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Invaded cluster simulations of the XY model in two and three dimensions
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The invaded cluster algorithm is used to study X¥model in two and three dimensions up to sizes 2000
and 126, respectively. A soft spin @) model, in the same universality class as the three-dimensiWal
model, is also studied. The static critical properties of the model and the dynamical properties of the algorithm
are reported. The results akg,=0.454 12(2) for the three-dimensiondl’ model andn=0.037(2) for the
three-dimensionaXY universality class. For the two-dimension&Y model the results ar,=1.120(1) and
7=0.2515). Theinvaded cluster algorithm does not show any critical slowing for the magnetization or
critical temperature estimator for the two-dimensional or three-dimenskvahodels.
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I. INTRODUCTION perature. The critical temperature is a direct output of the
algorithm and the magnetic exponents can be obtained from

In this paper we present a Monte Carlo study of ¥¥¢ finite-size scaling of the cluster size distribution. In addition
model using the invaded clusté€) algorithm. The purpose !0 providing the critical temperature and magnetic exponent

of this study is both to obtain high precision results for theWithout having to invoke methods such as histogram re-
weighting, IC algorithms appear to have less critical slowing

XY model and to test the efficacy of the invaded cluster - y
method for phase transitions with continuous symmetryh@n corresponding Swendsen-Wang or Wolff algorithms

breaking. TheXY model is in the @) universality class and 19l IC algorithms can, in principle, be constructed when-
in two dimensions the transition is of the Kosterlitz-Thouless€Vel & conventional cluster algorithm is available with the
type [1]. Theoretical and computational studies of th€)0 property that the _bopd pergolatlon process ha_s_a percolation
critical point include high temperature series expans|@hs t_hreshold that coincides with th_e phase transition. 1C algo-
renormalization-group calculationgd], and Monte Carlo rithms have thu_s fa_r beer_w apphed to systems with discrete
(MC) simulations[4—7]. The \ transition in *He is also in symmetry breaklr)g including Ising-Pofts7,18,20,21 mod-

the Q2) universality class and the specific heat exponent els, Widom-Rowlinson model22], and the fully frustrated

for this system has been measured to very high precisioh’?ing model[21]. In this paper we show how Wollff.’s embed-
[8—10]. ing scheme can be used to construct an efficient IC algo-

Recent Monte Carlo studies of ther transition use ver- 'ithm for simulating the @) critical point in three dimen-

sions of the Wolff algorithm{11] because near the critical SIONS and the Kosterlitz-Thouless point in two dimensions.
point they are much more efficient than local algorithms. The_ (a”e of our Oblp}Ct'Vﬁs IS to obtain ? h'glh precision value
Wolff algorithm is an example of a cluster algorithm of the Of the 7 exponent for the @) universality class. Becausg
kind, first introduced by Swendsen and WaFip,13 for is itself very _small, it has prove_d _d|ﬁ|<_:ult _to measure it with
Ising-Potts models. The central idea of cluster algorithms ignuch precision. One of the difficulties is the presence of
to identify clusters of sites by a bond percolation proces orrections to scaling. Recently,_Hgsenb_usc.h _and co-workers
correlated to the spin configuration. The spins of each clustes/] Proposed a method to minimize this difficulty by con-

are then independently flipped. Cluster algorithms can b&!dering a soft spin @) model with a parameter controlling

extremely efficient when the percolation process that defineﬁe variance in the length of the spin vectors. By adjusting

the clusters has a percolation threshold that coincides witH!IS Parameter they minimize corrections to scaling and im-
the phase transition of the spins. This situation holds for th&rove their estimate of. Below we apply a modified ver-
original Swendsen-Wang algorithm applied to Ising-PottsSion Of the IC algorithm to the soft spin model.

models and was later shown to hold for a variety of other N the following section we describe the IC algorithm for
spin systems with discrete symmetridst—16. Wolff [11] the XY model. In Sec. lll we give results for the critical

showed how to extend cluster algorithms to spin models witt{EMPerature, magnetic exponents, and dynamic properties of
O(n) symmetry by an Ising embedding method. the XY model in two and three dimensions. In Sec. IV we

