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Invaded cluster simulations of theXY model in two and three dimensions
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The invaded cluster algorithm is used to study theXYmodel in two and three dimensions up to sizes 20002

and 1203, respectively. A soft spin O~2! model, in the same universality class as the three-dimensionalXY
model, is also studied. The static critical properties of the model and the dynamical properties of the algorithm
are reported. The results areKc50.454 12(2) for the three-dimensionalXY model andh50.037(2) for the
three-dimensionalXY universality class. For the two-dimensionalXY model the results areKc51.120(1) and
h50.251(5). The invaded cluster algorithm does not show any critical slowing for the magnetization or
critical temperature estimator for the two-dimensional or three-dimensionalXY models.
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I. INTRODUCTION

In this paper we present a Monte Carlo study of theXY
model using the invaded cluster~IC! algorithm. The purpose
of this study is both to obtain high precision results for t
XY model and to test the efficacy of the invaded clus
method for phase transitions with continuous symme
breaking. TheXYmodel is in the O~2! universality class and
in two dimensions the transition is of the Kosterlitz-Thoule
type @1#. Theoretical and computational studies of the O~2!
critical point include high temperature series expansions@2#,
renormalization-group calculations@3#, and Monte Carlo
~MC! simulations@4–7#. The l transition in 4He is also in
the O~2! universality class and the specific heat exponena
for this system has been measured to very high preci
@8–10#.

Recent Monte Carlo studies of theXY transition use ver-
sions of the Wolff algorithm@11# because near the critica
point they are much more efficient than local algorithms. T
Wolff algorithm is an example of a cluster algorithm of th
kind, first introduced by Swendsen and Wang@12,13# for
Ising-Potts models. The central idea of cluster algorithm
to identify clusters of sites by a bond percolation proc
correlated to the spin configuration. The spins of each clu
are then independently flipped. Cluster algorithms can
extremely efficient when the percolation process that defi
the clusters has a percolation threshold that coincides
the phase transition of the spins. This situation holds for
original Swendsen-Wang algorithm applied to Ising-Po
models and was later shown to hold for a variety of oth
spin systems with discrete symmetries@14–16#. Wolff @11#
showed how to extend cluster algorithms to spin models w
O~n! symmetry by an Ising embedding method.

Invaded cluster algorithms@17–19# are cluster algorithms
with the property that they find and simulate the critical po
automatically withouta priori knowledge of the critical tem-
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perature. The critical temperature is a direct output of
algorithm and the magnetic exponents can be obtained f
finite-size scaling of the cluster size distribution. In additi
to providing the critical temperature and magnetic expon
without having to invoke methods such as histogram
weighting, IC algorithms appear to have less critical slowi
than corresponding Swendsen-Wang or Wolff algorith
@19#. IC algorithms can, in principle, be constructed whe
ever a conventional cluster algorithm is available with t
property that the bond percolation process has a percola
threshold that coincides with the phase transition. IC al
rithms have thus far been applied to systems with disc
symmetry breaking including Ising-Potts@17,18,20,21# mod-
els, Widom-Rowlinson models@22#, and the fully frustrated
Ising model@21#. In this paper we show how Wolff’s embed
ding scheme can be used to construct an efficient IC a
rithm for simulating the O~2! critical point in three dimen-
sions and the Kosterlitz-Thouless point in two dimension

One of our objectives is to obtain a high precision val
of theh exponent for the O~2! universality class. Becauseh
is itself very small, it has proved difficult to measure it wi
much precision. One of the difficulties is the presence
corrections to scaling. Recently, Hasenbusch and co-wor
@6,7# proposed a method to minimize this difficulty by co
sidering a soft spin O~2! model with a parameter controlling
the variance in the length of the spin vectors. By adjust
this parameter they minimize corrections to scaling and
prove their estimate ofh. Below we apply a modified ver-
sion of the IC algorithm to the soft spin model.

In the following section we describe the IC algorithm f
the XY model. In Sec. III we give results for the critica
temperature, magnetic exponents, and dynamic propertie
the XY model in two and three dimensions. In Sec. IV w
describe the algorithm and present results for the soft s
model. Conclusions are presented in Sec. V.

