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Abstract

We continue the study, initiated in Part I, of graphical representations and cluster algorithms for
various models in (or related to) statistical mechanics. For certain models, e.g. the Blume–Emery–
Gri�ths model and various generalizations, we develop Fortuin Kasteleyn-type representations
which lead immediately to Swendsen Wang-type algorithms. For other models, e.g. the random
cluster model, that are de�ned by a graphical representation, we develop cluster algorithms
without reference to an underlying spin system. In all cases, phase transitions are related to
percolation (or incipient percolation) in the graphical representation which, via the IC algorithm,
allows for the rapid simulation of these systems at the transition point. Pertinent examples include
the (continuum) Widom–Rowlinson model, the restricted 1-step solid-on-solid model and the XY
model. c© 1998 Published by Elsevier Science B.V. All rights reserved
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1. Introduction

This paper is a continuation of Ref. [1] and concerns the construction of graph-
ical representations and their corresponding cluster algorithms for various statistical
mechanics systems. Although this work is self-contained, some familiarity with this
reference will certainly prove helpful to the reader. However, it will be assumed that
the reader is well-versed in the standards of the trade i.e. the Fortuin–Kasteleyn random
cluster problems [2], the Swendsen–Wang algorithm [3] and the interpretation of these
algorithms due to Edwards and Sokal [4].
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As in [1], the present goals are threefold:

(1) The development of faithful graphical representations for various statistical
mechanics systems.
(2) A demonstration that the representation is successful.
(3) The development of cluster algorithms associated with these representations.

Let us elaborate on items (1) and (2). A graphical representation for a statistical
mechanics system is an expansion in graphical elements (bonds, sites, etc.) such that
each graphical con�guration is endowed with a non-negative weight. This allows for a
probabilistic interpretation of the expansion that is divorced from the original statistical
mechanics problem. (Furthermore, the question of convergence of the expansion does
not arise.) By a faithful representation, it is meant that the expectation of any (local)
observable in the statistical mechanics system can be expressed as the expectation of
a local function in the graphical representation. A successful representation is less pre-
cisely de�ned. In general, it may be taken to mean that the representation provides
a clear signal – usually percolation – of a phase transition in the statistical mechan-
ics system. Further, one can envision a “percolation uniqueness” classi�cation: The
equivalence of Gibbsian uniqueness to a percolation condition – usually the absence
of percolation – in the graphical representation.
Depending on the system, items (1), (2) or (3) may be trivial – or already known.

E.g. for spin-systems, (3) often follows immediately from (1). We assert (but have by
no means proved rigorously) that under the auspices of items (1)–(3), the direct and
rapid simulation of the transition region of a system is possible by using the invaded
cluster (IC) algorithm as in Refs. [5,6].
Until recently, only one explicit example of a successful representation existed, 2

namely the random cluster representation of the Potts model. Since, according to
Ref. [10], these items are essential in the design of e�ective cluster algorithms, much
e�ort has been invested in the expansion of this repertoire. The results to date (to the
best knowledge of the authors) are summarized in Table 1. Although it cannot be
claimed that any signi�cant degree of generality has been achieved, it is fair to say
that we are no longer in the realm of “isolated examples”.
The organization of the remainder of this paper is as follows:
In Section 2, we study the (non-integer) random cluster model. In this case, items

(1) and (2) follow by de�nition but, heretofore, the development of cluster algorithms
has proved elusive.
In Section 3, we study lattice gases: The Blume–Emory–Gri�ths models and vari-

ous generalizations which, for certain parameter values, include the (lattice) Widom–
Rowlinson models. Graphical representations are developed which reduce to the “grey
representation” [12,13] in the Widom–Rowlinson limit. In some cases (notably for the
various two-component models), complete theorems characterizing the phase structure

2 We caution the reader that this is subject to interpretation. Several examples of expansions for the partition
function (e.g. Refs. [7,8] for the Widom–Rowlinson model) or graphical components of cluster algorithms
(e.g. Ref. [9] for the XY model) have been described that later turn out to be faithful or even successful.
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Table 1
Current status

System Graphical Percolation Characterization Cluster algoithm
representation ⇔ of Gibbsian

(standard) uniqueness
phase transitions

Potts [2] [11] [11] [3]
ferromagnet

Widom–Rowlinson [12,13] [12,13] [12] [14,15]
2-comp., Hard cores ([7,8])
(lattice or cont.)