Invaded cluster algorithmd7—19 are cluster algorithms describe the algorithm and present results for the soft spin

with the property that they find and simulate the critical point™0del. Conclusions are presented in Sec. V.

automatically without priori knowledge of the critical tem- Il INVADED CLUSTER ALGORITHM

FOR THE XY MODEL

*Electronic address: machta@physics.umass.edu The algorithms for theXY model used in this paper are
"Electronic address: Ichayes@math.ucla.edu obtained by combining the invaded cluster method and
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Wolff's embedding scheme for continuous spin models. The TABLE I. Numerical data for the three-dimension&y model.
XY model is defined by the Hamiltonian

L o P M
BH=—K2X sisj, 1) 10 0.107%2) 0.473a2) 236.22)
(R 20 0.06211) 0.4619%7) 13341)
- . . . .30 0.046583) 0.458905) 36623)
wheres; is a two-dimensional unit vector and the summation
. . . . 0.038107) 0.457513) 748Q04)
is over all nearest neighbor bonds on the lattice, here eith
. . . L i, 0.032816) 0.456682) 1303810)
the square or cubic lattice with periodic boundary conditions
. . . , . 0.029045) 0.4562@2) 2047419)
We begin by describing a version of Wolff's algorithm for
the XY model. In each Monte Carlo step we choose a two—70 0.026354) 0.455842) 3005225
di . L uni > h bondi(i) of the latti 80 0.02409%1) 0.455581) 4182036)
imensional unit vector. For eac _on_|(J) of the lattice, ¢, 0.022404) 0.455381) 5604746)
the bond is calledatisfiedif both spins lie on the same side
of the line perpendicular to the unit vector, that is 100 0.020801 0.455211) 7282464
perp ' ’ 110 0.0195@) 0.455111) 9219780)
120 0.018543) 0.4550069) 11437496)

(si-)(sj-1)>0. 2

Satisfied bonds are thertcupiedwith probability _ ) ) ) _
algorithm in the following we mean the algorithm described

P(gi1§j):1_exd_2K(F'§i)(F’§j)]- 3y  above for which all clusters are defined and flipped in a
single MC step.

One way to implement the occupation of bonds with this Cluster algorithms can generally be viewed as a sequence
probability is to independently assign random numhers ~ Of bond moves and spin moves. During the bond move a
uniformly chosen from the intervdl0,1), to every bond of configuration of occupied bonds an_d the assoc_lated set _of
the lattice and then to occupy the satisfied bondsi;jf clusters are gen_erated .fr(.)m the spin .conf|gurat|on...Th|s is
<P(§i ,§j). An equivalent approach, which provides a usefuldone by occupying satlsﬂed bonds with a pro.bablhty tha}
link to the IC methodology, is to define;; from u;; by depends on the simulation temperature. During the spin

. I ! move a new spin configuration is obtained by randomly flip-
substitutingu; ; for P(s;,s;) and «;; for K in Eq. (3) and  ping clusters. The bond configurations can be viewed as a

then solving for ;, correlated percolation model. For a cluster algorithm to be
. e o efficient, the correlated percolation model should have a per-
«ij=—In(1=u; H/I[2(r-s)(r-sp)]. (4 colation transition that coincides with the critical point of the

o ) ) . spin model. If this holds then clusters of all sizes are flipped
Satisfied bonds withk; ;<K are occupied. The occupied qyring a single MC step and changes to the spin configura-
bonds define a set of connected clusters. Single sites with gy, oceur on all length scales. For Ising-Potts models the
occupied bonds are also considered to be clusters so thare|ated percolation model associated with the Swendsen-
every lattice site is uniquely a member of some cluster.  \yang algorithm is the Fortuin-Kastelyn random cluster