II. INVADED CLUSTER ALGORITHM
FOR THE XY MODEL

The algorithms for theXY model used in this paper ar
obtained by combining the invaded cluster method a
©2002 The American Physical Society02-1
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I. DUKOVSKI, J. MACHTA, AND L. V. CHAYES PHYSICAL REVIEW E 65 026702
Wolff’s embedding scheme for continuous spin models. T
XY model is defined by the Hamiltonian

bH52K(
^ i , j &

sW i•sW j , ~1!

wheresW i is a two-dimensional unit vector and the summati
is over all nearest neighbor bonds on the lattice, here ei
the square or cubic lattice with periodic boundary conditio

We begin by describing a version of Wolff’s algorithm fo
the XY model. In each Monte Carlo step we choose a tw
dimensional unit vectorrW. For each bond (i , j ) of the lattice,
the bond is calledsatisfiedif both spins lie on the same sid
of the line perpendicular to the unit vector, that is,

~sW i•rW !~sW j•rW !.0. ~2!

Satisfied bonds are thenoccupiedwith probability

P~sW i ,sW j !512exp@22K~rW•sW i !~rW•sW j !#. ~3!

One way to implement the occupation of bonds with t
probability is to independently assign random numbersui , j ,
uniformly chosen from the interval@0,1), to every bond of
the lattice and then to occupy the satisfied bonds ifui , j

,P(sW i ,sW j ). An equivalent approach, which provides a use
link to the IC methodology, is to definek i , j from ui , j by
substitutingui , j for P(sW i ,sW j ) and k i , j for K in Eq. ~3! and
then solving fork i , j ,

k i , j52 ln~12ui , j !/@2~rW•sW i !~rW•sW j !#. ~4!

Satisfied bonds withk i , j,K are occupied. The occupie
bonds define a set of connected clusters. Single sites wit
occupied bonds are also considered to be clusters so
every lattice site is uniquely a member of some cluster.

Once the clusters are identified each cluster isflippedwith
probability 1/2. A cluster is flipped by reflecting every spin
the cluster through the line perpendicular torW,

sW i→R~rW !sW i , ~5!

where

R~rW !sW i5sW i22~sW i•rW !rW. ~6!

Flipping clusters with probability 1/2 yields a new spin co
figuration and completes one MC step. It is straightforwa
to show that the algorithm is ergodic and satisfies deta
balance.

Wolff’s original paper @11# introduces two innovations
The first is to grow and flip only a single cluster in ea
Monte Carlo step. The second is the generalization of clu
methods to spin models with continuous symmetries. O
the generalization to continuous symmetries is used here
combined with the invaded cluster methodology. In fa
Wolff’s single cluster method is not compatible with the i
vaded cluster methodology. When we speak of the W
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algorithm in the following we mean the algorithm describ
above for which all clusters are defined and flipped in
single MC step.

Cluster algorithms can generally be viewed as a seque
of bond moves and spin moves. During the bond mov
configuration of occupied bonds and the associated se
clusters are generated from the spin configuration. This
done by occupying satisfied bonds with a probability th
depends on the simulation temperature. During the s
move a new spin configuration is obtained by randomly fl
ping clusters. The bond configurations can be viewed a
correlated percolation model. For a cluster algorithm to
efficient, the correlated percolation model should have a p
colation transition that coincides with the critical point of th
spin model. If this holds then clusters of all sizes are flipp
during a single MC step and changes to the spin configu
tion occur on all length scales. For Ising-Potts models
correlated percolation model associated with the Swend
Wang algorithm is the Fortuin-Kastelyn random clus
model and the equivalence of the percolation threshold
the critical point is well understood@23,24#. The percolation
properties of the bonds defined by the Wolff algorithm f
the XY model have recently been investigated@16,25#. The
conclusion is the same as for the Ising-Potts models:
critical point for the three-dimensionalXY model and
Kosterlitz-Thouless point for the two-dimensionalXY model
coincide with the percolation threshold for the bonds defin
by the Wolff algorithm.

