correctly identified. Still, even the gene
trend in the data is difficult to discern, indicating that corre
tions to scaling are probably significant for the system si
studied here. Therefore, we conclude that high-precision
for larger lattices are needed before a more definitive st
ment can be made concerning the asymptotic behavio
t«,max.

For the three-state model, however, the picture appea
be somewhat clearer. Although a slight downward curvat
in the data is visible in Fig. 6, a good fit (CL569%) to a
power law is obtained for 256<L<1024, yielding zIC

50.34660.002. This is to be compared with the value
z«

SW50.51560.006 obtained by Salas and Sokal for the S

FIG. 6. log10t«
SW and log10t«,max

IC for the 2d Ising and three-state
Potts models.t«

SW is the integrated energy autocorrelation time f
the Swendsen-Wang algorithm on anL3L lattice andt«,max

IC is the
height of the maximum in Figs. 4 and 5. The solid lines are lin
fits to the data~see text for further details!.
r

r

t

l
-
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ta
e-
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to
e

algorithm with 128<L<1024 (CL580%). For the Wolff
algorithm,z«

Wolff50.5760.01 was reported in Ref.@2#. While
there is no guarantee thatt«,max is the system’s longest re
laxation time, it is interesting thatzIC is significantly smaller
than z«

SW and also less than the Li-Sokal bound (zSW>a/n
52/5).

Now we proceed to test the scaling hypothesis@Eq. ~3.1!#
presented in Sec. III. In order to do this, we first need
determine the exponentb defined bys( f );L2b. We plot
log10s( f ) versus log10L in Fig. 7 ~the data are listed in Table
I! for q52 andq53 along with the best-fit lines. A fit to al
six q52 points yields b50.478160.0006 (CL554%),
while for q53 a good fit (CL568%) is obtained for the las
four points (L>128), resulting in b50.325260.0009.
These results are consistent with previous estimates@8#.

We now test Eq. ~3.1! for the variable cIC( l ,L)
[ l dvar„«( l ,L)…. Since c0

SW( l ); ln l and we expectc`
SW( l )

;c0
SW( l ) @recallc0

SW( l ) is the specific heat for anl 3 l lattice
with periodic boundary conditions andc`

SW( l ) is the specific
heat for anl 3 l sublattice immersed in an infinite system#,
we plot cIC( l ,L)/ log10l versusl /Ly in Fig. 8, wherey5b
50.4781 for the Ising model (n51). The observed data col
lapse provides strong support for Eq.~3.1!. For q53, how-
ever, it was found in Ref.@3# that the asymptotic form
c0

SW( l ); l a/n does not describe the SW data very well for t
range of lattice sizes considered here. Therefore, we ca
expect Eq.~3.1! to provide a good description of the IC da
if the asymptotic form is used forc`

SW( l ). Nevertheless, if
we plot cIC( l ,L)/c0

SW( l ) versus l /Ly, using the measured
values ofc0

SW( l ) from Ref. @3# and y5bn50.2711 for q
53, data collapse is apparent in Fig. 9, although perhap
bit less convincing than for the Ising case.

We note that the curve in Fig. 9 extrapolates to about 0

r

FIG. 7. log10s( f ) vs log10L for the IC algorithm, plotted for the
2d Ising and three-state Potts models.s( f ) is the standard devia
tion in the ratiof of occupied to satisfied bonds andL is the lattice
size. The solid~dashed! line is a linear fit to theq52 (q53) data
for 32<L<1024 (128<L<1024) and has slope20.4781
(20.3252).
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on the vertical axis forl /Ly50. As previously mentioned
we would expect this value to be 1 if SW data were collec
for subsystems immersed in larger systems so as to re
duce the boundary conditions applied to the IC subsyste
Thus we conclude that our scaling hypothesis@Eq. ~3.1!#
does appear to be valid for the variablecIC( l ,L) for q52
andq53.

FIG. 8. cIC( l ,L)/ log10l vs l /Ly for the IC algorithm, plotted for
the 2d Ising model for 32<L<1024 and 8< l<L/4. Here,
cIC( l ,L)[ l dvar„«( l ,L)…, where«( l ,L) is the energy per spin mea
sured on anl 3 l sublattice of anL3L lattice andy5bn, where
b50.4781 is minus the slope of the solid line in Fig. 7 andn51 is
the correlation-length exponent.

FIG. 9. cIC( l ,L)/c0
SW( l ) vs l /Ly for the IC algorithm, plotted for

the 2d three-state Potts model for 32<L<1024 and 8< l<L/4.
Here,cIC( l ,L)[ l dvar„«( l ,L)…, where«( l ,L) is the energy per spin
measured on anl 3 l sublattice of anL3L lattice, c0

SW( l ) is the
specific heat for anl 3 l lattice, y5bn is the crossover exponen
b50.3252 is minus the slope of the dashed line in Fig. 7, ann
55/6 is the correlation-length exponent.
d
ro-
s.

Although the static quantitycIC( l ,L) seems to be well
described by Eq.~3.1! with y5bn, the same is not true fo
the dynamic quantityt«( l ,L). This is easy to see, since Eq
~3.1! predicts that the locationl max of the maximum in Figs.
4 and 5 should scale asLy; however, the plots of log10l max
versus log10L shown in Fig. 10 reveal that this is not th
case—at least not ify5bn is required. For bothq52 and
q53 the slope of the best-fit line for 64<L<1024, shown in
Fig. 10, is approximately 0.62, although the confidence l
els are poor. Unlike the situation encountered earlier in t
section, when fittingt«,max to a power law inL, the points
seem to be scattered randomly about the best-fit line. Th
fore, we suspect thatl max does scale as a power ofL, but that
our error bars onl max are somewhat underestimated.