Oncglthe clusters are_|dent|f|ed each clu_stéhpﬁedWIth _ model and the equivalence of the percolation threshold and
probability 1/2. A cluster is flipped by reflecting every spin in the critical point is well understoo®3,24). The percolation
the cluster through the line perpendicularrto properties of the bonds defined by the Wolff algorithm for

the XY model have recently been investigafdd,25. The
s—R(r)s;, (5)  conclusion is the same as for the Ising-Potts models: the
critical point for the three-dimensionakY model and
where Kosterlitz-Thouless point for the two-dimensionaY model
coincide with the percolation threshold for the bonds defined
R(r)s;=s,—2(s;-1)r. (6) by the Wolff algorithm.
The invaded cluster methodology relies on the equiva-
Flipping clusters with probability 1/2 yields a new spin con- lence of the phase transition in the spin model and the per-
figuration and completes one MC step. It is straightforwardcolation transition of the occupied bonds to find and simulate
to show that the algorithm is ergodic and satisfies detailedhe phase transition without prior knowledge of the critical
balance. coupling. Like other cluster algorithms, a full MC step con-

Wolff's original paper[11] introduces two innovations. sists of a bond move followed by a spin move. The spin
The first is to grow and flip only a single cluster in each move is the same as for standard cluster algorithms but the
Monte Carlo step. The second is the generalization of clustdvond moves differs. In the IC bond move, satisfied bonds are
methods to spin models with continuous symmetries. Onlyoccupied one at a time in random order until a signature of
the generalization to continuous symmetries is used here angkrcolation is first observed. The set of occupied bonds ob-
combined with the invaded cluster methodology. In fact,tained in this way defines bond clusters and these are flipped
Wolff's single cluster method is not compatible with the in- in the usual way. The signature of percolation is incorporated
vaded cluster methodology. When we speak of the Wolffin a stopping condition that is tested after each new bond is
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TABLE II. Numerical data for the two-dimensionxlY model. system size increases, the IC algorithm and the Wolff algo-
rithm atK, will sample the same state in the thermodynamic
L o7 ®k=1/T M limit. However, in finite volume, the invaded cluster algo-
rithm defines a critical ensemble that is different than the
10 0.445) 0.7882) 55.51) canonical ensemble and has different finite-size scaling
20 0.325) 0.8911) 200.65) properties.
40 0.255) 0.9531) 71712) So far we have assumed the spin system is already at the
80 0.225) 0.99367) 2631(6) critical point. Suppose that the spin configuration is typical
160 0.195) 1.02128) 954324) of the low temperature phase, then there will be more satis-
240 0.195) 1.035@8) 2015150 fied bonds than at criticality and a smaller fraction will be
320 0.185) 1.04108) 3477986) needed to form a spanning cluster so tRatK.. The in-
480 0.175) 1.05199) 74083186) vaded cluster MC step thus corresponds to a Wolff MC step
ggg gi?g 182(7)51(;; ggzggi;g at t_emperaturé' =J/k>T, so t_hat the system is Wz_irmed. A
' : similar argument shows that if the system starts in the high
1000 0.165) 1.06436) 293519756 temperature phase, it is cooled by the IC algorithm so that
2000 0.1%5) 1.07427) 10739072800

there is negative feedback mechanism that forces the system

to the critical point independent of the starting configuration.

occupied. In this paper we use a topological stopping condi# detailed discussion of these arguments in the context of

tion, which requires that at least one cluster wraps around thiing-Potts models is given in RgfL8].

lattice in at least one direction. To measure the critical temperature and magnetic expo-
For the most part, the IC algorithm closely parallels thenent using the IC algorithm we use two assumptions,

Wolff algorithm. First a unit vector is randomly chosen and

satisfied bonds are determined with respect to this unit vector lim <7<> =K, 7)
as described in the paragraph including E2). Then uni- Lo

form random numbersi; ; are assigned to each bond and

nonuniform random numbers; ; are obtained from them M~ (2+d=n/2 (8)

according to Eq(4). The next step of the IC algorithm dif-
foenrz farto ;n titgm(Zachglafrr d?:]gotr(l)ﬂ:?é ?%tésr];fd db(;?ndes dag'oviﬁﬁp'edwhereL is the system size and is the average size of the
the satisfied bond ha?/ing the smallegt valueKobc'(J:upied spanning cluster. While these assumptions have not been
first. After each bond is occupied, the set of clusters is upproved they are well supported by nonrigorous arguments

dated and the stopping condition is checked. If no clusteand numerical evidence from a variety of syste{8, 20—

wraps around the lattice, the satisfied bond with the nex
largestx is occupied but if some cluster wraps around thedo