The invaded cluster methodology relies on the equi
lence of the phase transition in the spin model and the p
colation transition of the occupied bonds to find and simul
the phase transition without prior knowledge of the critic
coupling. Like other cluster algorithms, a full MC step co
sists of a bond move followed by a spin move. The sp
move is the same as for standard cluster algorithms but
bond moves differs. In the IC bond move, satisfied bonds
occupied one at a time in random order until a signature
percolation is first observed. The set of occupied bonds
tained in this way defines bond clusters and these are flip
in the usual way. The signature of percolation is incorpora
in a stopping condition that is tested after each new bon

TABLE I. Numerical data for the three-dimensionalXY model.

L sk̃ k̃ M

10 0.1079~2! 0.4730~2! 236.2~2!

20 0.0621~1! 0.46195~7! 1334~1!

30 0.04658~8! 0.45890~5! 3662~3!

40 0.03810~7! 0.45751~3! 7480~4!

50 0.03281~6! 0.45668~2! 13038~10!

60 0.02904~5! 0.45620~2! 20474~18!

70 0.02635~4! 0.45584~2! 30052~25!

80 0.02409~4! 0.45558~1! 41820~36!

90 0.02240~4! 0.45538~1! 56047~46!

100 0.02080~4! 0.45521~1! 72824~64!

110 0.01957~3! 0.45511~1! 92197~80!

120 0.01854~3! 0.455006~9! 114374~96!
2-2
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INVADED CLUSTER SIMULATIONS OF THEXY MODEL . . . PHYSICAL REVIEW E65 026702
occupied. In this paper we use a topological stopping con
tion, which requires that at least one cluster wraps around
lattice in at least one direction.

For the most part, the IC algorithm closely parallels t
Wolff algorithm. First a unit vector is randomly chosen a
satisfied bonds are determined with respect to this unit ve
as described in the paragraph including Eq.~2!. Then uni-
form random numbersui , j are assigned to each bond a
nonuniform random numbersk i , j are obtained from them
according to Eq.~4!. The next step of the IC algorithm dif
fers from the Wolff algorithm. Satisfied bonds are occup
one at a timeaccording to the ordering defined byk i , j with
the satisfied bond having the smallest value ofk occupied
first. After each bond is occupied, the set of clusters is
dated and the stopping condition is checked. If no clus
wraps around the lattice, the satisfied bond with the n
largestk is occupied but if some cluster wraps around t
lattice in some direction the bond move is completed and
further bonds are occupied. The largest value ofk chosen
during the bond move is calledk̃. The spin move is identica
to the Wolff algorithm, with probability 1/2, each cluster
reflected through the line perpendicular torW according to
Eqs.~5! and ~6!.

The IC algorithm simulates the critical point andk̃ is an
estimator of the critical coupling. To see why this is the ca
consider a large system with a spin configuration that is ty
cal of the critical point. The correlated percolation thresh
for the occupied bonds is related to critical coupling acco
ing to Eq. ~3!. That is, if satisfied bonds are occupied wi
probability Pc(sW i ,sW j )512exp@22Kc(rW•sWi)(rW•sWj)#, the occu-
pied bonds will just percolate@25#. Occupying bonds with
probability Pc(sW i ,sW j ) is the same as occupying all satisfie
bonds one at a time in ascending order ofk and stopping at
the largestk such thatk<Kc . The IC algorithm works in the
same way except that satisfied bonds are added until a cl
wraps around the system. For a large system, this event
occur with k̃ nearly equal toKc . Thus, if the system is a
criticality, a single step of the IC algorithm is almost iden
cal to a single step of the Wolff algorithm atKc and k̃

'Kc . So long as the fluctuations ink̃ become small as the

TABLE II. Numerical data for the two-dimensionalXY model.

L s T̃ k̃[1/T̃ M

10 0.44~5! 0.788~2! 55.5~1!

20 0.32~5! 0.891~1! 200.6~5!

40 0.25~5! 0.953~1! 717~2!

80 0.22~5! 0.9936~7! 2631~6!

160 0.19~5! 1.0212~8! 9543~24!

240 0.19~5! 1.0350~8! 20151~50!

320 0.18~5! 1.0410~8! 34779~86!