Widom–Rowlinson Above, Plausible False in general [14] (Sft. crs., q¿2)
q-comp., and=or soft [15,16] ( q=2, [15] (q¿2)
cores (latt. or cont.) soft core [14])

Ashkin–Teller [1] (Or. & Ref.) [1] [1] [19] (Orth.)
& (rs)-cubic [17,18] [1] (Orth. & Ref.)

(Orthodox only) [17] (Orth.)

BEG-model [14] Plausible False in general [14]
and q-component (Borderline and ( q=2,
generalizations various regions; non-SA [14])

[14])

FK-random cluster By de�nition By de�nition NA [14] (q¿1)
(and continuous q
versions of all
the above)

Restricted k-step [14] No results No results [14]
solid-on-solid

XY -type models [9] (implicit) [22]=[14] � [9]
(O(2), Z4n;:::) [20,21]

[14] (faithful)

O(3) [9] (implicit) [23] � [9]
[20]

≡ complete characterization.
�≡ somewhat incomplete characterization.
Plausible≡ incomplete derivations; result certainly true.
[14] is the present work.

are established. In other cases, such results are precluded by the presence of interme-
diate phases found in Ref. [24]. Finally, there are cases where only incomplete results
are established: For various types of ordering, percolation in some boundary condition
is necessary and percolation in a particular boundary condition is su�cient. (Although
it has not yet been ruled out, we deem it unlikely that the two do not coincide.)
Various cluster algorithms for all these models are designed. Some are straightforward
and others are based on the ideas in Section 2. Continuum versions of some of these
models, e.g. the Widom–Rowlinson models can be constructed by a straightforward
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limiting procedure and here the algorithms are directly carried over. Thus, it is now
possible to do a cluster-based simulations of a continuum liquid-vapor transition; see
Ref. [25].
In Section 4, we investigate two-dimensional random surface models and the XY -

model. In the former case, via equivalent (constrained) 2d spin systems, we develop
graphical representations and cluster methods. We have no �rm mathematical results
that relate the phases of the random surface model to percolation in the associated
representation; this issue is an ongoing concern. For the XY -model, we adapt Wol�’s
“Ising embedding algorithm” [9] to multi-cluster methods and investigate the underly-
ing representation. It is demonstrated that the “onset of ordering” in the spin system
is equivalent to the “onset of percolation” in the Wol� representation in the sense that
the magnetic susceptibility diverges precisely when the average cluster size diverges.
Most of the derivations in this note will concern arbitrary �nite graphs with no

boundary. This allows us to cover most cases of interest, namely �nite subsets of Zd
with free, periodic and various other signi�cant boundary conditions. It may perhaps
be easier for the reader to assume that the “bond-couplings” are uniform but this is by
no means a requirement. In particular, the representations=algorithms apply to various
non-uniform systems, e.g. systems with quenched randomness and=or with direction
dependent coupling strengths; the required conditions on the couplings will be spelled
out in each case.

2. Random cluster models

2.1. Potts models

The random cluster models, introduced in Ref. [2], are a family of graphical measures
that, in the simplest cases, depend on two parameters q and p. Let us consider a �nite
graph G with bonds BG and sites SG. A bond con�guration ! is a subset of BG,
i.e. a function !〈i; j〉 with value 1 if the bond 〈i; j〉 is “occupied” and 0 if this bond is
“vacant”. The set of all such con�gurations will be denoted by 
BG

. In general, there
are numbers pi; j associated with each bond (usually assumed to be the same for each
bond). The random cluster measure assigns to each ! the probability proportional to
the weight

WFK;G
q;p (!)=

∏
〈i; j〉∈!