Ifatttlrc]e IT)SOS’]G direction t.hz b_?_ﬂd rlnove Its colmplgéﬁd and Mfhat occurs in the 2D Ising model. Specifically, at criticality,
ur. er bonds are OCCPP'G - ne arg(_as va ue_K ) osgn the satisfied bonds themselves just percolate. This means that
during the bond move is calleel The spin move is identical iy a significant fraction of spin configurations, spanning is
to the Wolff algorithm, with probability 1/2, each cluster is not possible. It also means that the distribution of the tem-
reflected through the line perpendicular toaccording to  perature estimator is broad because of spin configurations for
Egs.(5) and(6). which spanning is just barely possible. The problem is even

The IC algorithm simulates the critical point ardis an  worse for the theXY model. Since the unit vectar is ran-
estimator of the critical coupling. To see why this is the casedomized from one step to the next, spanning on one Monte
consider a large system with a spin configuration that is typiCarlo step does not guarantee spanning on the next Monte
cal of the critical point. The correlated percolation thresholdCarlo step as it does in the Ising case. As a result, for a small
for the occupied bonds is related to critical coupling accord4raction of the time, no spanning cluster can be found for the
ing to Eq.(3). That is, if satisfied bonds are occupied with chosen unit vector. Furthermore, the distribution of the
probability P(s;,s;)=1—exd —2K(r-s)(r-s)], the occu- temperature estimator is very broad because some spin con-
pied bonds will just percolatg25]. Occupying bonds with figurations and unit vectors just barely allow spanning yield-
probability P(s;,s;) is the same as occupying all satisfied ing a very small value of the temperature estimator. _
bonds one at a time in ascending orderoénd stopping at ~ These problems can be alleviated by simultaneously using
the largestk such thatc<K . The IC algorithm works in the ~two Ising embeddings as first proposed and justifieHL&l.
same way except that satisfied bonds are added until a clusteft us refer to the bonds that are satisfied with respect to the
wraps around the system. For a large system, this event witlefinition of Eq.(2) asred satisfied bonds. Ldb be a unit
occur with'x nearly equal toK.. Thus, if the system is at vector perpendicular to and define bondi(j) asblue sat-
criticality, a single step of the IC algorithm is almost identi- isfied if

cal to a single step of the Wolff algorithm &. and
~K,. So long as the fluctuations i become small as the (si-b)(sj-b)>0. 9

For the 2DXY model, the IC algorithm described above
es not perform well. The problem is similar to a problem
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Either red or blue bonds may be used to construct and flip

clusters and since andb are orthogonal, if it is difficult to 0475

achieve spanning with one set of bonds it will typically be 047

easy to achieve spanning with the other. A Wolff algorithm A

using both Ising embeddings works as follows: red bonds are ¢ 0465

occupied with the probability given in Ed3), and blue 0.46

bonds are occupied with a probability given in E8). except '

that b replacesr. Both red and blue clusters are identified 0455

and each cluster of each type is flipped with probability 1/2. 0 002 o004 006 008 01 012

-1
Note that every spin is in both a red and blue cluster and that L

if both clusters are flipped, the spin is reflected through the £ 1. critical coupling(x) vs 1L for the three-dimensional
origin. To implement an IC version of the algorithm, two xy model. The solid line is a fit to the data as described in the text.

values ofx, one with respect to and the other with respect . . . .

- . . L - For the two-dimensional model we obtained the estimator of
tob, are assigned to each bond using E.with eitherr or  cyitical coupling as the inverse of the estimator of the critical
b in the denominator and a single valuewfThe entire set temperature. The average critical coupling and its error bars
of «’s, for both red and blue satisfied bonds, is orderedwere obtained using the blocking meth¢#i3] with 100
Bonds are occupied as red or blue or both in the order preblocks of 100 data points each for two dimensions and 160
scribed by the<’s and sets of red and blue clusters are iden-blocks of 1000 data points each for three dimensions. The
tified and updated after each new bond is occupied. The firstverage size of the spanning cluster and its error bars was
cluster to span, either red or blue, stops the process of occ%btai”ed using tthe gOC:jthap Tetf[d_ﬁ]]- The relp?rtedt.error
pying bonds and determines the valuexofDuring the spin a[ss are one standard deviation. The simuiation ime was
move, both sets of clusters are flipped with probability 1/210 CPU second_s per spin per MC sweep on a 450-MHz