480 0.17~5! 1.0519~9! 74083~186!
640 0.16~5! 1.0571~7! 126798~311!
800 0.17~5! 1.0605~7! 192100~490!
1000 0.16~5! 1.0643~6! 293519~756!
2000 0.15~5! 1.0742~7! 1073907~2800!
02670
i-
he

or

d

-
r

xt

o

,
i-
d
-

ter
ill

system size increases, the IC algorithm and the Wolff al
rithm atKc will sample the same state in the thermodynam
limit. However, in finite volume, the invaded cluster alg
rithm defines a critical ensemble that is different than
canonical ensemble and has different finite-size sca
properties.

So far we have assumed the spin system is already a
critical point. Suppose that the spin configuration is typic
of the low temperature phase, then there will be more sa
fied bonds than at criticality and a smaller fraction will b
needed to form a spanning cluster so thatk̃,Kc . The in-
vaded cluster MC step thus corresponds to a Wolff MC s
at temperatureT5J/k̃.Tc so that the system is warmed.
similar argument shows that if the system starts in the h
temperature phase, it is cooled by the IC algorithm so t
there is negative feedback mechanism that forces the sy
to the critical point independent of the starting configuratio
A detailed discussion of these arguments in the contex
Ising-Potts models is given in Ref.@18#.

To measure the critical temperature and magnetic ex
nent using the IC algorithm we use two assumptions,

lim
L→`

^k̃&5Kc , ~7!

M;L (21d2h)/2, ~8!

whereL is the system size andM is the average size of th
spanning cluster. While these assumptions have not b
proved they are well supported by nonrigorous argume
and numerical evidence from a variety of systems@18,20–
22#.

For the 2DXY model, the IC algorithm described abov
does not perform well. The problem is similar to a proble
that occurs in the 2D Ising model. Specifically, at criticalit
the satisfied bonds themselves just percolate. This means
in a significant fraction of spin configurations, spanning
not possible. It also means that the distribution of the te
perature estimator is broad because of spin configurations
which spanning is just barely possible. The problem is ev
worse for the theXY model. Since the unit vectorrW is ran-
domized from one step to the next, spanning on one Mo
Carlo step does not guarantee spanning on the next M
Carlo step as it does in the Ising case. As a result, for a sm
fraction of the time, no spanning cluster can be found for
chosen unit vectorrW. Furthermore, the distribution of th
temperature estimator is very broad because some spin
figurations and unit vectors just barely allow spanning yie
ing a very small value of the temperature estimator.

These problems can be alleviated by simultaneously us
two Ising embeddings as first proposed and justified in@16#.
Let us refer to the bonds that are satisfied with respect to
definition of Eq.~2! as red satisfied bonds. LetbW be a unit
vector perpendicular torW and define bond (i , j ) asblue sat-
isfied if

~sW i•bW !~sW j•bW !.0. ~9!
2-3
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Either red or blue bonds may be used to construct and
clusters and sincerW andbW are orthogonal, if it is difficult to
achieve spanning with one set of bonds it will typically
easy to achieve spanning with the other. A Wolff algorith
using both Ising embeddings works as follows: red bonds
occupied with the probability given in Eq.~3!, and blue
bonds are occupied with a probability given in Eq.~3! except
that bW replacesrW. Both red and blue clusters are identifie
and each cluster of each type is flipped with probability 1
Note that every spin is in both a red and blue cluster and
if both clusters are flipped, the spin is reflected through
origin. To implement an IC version of the algorithm, tw
values ofk, one with respect torW and the other with respec
to bW , are assigned to each bond using Eq.~4! with eitherrW or
bW in the denominator and a single value ofu. The entire set
of k ’s, for both red and blue satisfied bonds, is order
Bonds are occupied as red or blue or both in the order
scribed by thek ’s and sets of red and blue clusters are ide
tified and updated after each new bond is occupied. The
cluster to span, either red or blue, stops the process of o
pying bonds and determines the value ofk̃. During the spin
move, both sets of clusters are flipped with probability 1
according to Eqs.~5! and ~6! with rW replaced bybW for the
blue clusters. This two-embedding method was always a
to find a spanning cluster and it produces a less broad di
bution for the temperature estimator. Nonetheless, the di
bution of k̃ is still very broad and we find better statistics b
averaging 1/k̃. All results reported for the two-dimensiona
XY model use the two-embedding method.