pi; j
∏

〈i; j〉 =∈!
(1− pi; j)qc(!)≡Bp(!)qc(!) ; (2.1)

where p denotes the collection (pi; j | 〈i; j〉 ∈ BG); Bp(!) is shorthand for the “Bernoulli
prefactor” and the quantity c(!) is the number of connected components – including
isolated sites – of the con�guration !.
For integer q, the Swendsen–Wang algorithm uses, in an essential way, the connec-

tion between these problems and the spin systems they represent. For non-integer q, the
existence of an underlying spin system is far from obvious and the design of cluster
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algorithms in these cases has represented something of a challenge. For q¿1, we have
the following:

2.1.1. Random cluster algorithm
Step 0. Let !⊂BG denote a con�guration.
Step 1. For each of the components Cj; j=1; : : : ; c(!), independently deem the

entire components to be “active” with probability 1=q and “inactive” otherwise.
Step 2. Remove all occupied bonds connecting active sites.
Step 3. Each bond joining a pair of active sites i and j is independently deemed

to be occupied with probability pi; j or vacant with probability 1 − pi; j. The newly
occupied bonds together with the bonds connecting inactive sites constitute the updated
con�guration; the active=inactive status is erased.

This cycle constitutes a single Monte Carlo step.

Remark. For integer q, the preceding is nearly identical to the usual SW algorithm.
Indeed, for a Potts model, the above algorithm amounts to the following: Starting
from a bond con�guration, �rst generate a spin con�guration in the usual fashion
(by assigning one of q spin states to each connected component). Then just one of
these q states is singled out and only the bonds touching this spin type are updated.
The bond update, on this reduced graph takes place in the usual fashion (i.e. as in
Step 3 above).
For the general q algorithms, a direct proof of detailed balance, running through

an entire cycle of the algorithm, is possible but tedious. Instead (here and in what
is to follow) we will use the strategy of [4] and show that the algorithm satis�es
detailed balance with respect to an appropriate Edwards–Sokal measure – in this case
on con�gurations of active sites and occupied bonds. The bond marginal of this measure
is the random cluster measure; for non-integer q, the active site marginal has no evident
interpretation.
The algorithm may be divided into two stages: Step 1 creates active site con�gura-

tions given a con�guration of occupied bonds. This will be denoted as the “site move”.
Steps 2 and 3 create a new bond con�guration given the inactive bonds and the active
sites; let us call this the “bond move”. The validity of the algorithm follows from the
observation that the site move and the bond move each independently satisfy detailed
balance with respect to the Edwards–Sokal measure. However, neither move by itself
is ergodic because one or the other marginal remains frozen. Nevertheless, it is easy to
see that by carrying out both moves any allowed con�guration of occupied bonds and
active sites may be transformed into any other allowed con�guration in a single cycle.
(Ergodicity is almost always straightforward and in the future will only be mentioned
on occasion.)

Proof of detailed balance. Consider a con�guration of active sites � and occupied
bonds ! with !⊂BG and �⊂SG. (Such con�gurations are present after Step 1
of the Random cluster algorithm.) Let f(�; !) denote the number of inactive
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clusters, i.e. the quantity f(�; !) is the number of components on the graph that
consists of all the inactive bonds and sites. Let us write the Edwards–Sokal
weights:

YG
q;p(�; !) = Bp(!)[q− 1]f(�;!)�(�; !)

=WFK;G
q;p (!)

[
1
q

]c(!)−f(�;!) [q− 1
q

]f(�;!)
�(�; !) ; (2.2)

where �(�; !) is zero if any occupied bond connects an active site with an inac-
tive (i.e. not active) site and is one otherwise. The bond marginal of the measure
corresponding to these weights is easily calculated: According to the constraint, each
component of ! must be completely active or inactive. The coe�cient of [WFK;G

q;p ]× [�]
is just the distribution for the process that independently labels each component active,
with probability 1=q or inactive, with probability 1− 1=q. This sums to one.
A proof that the above algorithm samples the measure corresponding to the weights