} o - Pentium Il machine running Linux. Data for the three-
according to Eqs(5) and (6) with r replaced byb for the  gimensional and two-dimensionaY models are given in
blue clusters. This two-embedding method was always ablgaples | and 1.

to find a spanning cluster and it produces a less broad distri-
bution for the temperature estimator. Nonetheless, the distri- A. Critical temperature of the three-dimensional XY model

bution of x is still very broad and we find better statistics by Figure 1 shows the average value offor the three-
averaging 1«. All results reported for the two-dimensional dimensionalXY model versus the inverse of the linear size of

XY model use the two-embedding method. the system 1/. We fit the data fot. =10 to a function of the
form
IIl. RESULTS
- K,
The IC algorithm was implemented on systems with (r(L))= 1talL-p’ (10

maximum linear sizeL =120 for three dimensions and

=2000 for two dimensions. Each run consisted of 160 000vhereK., a, andp are parameters of the fit. The results of
MC steps for three dimensions and 10 000 MC steps for twahe fit are K .=0.4541%22), a=-0.642), and p
dimensions. We collected statistics for the estimator of the=1.211(9) withy?=6.23, thex? per degree of freedom is

critical coupling, x, and the size of the spanning cluster,  0.69, and the confidence level@=0.72. The value for the

) ) ) ) TABLE IV. A summary of recent estimates of the critical cou-
TABLE IlI. Numerical data for the three-dimensional soft spin pjing for the three-dimensionalY model and the exponenj for
model withA =2.0. the three-dimensional @) universality class. HT denotes high tem-
perature series and FT denotes field theory.

L o P M

10 0.1511) 0.5621) 2291) Re. Method  Ke (XY 7

20 0.09066) 0.54869) 12884) This work (XY) MC 0.454122)  0.0372)
30 0.06525) 0.516G7) 3540(10) This work (soft spin MC 0.0428)
40 0.04983) 0.51395) 727020) [4] MC 0.454088)  0.03614)
50 0.04313) 0.51514) 1269140) [7] MC+HT 0.0384)
60 0.03823) 0.51234) 1998870) [29] MC 04541654  0.0422)
70 0.03772) 0.512G4) 29404100  [6] MC 0.03812)
80 0.03202) 0.51163) 40846140  [5] MC 0.454202)  0.0246)
90 0.03202) 0.51153) 54384200  [3] FT 0.0386)
100 0.030() 0.51134) 70784240  [2] HT 0.454193)  0.0397)
110 0.028%2) 0.51113) 89484300  [30] FT 0.03498)
120 0.02662) 0.51123) 111851400  [31] MC 0.0355)
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0.12 TABLE V. A summary of recent estimates of the critical cou-
pling and the exponeny for the two-dimensionaKY model on a
0.08 simple cubic lattice. According to the Kosterlitz-Thouless theory
g n=1/4.
0.04
Ref. Method Ke n
0 This work MC 1.120Q1) 0.2515)
002 0.04 006 0.08 0.1 [32] MC 1.118 0.238)
-1
L [33] MC 1.1136)
FIG. 2. Standard deviation of the critical coupling vs 1L for [34] MC 1.11991) 0.2333)
three-dimensional XY model. The solid line is a fit to the data asl3°] MC 1.1065)
described in the text. [36] MC 1.12091)

critical couplingK, compares well with values found in the
literature as shown in Table IV. Note thatt 1/v~1.5 as
would be expected from naive finite-size scaling argument
As is the case for Ising-Potts systems, the IC ensemble f
the XY model does not have the same finite-size scaling
properties as the canonical ensemble.

The validity of the IC method is justified by the fact that \yheret is the reduced temperature and 1/2. For this fit we
the width of the distribution ofc decreases als increases. found K,=1.120(1) anda=2.49(4) with y>=3.9, the x?
Figure 2 shows the standard deviatiep of x as a function ~per degree of freedom is 0.65 af=0.68. The choice of
of 1/L and suggests that L=80 was a compromise between keeping the errdkin
small and the confidence lev@llarge. The result foK is in
good agreement with some of the recent results from the
literature as shown in Table V. Although the fit is good, the
_ result for K. should be viewed with caution because it is
and therefore we expect a sharp distributiorkdior L=2.  based on finite-size scaling assumptions that do not necessar-
The solid curve in Fig. 2 is the result of a fit to the data forily hold for the IC ensemble.