III. RESULTS

The IC algorithm was implemented on systems w
maximum linear sizeL5120 for three dimensions andL
52000 for two dimensions. Each run consisted of 160 0
MC steps for three dimensions and 10 000 MC steps for
dimensions. We collected statistics for the estimator of
critical coupling,k̃, and the size of the spanning cluster,M.

TABLE III. Numerical data for the three-dimensional soft sp
model withl52.0.

L sk̃ k̃ M

10 0.151~1! 0.562~1! 229~1!

20 0.0906~6! 0.5486~9! 1288~4!

30 0.0652~5! 0.5160~7! 3540~10!

40 0.0498~3! 0.5139~5! 7270~20!

50 0.0437~3! 0.5151~4! 12691~40!

60 0.0382~3! 0.5123~4! 19988~70!

70 0.0377~2! 0.5120~4! 29404~100!
80 0.0320~2! 0.5116~3! 40846~140!
90 0.0320~2! 0.5115~3! 54384~200!
100 0.0300~2! 0.5113~4! 70784~240!
110 0.0282~2! 0.5111~3! 89484~300!
120 0.0266~2! 0.5112~3! 111851~400!
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For the two-dimensional model we obtained the estimato
critical coupling as the inverse of the estimator of the critic
temperature. The average critical coupling and its error b
were obtained using the blocking method@13# with 100
blocks of 100 data points each for two dimensions and 1
blocks of 1000 data points each for three dimensions. T
average size of the spanning cluster and its error bars
obtained using the bootstrap method@13#. The reported error
bars are one standard deviation. The simulation time w
1025 CPU seconds per spin per MC sweep on a 450-M
Pentium III machine running Linux. Data for the thre
dimensional and two-dimensionalXY models are given in
Tables I and II.

A. Critical temperature of the three-dimensional XY model

Figure 1 shows the average value ofk̃ for the three-
dimensionalXYmodel versus the inverse of the linear size
the system 1/L. We fit the data forL>10 to a function of the
form

^k̃~L !&5
Kc

11aL2p
, ~10!

whereKc , a, andp are parameters of the fit. The results
the fit are Kc50.454 12(2), a520.64(2), and p
51.211(9) withx256.23, thex2 per degree of freedom is
0.69, and the confidence level isQ50.72. The value for the

FIG. 1. Critical coupling^k̃& vs 1/L for the three-dimensiona
XYmodel. The solid line is a fit to the data as described in the t

TABLE IV. A summary of recent estimates of the critical cou
pling for the three-dimensionalXY model and the exponenth for
the three-dimensional O~2! universality class. HT denotes high tem
perature series and FT denotes field theory.

Ref. Method Kc ~XY! h

This work ~XY! MC 0.45412~2! 0.037~2!

This work ~soft spin! MC 0.042~8!

@4# MC 0.45408~8! 0.036~14!

@7# MC1HT 0.0380~4!

@29# MC 0.454165~4! 0.042~2!

@6# MC 0.0381~2!

@5# MC 0.45420~2! 0.024~6!

@3# FT 0.038~6!

@2# HT 0.45419~3! 0.039~7!

@30# FT 0.0349~8!

@31# MC 0.035~5!
2-4
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critical couplingKc compares well with values found in th
literature as shown in Table IV. Note thatpÞ1/n'1.5 as
would be expected from naive finite-size scaling argume
As is the case for Ising-Potts systems, the IC ensemble
the XY model does not have the same finite-size sca
properties as the canonical ensemble.

The validity of the IC method is justified by the fact th
the width of the distribution ofk̃ decreases asL increases.
Figure 2 shows the standard deviationsk̃ of k̃ as a function
of 1/L and suggests that

lim
L→`

sk̃50, ~11!

and therefore we expect a sharp distribution ofk̃ for L5`.
The solid curve in Fig. 2 is the result of a fit to the data f
L>50 to the functional formsk̃5a1bL2q yielding a
50.0002(10),b50.43(3), andq50.66(3).