There are three aspects of our analysis that could lea
underestimates in the error bars ont«,max and l max. First,
there always exists the possibility that the assumption of n
mally distributed measurement errors is not valid. Seco
the blocking method, used to calculate error bars on val
of t«( l ,L), treats successive blocks as if they were indep
dent runs, an approximation that may not be entirely justifi
even though the block length was greater than 103t«,max in
all cases. Finally, and probably most importantly, the er
bars ont«,max and l max resulting from the weightedx2 fit to
a parabola are calculated by assuming that the measurem
of t«( l ,L) at different values ofl for a givenL are indepen-
dent. This is clearly not a good approximation, since all
the sublattices extend outward from the same corner of
L3L lattice. Therefore, all the spins in a givenl 3 l sub-
system are also contained in every larger subsystem,
thus subsystems for comparable values ofl are highly corre-
lated.

In any case, it is still clear that Eq.~3.1! with y5bn
cannot explain the data fort« . Since the logic leading to the
scaling form seems sound, we hypothesize that Eq.~3.1!

FIG. 10. log10l max vs log10L for the IC algorithm, plotted for the
2d Ising and three-state Potts models.l max is the location of the
maximum in Figs. 4 and 5 andL is the lattice size. The solid
~dashed! line is a linear fit to theq52 (q53) data for 64<L
<1024 and has slope 0.6176~0.626!.
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does hold fort« but that the crossover length fort« is dif-
ferent from that forc so thatyÞbn in the case oft« . This
seems plausible, since there is noa priori reason why the
thermodynamic argument by which we arrived aty5bn
must apply to the dynamic quantityt« . Nevertheless, if Eq.
~3.1! still holds fort« , we can obtain the crossover expone
y from Fig. 10 as described above.

To test our scaling hypothesis fort« , we plot
t«( l ,L)/t«,0

SW( l ) versusl /Ly with y50.6176 (y50.626) for
q52 (q53) in Fig. 11~Fig. 12!. The values oft«,0

SW( l ) are
taken from Ref.@2# for q52 and from Ref.@3# for q53. The
data collapse is not terribly convincing in either case,
seems too good to completely rule out Eq.~3.1! as the cor-
rect asymptotic form. The fact that both curves extrapolat
about 1 forl /Ly50 provides further support for the scalin
hypothesis. Still, it appears that additional tests are neede
confirm or disprove Eq.~3.1! for t« .

VI. CONCLUSION

Using the invaded cluster~IC! algorithm with the topo-
logical spanning rule, we simulated the critical Ising a
three-state Potts models in two dimensions for systems r
ing in size fromL532 to L51024. In accord with previous
results@7,8#, we find that theL dependence of several stat
and dynamic quantities is very different from that observ
for the Swendsen-Wang~SW! algorithm which samples from
the canonical ensemble. In particular, the quantityc(L)
[Ldvar(«) is not proportional to the specific heat and t
integrated autocorrelation timet« for the energy per spin
decreases withL. However, we find that the correspondin
quantitiest«( l ,L) andc( l ,L), measured for a subsystem
size l, exhibit a crossover to SW behavior forl sufficiently
less thanL.

To describe the crossover phenomenon, we propose

FIG. 11. t«
IC( l ,L)/t«,0

SW( l ) vs l /Ly for the 2d Ising model for
32<L<1024 and 8< l<L/4. t«

IC( l ,L) is the quantity plotted in Fig.
4, t«,0

SW( l ) is the integrated energy autocorrelation time for t
Swendsen-Wang algorithm on anl 3 l lattice, andy50.6176 is the
slope of the solid line in Fig. 10.
t

t

to
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scaling formAIC( l ,L)5A`
SW( l )FA( l /Ly), where A`

SW( l ) is
any observable measured for the SW algorithm on anl 3 l
sublattice immersed in an infinite system,AIC( l ,L) is the
same observable measured for the IC algorithm on anl 3 l
sublattice of anL3L lattice, andFA is a scaling function
with the property thatFA(x)→1 asx→0. We have argued
that the crossover exponenty should equal tobn, wheren is
the usual correlation-length exponent andb is defined by
s( f );L2b with f the ratio of occupied to satisfied bond
We find that the proposed scaling form withy5bn provides
a good description of our data for the static variablec( l ,L),
but is less successful for the dynamic variablet«( l ,L), even
if the possibilityyÞbn is admitted.

In addition, we define the dynamic exponentzIC for the
invaded cluster algorithm in terms of the maximum val
t«,max attained for a givenL according tot«,max;LzIC

. For
q53 we find thatzIC50.34660.002, which is smaller than
recent numerical estimates ofzSW and zWolff and also less
than the Li-Sokal bound onzSW. For q52 we also observe
critical slowing, but theL dependence oft«,max is less clear.
It appears from our simulations thatzIC,0.21 and possibly
that t«,max; ln L(zIC50), but high precision data for large
lattices are needed before a more definitive statement ca
made concerning the asymptotic behavior oft«,max for the
Ising model.
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FIG. 12. t«
IC( l ,L)/t«,0

SW( l ) vs l /Ly for the 2d three-state Potts
model for 32<L<1024 and 8< l<L/4.t«

IC( l ,L) is the quantity
plotted in Fig. 5,t«,0

SW( l ) is the integrated energy autocorrelatio
time for the Swendsen-Wang algorithm on anl 3 l lattice, andy
50.626 is the slope of the dashed line in Fig. 10.
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