L=50 to the functional formoy=a+bL"9 yielding a Figure 4 shows the standard deviation;; of 1/k as a
=0.0002(10),b=0.433), andq=0.663). function of 1/Irf(L). Unlike the situation in three dimensions,
it is not clear thato 4/, vanishes as — . If the finite-size
scaling behavior of the IC ensemble is of the “essential sin-
gularity” type observed in the canonical ensemble then a
reasonable hypothesis is thatj;~(InL)"% A naive ex-
trapolation suggests that;;;. approaches a finite value near
0.11 but a slowly decreasing function cannot be ruled out. In
the preceding section we discussed reasons for the broad
distribution of the temperature estimator. Simulations with
L>2000 would be needed to determine whether ormgt

vanishes ag — .
where K, and a are parameters of the fit. This functional
form was motivated by combining the usual finite-size scal-

ing assumption that=L with the Kosterlitz-Thouless ex-
ression for the critical behavior of the correlation length
6]1

E.(K)~ebt (13

lim o=0, (13)

L—o

B. Kosterlitz-Thouless temperature

Figure 3 showg1/k(L)) ! as a function of 1/Ir() for
the two-dimensionaKY model. We fit the data foc =160 to
the function,

Ke

fk(L)) 1= ———,
(L)) 1+a[ln(L)] 2

12

C. Magnetic exponents

The average masll of the spanning cluster is propor-

11 tional to the magnetization of the system so that the magnetic
1 0.5
-l\ *
e 0.9 04
g & 03 .
0.8 . !
02 o
0.7 0.1
0 0.1 0.2 0.3 0.4 0.5
/inL 0.05 0.1 0.15 0.2
1/In’L

FIG. 3. Critical coupling Xk %) vs 1/nL) for two-

dimensionaXY model. The solid line is a fit to the data as described

in the text.

1/In?(L) for two-dimensionalXY model.
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12 14
11
10 12
= s 10
= j £ g
6 6
5 4
2 25 3 131?, 4 45 5 > 3 7 5 5 %
InL

FIG. 5. Mass of the spanning clusterNhvs InL for the three-

dimensionalXy model. The solid line is a linear fit. FIG. 7. Mass of the spanning clusterNhvs InL for the two-

dimensionalXY model. The solid line is a linear fit.

exponents can be obtained from the fractal dimension of the
spanning cluster, defined by ~LP. The critical exponent TAO)—(ATAMD) — (A

i i Ca(t)= . 15
is related toD via At) (A — (AT (15

n=2+d—2D. (14)
_ Theintegrated autocorrelation times defined by
Figure 5 shows a log-log plot d¥1 vs L for the three-

dimensional XY model. A linear fit yields 7(3D) 1 w
=0.037(2) withx?=2.1, thex? per degree of freedom is ==+ lim > TA). (16)
0.35, and the confidence lev@l=0.9. The smallest value of 2

L included in the fit id,;,= 50. Figure 6 shows values af

obtained from fits with smallest linear sitg,,. The value  The integrated autocorrelation time faiis interpreted as the
of » has an upward trend up tg,;,=40 and then is constant time needed to obtain statistically independent measurements

for larger values ot ,. The value ofl.,, for the reported  of A. As a result, the statistical error in measuriagn a MC
results was chosen such that the statistical error is minimajimylation is proportional to#, /N)Y2 whereN is the num-

for a reasonably larg® and the value ofy is well into the  per of MC steps.
region of constant values. The plot in Fig. 6 also shows an \we measured the autocorrelation functions and the corre-

upward trend for the two last values lof,i,. Table IV shows  sponding integrated autocorrelation times for the magnetiza-
some recent results for the three-dimensioféimodel. Our tion M and the critical coupling estimatar. When calculat-