B. Kosterlitz-Thouless temperature

Figure 3 showŝ 1/k̃(L)&21 as a function of 1/ln(L) for
the two-dimensionalXYmodel. We fit the data forL>160 to
the function,

^1/k̃~L !&215
Kc

11a@ ln~L !#22
, ~12!

where Kc and a are parameters of the fit. This function
form was motivated by combining the usual finite-size sc

FIG. 2. Standard deviation of the critical couplingsk̃ vs 1/L for
three-dimensional XY model. The solid line is a fit to the data
described in the text.

FIG. 3. Critical coupling 1/̂k̃21& vs 1/ln(L) for two-
dimensionalXYmodel. The solid line is a fit to the data as describ
in the text.
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ing assumption thatj5L with the Kosterlitz-Thouless ex
pression for the critical behavior of the correlation lengthj
@26#,

j`~K !;ebt2n
, ~13!

wheret is the reduced temperature andn51/2. For this fit we
found Kc51.120(1) anda52.49(4) with x253.9, thex2

per degree of freedom is 0.65 andQ50.68. The choice of
L>80 was a compromise between keeping the error inKc
small and the confidence levelQ large. The result forKc is in
good agreement with some of the recent results from
literature as shown in Table V. Although the fit is good, t
result for Kc should be viewed with caution because it
based on finite-size scaling assumptions that do not nece
ily hold for the IC ensemble.

Figure 4 shows the standard deviations1/k̃ of 1/k̃ as a
function of 1/ln2(L). Unlike the situation in three dimension
it is not clear thats1/k̃ vanishes asL→`. If the finite-size
scaling behavior of the IC ensemble is of the ‘‘essential s
gularity’’ type observed in the canonical ensemble then
reasonable hypothesis is thats1/k̃;(ln L)2q. A naive ex-
trapolation suggests thats1/k̃ approaches a finite value nea
0.11 but a slowly decreasing function cannot be ruled out
the preceding section we discussed reasons for the b
distribution of the temperature estimator. Simulations w
L@2000 would be needed to determine whether or nots1/k̃
vanishes asL→`.

C. Magnetic exponents

The average massM of the spanning cluster is propor
tional to the magnetization of the system so that the magn

s

TABLE V. A summary of recent estimates of the critical co
pling and the exponenth for the two-dimensionalXY model on a
simple cubic lattice. According to the Kosterlitz-Thouless theo
h51/4.

Ref. Method Kc h

This work MC 1.120~1! 0.251~5!

@32# MC 1.118 0.238~4!

@33# MC 1.113~6!

@34# MC 1.1199~1! 0.233~3!

@35# MC 1.106~5!

@36# MC 1.1209~1!

FIG. 4. Standard deviation of the critical couplings1/k̃ vs
1/ln2(L) for two-dimensionalXY model.
2-5
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exponents can be obtained from the fractal dimension of
spanning cluster, defined byM;LD. The critical exponenth
is related toD via

h521d22D. ~14!

Figure 5 shows a log-log plot ofM vs L for the three-
dimensional XY model. A linear fit yields h(3D)
50.037(2) withx252.1, thex2 per degree of freedom i
0.35, and the confidence levelQ50.9. The smallest value o
L included in the fit isLmin550. Figure 6 shows values ofh
obtained from fits with smallest linear sizeLmin . The value
of h has an upward trend up toLmin540 and then is constan
for larger values ofLmin . The value ofLmin for the reported
results was chosen such that the statistical error is mini
for a reasonably largeQ and the value ofh is well into the
region of constant values. The plot in Fig. 6 also shows
upward trend for the two last values ofLmin . Table IV shows
some recent results for the three-dimensionalXYmodel. Our
result forh agrees with recently published values.

Figure 7 shows a log-log plot ofM vs L for the two-
dimensional XY model. A linear fit to the data yields
h(2D)50.251(5), which is in good agreement with the the
oretical value for the Kosterlitz-Thouless transitionhKT
50.25. The smallest value ofL included in the fit isLmin
5480 andx252.84, thex2 per degree of freedom is 0.94
and Q50.41. The value ofLmin was chosen such that th
statistical error is minimal for a reasonably largeQ.

D. Dynamics of the invaded cluster algorithm

The autocorrelation functionfor a time dependent vari
ableA(t) is defined as

FIG. 5. Mass of the spanning cluster lnM vs lnL for the three-
dimensionalXY model. The solid line is a linear fit.

FIG. 6. The critical exponenth for the three-dimensionalXY
model vs minimum system sizeLmin included in the fit of the data
The maximum system size in the fit isLmax5120.
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GA~ t !5
Š@A~0!2^A&#@A~ t !2^A&#‹

Š@A~0!2^A&#2
‹

. ~15!

The integrated autocorrelation timeis defined by

tA5
1

2
1 lim

w→`
(
t51

w

GA~ t !. ~16!

The integrated autocorrelation time forA is interpreted as the
time needed to obtain statistically independent measurem
of A. As a result, the statistical error in measuringA in a MC
simulation is proportional to (tA /N)1/2 whereN is the num-
ber of MC steps.

We measured the autocorrelation functions and the co
sponding integrated autocorrelation times for the magnet
tion M and the critical coupling estimatork̃. When calculat-
ing the integrated autocorrelation time it is necessary
choose a finite cutoff forw in the sum in Eq.~16!. We used
w5100, a value much longer than the integrated autoco
lation times obtained below. Figure 8 shows the autocorre
tion function vs time for the inverse critical temperature
the three-dimensionalXY model. Figure 9 shows the sam
plot for the two-dimensional case. Note the negative ov
shoot of the correlation functions for time of one MC ste
This is due to the presence of a negative feedback me
nism in the IC algorithm. Consecutive temperature estim
tors for the spin configurations are anticorrelated.

FIG. 8. The autocorrelation function of the critical couplingGk̃

vs Monte Carlo time for the three-dimensionalXY model. The sys-
tem size isL5100.

FIG. 7. Mass of the spanning cluster lnM vs lnL for the two-
dimensionalXY model. The solid line is a linear fit.
2-6
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Table VI shows the integrated autocorrelation times
the mass of spanning clustertM and the inverse temperatur
tKc

as a function of the linear size of the systemL in the
three-dimensionalXY model. Table VII shows the same da
for the two-dimensional case. These data show that the
tocorrelation times forM and k̃ do not increase with the
system size. This behavior was also observed for IC dyn
ics for Ising-Potts models@17,27,19# and gives the impres
sion that the IC algorithm does not have any critical slow
down. However, as shown by Moriarty, Machta, and Cha
@19# for Ising-Potts models, observables defined on sca
intermediate between the lattice spacing and system
have relaxation times that diverge with system size so
the dynamic exponent for the algorithm is greater than ze
Nonetheless, the small values oftk̃ andtM mean that rela-
tively few MC steps are needed to obtain good statistics
k̃ andM.

IV. THE SOFT SPIN O „2… MODEL

The values ofh for the three-dimensionalXYuniversality
class vary significantly in the literature. Table IV show
some recent results forh. A possible reason for this discrep
ancy in the literature is the presence of finite-size sca
correction in the fit ofM vs L. Hasenbusch and To¨rök @6# and

TABLE VI. Autocorrelation times for critical couplingtk̃ and
magnetizationtM for the three-dimensionalXY model.

L tk̃ tM

10 0.195 0.50
20 0.129 0.56
30 0.045 0.52
40 0.052 0.52
50 0.045 0.51
60 0.028 0.50
70 0.025 0.50
80 0.021 0.49
90 0.028 0.50
100 0.029 0.58
110 0.010 0.52
120 0.032 0.61

FIG. 9. The autocorrelation function for the Kosterlitz-Thoule
temperature estimatorGk̃ vs Monte Carlo time for the two-
dimensionalXY model. The system size isL51000.
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Campostriniet al. @7# studied af4 soft spinmodel defined
by the Hamiltonian

H/T52J/T(
^ i , j &

fW i•fW j1(
i

f i
21l(

i
~f i

221!2,

~17!

whereT is the temperature,J is the interaction constant, an
l is a ‘‘softness’’ parameter. The vectorsfW can have any
value of the modulusufW u. The XY model is obtained as a
special case forl5`. This model is in the same universalit
class as the three-dimensionalXY model. Hasenbusch an
Török showed that finite-size corrections in the canoni
ensemble are minimized nearl52.0.