result for » agrees with recently published values. ing the integrated autocorrelation time it is necessary to
: F'gufe 7 shows a Iog-log plot df/l vs L for the tV.VO' choose a finite cutoff fow in the sum in Eq(16). We used
dimensional Xy mod_el. .A. linear fit to the da_lta yields w=100, a value much longer than the integrated autocorre-
7(2D)=0.25X(5), which is in good agreement with the the- |54ion times obtained below. Figure 8 shows the autocorrela-
oretical value for the Kosterlitz-Thouless transitiofkr  tjon function vs time for the inverse critical temperature of
=0.25. Thezs_mallest valge df included in the fit iSLmin  the three-dimensionaky model. Figure 9 shows the same
=480 andy“=2.84, they” per degree of freedom is 0.94, ;¢ for the two-dimensional case. Note the negative over-
and Q=0.41. The value oL, was chosen such that the gpoot of the correlation functions for time of one MC step.

w—ot=1

statistical error is minimal for a reasonably lai@e This is due to the presence of a negative feedback mecha-
_ _ _ nism in the IC algorithm. Consecutive temperature estima-
D. Dynamics of the invaded cluster algorithm tors for the spin configurations are anticorrelated.
The autocorrelation functionfor a time dependent vari-
able A(t) is defined as 1
0.06 0.5
0.05 0 _— R
p .
0.04 [ .
i b l -0.5
0.03
3
0 20 40 60 80 100 1 2 3 4 5 6 7 8 9 10
Luin t
FIG. 6. The critical exponeny for the three-dimensionaXY FIG. 8. The autocorrelation function of the critical couplifig
model vs minimum system side,,;, included in the fit of the data. vs Monte Carlo time for the three-dimension&f model. The sys-
The maximum system size in the fit s, ,,= 120. tem size isL=100.
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1 TABLE VII. Autocorrelation times for critical coupling, and
magnetizationr,, for the two-dimensionaKY model.
0.5
L o ™
v

=0 R — 10 0.273 0.73
¥ 20 0.144 0.95
03 40 0.107 0.57
80 0.077 0.71
1 2 3 4 5 6 7 8 9 10 160 0.095 0.88
t 240 0.061 1.15
FIG. 9. The autocorrelation function for the Kosterlitz-Thouless 320 0.073 0.80
temperature estimatof'z vs Monte Carlo time for the two- 480 0.097 0.99
dimensionalXY model. The system size Is=1000. 640 0.071 1.07
800 0.082 0.82
Table VI shows the integrated autocorrelation times for 1000 0.060 0.60
the mass of spanning clustey; and the inverse temperature 2000 0.073 0.64

7k, as a function of the linear size of the systémin the

three-dimensionaKY model. Table VII shows the same data . . a . ,
for the two-dimensional case. These data show that the a%ampostrmlet al. [7] studied a¢™ soft spinmodel defined

tocorrelation times foM and x do not increase with the y the Hamiltonian

system size. This behavior was also observed for IC dynam- .

ics for Ising-Potts model§17,27,19 and gives the impres- HIT==JTY ¢i-dj+> ¢7+N> (¢7—1)?,
sion that the IC algorithm does not have any critical slowing D ' ' 17)
down. However, as shown by Moriarty, Machta, and Chayes

[19] for Ising-Potts models, observables defined on scaleghereT is the temperaturel is the interaction constant, and

intermediate between the lattice spacing and system sizg i 5 “softness” parameter. The vectors can have any
have relaxation times that diverge with system size so that | f th dulusdl. The XY model is obtained
the dynamic exponent for the algorithm is greater than zerg/aue of tné modu u$¢|_. €AY Model IS obtained as a
Nonetheless, the small values gf and r,, mean that rela- Special case fk =co. .Th's ”?Ode' is in the same universality
tively few MC steps are needed to obtain good statistics fo lass as the three—d!mens!orvéﬂ( mod(_al. He_lsenbusch af?d
~ nd orok showed that finite-size corrections in the canonical
x andM. ensemble are minimized nerr=2.0.

We implemented the IC algorithm for the soft spin model.