We implemented the IC algorithm for the soft spin mod
Following Refs.@6,28#, we used the IC algorithm to updat
the orientation of the vectorsfW and theMETROPOLIS algo-
rithm to update the modulus. The IC part of the combin
algorithm is described in Sec. II. The only difference is th
the modulus of the spins does not necessarily have the v
of ufW u51. Since the IC algorithm performs only reflection
the modulus of the spins remains the same after the
sweep. After every IC step, the algorithm performs an upd
of both the modulus and the orientation of the spins using
METROPOLIS algorithm as follows. New values of the tw
spin components are proposed:

fx85fx22~px20.5!,

fy85fy22~py20.5!,

where px and py are random numbers from the interv
@0,1). The update is accepted with the probability

P5min@1,exp~H/T2H8/T!#,

whereT is obtained from the output of the previous IC ste
The temperature will, therefore, be different for everyME-

TROPOLIS update. However, as is the case for the thr
dimensionalXY model, these temperature fluctuations te
toward zero asL→`. In the limit of very large system size

TABLE VII. Autocorrelation times for critical couplingtk̃ and
magnetizationtM for the two-dimensionalXY model.

L tk̃ tM

10 0.273 0.73
20 0.144 0.95
40 0.107 0.57
80 0.077 0.71
160 0.095 0.88
240 0.061 1.15
320 0.073 0.80
480 0.097 0.99
640 0.071 1.07
800 0.082 0.82
1000 0.060 0.60
2000 0.073 0.64
2-7
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the METROPOLIS subroutine updates the system at a fix
temperature. TheMETROPOLISsubroutine preserves the neg
tive feedback mechanism of the IC algorithm. If the tempe
ture of the system is low, theMETROPOLIS algorithm will
tend to make the modulus of the spins larger. With lar
spin modulus the IC algorithm will give a higher temperatu
as an outcome. The same holds if we start with high te
perature. The Metropolis algorithm will make the modulus
the spins smaller and consequently the IC algorithm w
lower the temperature.

In our simulations of the soft spin model we usedl
52.0. The maximum linear size of the system wasL5120
and each run consisted of 10 000 MC steps. Figure 10 sh
the average critical couplinĝk̃& vs 1/L. A fit to the function

^k̃&5Kc /(11aL2p) yields Kc(l52.0)50.5100(1), a5
20.9(4), andp51.3(1). Thesmallest size included in the fi
is L530 andx2510.0, thex2 per degree of freedom is 1.4
andQ50.18. This value ofKc is in agreement with the valu
reported by Hasenbusch and To¨rök @6# Kc50.509 9049(6).
Figure 11 shows a log-log plot ofM vs L. The resulting value
for h, h(l52.0)50.042(8) ~with x255.8, thex2 per de-
gree of freedom is 0.98, andQ50.43) is in agreement with

FIG. 10. Critical couplinĝ k̃& vs 1/L for the three-dimensiona
soft spin model. The solid line is a fit to the data as described in
text.
d E

E

ys
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their result h50.0381(2). Recent work by Campostrin
et al. @7# givesh50.0380(4).

V. CONCLUSIONS

In this paper we have introduced and applied an inva
cluster algorithm for the two- and three-dimensionalXY
models and a related three-dimensional soft spin model. T
work extends the range of validity of the invaded clus
method to include continuous spins and systems where
phase transition is of the Kosterlitz-Thouless type. Our
sults for critical temperatures and magnetic exponents ar
reasonable agreement with recent values in the literat
The invaded cluster algorithm is very efficient forXY sys-
tems, showing no critical slowing for estimators of the cri
cal temperature and the magnetization and yielding hig
accurate values of the magnetic exponent with relativ
little computational effort.
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e FIG. 11. Mass of the spanning cluster lnM vs lnL for the three-
dimensional soft spin model. The solid line is a linear fit.
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