IV. THE SOFT SPIN O (2) MODEL Following Refs.[6,28], we used the IC algorithm to update
the orientation of the vectoré and theMETROPOLIS algo-
rithm to update the modulus. The IC part of the combined

some recent results foy. A possible reason for this discrep- "’;:gor;'?(;nl'ssdoefstﬁgbequg ggg' ubr:gczglza?.'rfeﬁzniﬁse th;t e
ancy in the literature is the presence of finite-size scaliné uld spi S ly-hav vaid

correction in the fit oM vs L. Hasenbusch and Fak [6] and  Of || =1. Since the IC algorithm performs only reflections,
the modulus of the spins remains the same after the IC

TABLE VI. Autocorrelation times for critical coupling-. and ~ SWeep. After every IC step, the algorithm performs an update

The values ofy for the three-dimensiona{Y universality
class vary significantly in the literature. Table IV shows

magnetizationry, for the three-dimensionalY model. of both the modul_us and the orientation of the spins using the
METROPOLIS algorithm as follows. New values of the two
L 7; ™ spin components are proposed:
10 0.195 0.50 oy’ = dy—2(py—0.5),
20 0.129 0.56
30 0.045 0.52 ¢y'=¢dy—2(py—0.9),
40 0.052 0.52 .
where p, and p, are random numbers from the interval
50 0.045 0.51 y o . -
60 0028 0.50 [0,1). The update is accepted with the probability
0 0.025 0.50 P=min[1,exgH/T—H'/T)],
80 0.021 0.49
90 0.028 0.50 whereT is obtained from the output of the previous IC step.
100 0.029 0.58 The temperature will, therefore, be different for everg-
110 0.010 0.52 TROPOLIS update. However, as is the case for the three-
120 0.032 0.61 dimensionalXY model, these temperature fluctuations tend

toward zero as —oo. In the limit of very large system size
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FIG. 10. Critical couplingx) vs 1L for the three-dimensional

soft spin model. The solid line is a fit to the data as described in the,. FlG'_ 11. Mass Of_ the spanning clu_sterl\l'hv_s InL_ for th? three-
text. dimensional soft spin model. The solid line is a linear fit.

their result =0.038%2). Recent work by Campostrini

the METROPOLIS subroutine updates the system at a fixedet al.[7] gives »=0.038q4).
temperature. Th®ETROPOLISSUbroutine preserves the nega-
tive feedback mechanism of the IC algorithm. If the tempera- V. CONCLUSIONS
ture of the system is low, th®EeTRoPOLIS algorithm will
tend to make the modulus of the spins larger. With larger In this paper we have introduced and applied an invaded
spin modulus the IC algorithm will give a higher temperaturecluster algorithm for the two- and three-dimensiond
as an outcome. The same holds if we start with high temmodels and a related three-dimensional soft spin model. This
perature. The Metropolis algorithm will make the modulus ofWork extends the range of validity of the invaded cluster
the spins smaller and consequently the IC algorithm willmethod to include continuous spins and systems where the
lower the temperature. phase transition is of the Kosterlitz-Thouless type. Our re-

In our simulations of the soft spin model we uskd sults for critical temperatures and magnetic exponents are in
=2.0. The maximum linear size of the system was120 reasonable agreement with recent values in the literature.
and each run consisted of 10000 MC steps. Figure 10 showEhe invaded cluster algorithm is very efficient flY sys-
the average critical couplin@) vs 1L Afit to the function  [€MS: showing no critical slowing for estimators of the criti-
~ B _ B - cal temperature and the magnetization and yielding highly
(K)=Kc/(1+aL"P) yields K(A=2.0=0.510q1), a=  zccyrate values of the magnetic exponent with relatively
—0.9(4), andb=1.3(1). Thesmallest size included in the fit

et 5 3 i little computational effort.
is L=30 andy“=10.0, they~ per degree of freedom is 1.4,

andQ=0.18. This value oK. is in agreement with the value
reported by Hasenbusch andrik [6] K.=0.509 908 (6).
Figure 11 shows a log-log plot &l vsL. The resulting value The authors would like to thank Nikolay Prokof'ev for
for 5, 7(\=2.0)=0.042(8) (with x?>=5.8, thex? per de- useful discussions. This work was supported in part by NSF
gree of freedom is 0.98, ar@=0.43) is in agreement with Grant No. DMR 9978233.
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