YG
q;p(�; !) follows easily: Step 1 is seen to be an independent sampling of an � from
the �xed ! conditional distribution. Note that in Steps 2 and 3, the destruction of
old bonds and the placement of new bonds between active sites does not e�ect the
number of inactive clusters. Suppose then that !→!′ under Steps 2 and 3. Let us
write !=(!a; !i) and similarly for !′ where !a are the active bonds and !i the
inactive bonds. Let G(�)⊂G denote the graph with sites � and those bonds of G with
both endpoints in �. Then the transition probability is simply the Bernoulli factor
relative to G(�) which we denote by BG(�)p (!′

a). However YG
q;p(�; !

′)=BG(�)p

(!′
a)B

G\G(�)
p (!′

i)(q − 1)f(�;!
′). Since !i=!′

i we have f(�; !)=f(�; !
′); the ratio of

the transition rates between these two con�gurations is manifestly the ratio of the
probabilities of these con�gurations. Detailed balance is established.

Remark. Simulations using this algorithm (in conjunction with the invaded cluster
method) are currently under way. Results in two and three dimensions are consistent
with or improve upon the best known values for the critical q beyond which the
transition is �rst-order. Details will appear in Ref. [26]. We also remark that a device
not dissimilar to the “bond-active site” con�gurations was used in Ref. [27] for the
analysis of random cluster models on the complete graph.

If q¿2, the algorithm can be modi�ed by introducing several species of active
particles. Let m denote a positive integer, m6q. Starting from a bond con�guration !,
each component of ! is independently assigned to be in one of m “active” states
each with probability 1=q or, failing all of these chances, left inactive with probability
(1 − m=q). The bonds on active clusters are erased and new bonds independently
placed, with density p, subject to the constraint that they only connect active sites
that are of the same species. The graphical problem and the Edwards–Sokal weights
for this process are de�ned as follows: Let �=(�1; : : : ; �m) be an m-species occupation
con�guration with �i ∩ �j = ∅ for i 6= j. Let �(�; !) be the relevant constraint function:
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�(�; !)= 1 if the bonds of ! only connect inactive sites or active sites of the same
species and zero otherwise. Let f(�; !) denote the number of inactive components.
The weights are

YG
q;p;m(�; !) = Bp(!)[q− m]f(�; !)�(�; !)

=WFK;G
q;p (!)

[
1
q

]c(!)−f(�; !) [q− m
q

]f(�; !)
�(�; !) : (2.3)

A proof of detailed balance for this algorithm follows the same steps as the case
m=1. If m¿1, it is plausible that this modi�cation will speed up the algorithm
since it is not dissimilar to performing m steps of the m=1 algorithm in a
single step.
It is clear that these algorithms can be extended to cover more general FK random

cluster models, e.g. extended models featuring higher order geometric objects: triangles,
plaquettes, etc. These extended models have been discussed in Ref. [28] and in various
other places in the literature, e.g. Ref. [29] and more recently Ref. [30]. The general
problem is de�ned as follows: Let F denote a generalized graph consisting of sites,
bonds (certain pairs of sites), triangles (certain triplets of sites), etc. We will denote
by SF the site set and by EF the collection of all the higher objects. (In what follows,
it of course is assumed that |SF| is �nite.) If !⊂ EF, the notion of “connected in !”
is de�ned in the obvious fashion. Explicitly, an object tying together k sites may
be formally regarded as k(k − 1)=2 separate bonds between all pairs of sites and the
con�guration ! as the union of all these bonds. Connectivity is then de�ned as in the
standard fashion for bond graphs. For each A∈ EF, there is a pA ∈ (0; 1). Let p denote
the family of these p’s: p=(pA |A∈ EF) and let Bp(!) denote the Bernoulli factor

Bp(!)=
∏
A∈!

pA
∏
B =∈!

(1− pB) : (2.4)

For any positive real q, the random cluster weights are given by

WFK;F
q;p (!)=Bp(!)qc(!) : (2.5)

If q is an integer greater than one, it is easily shown that this is the graphical repre-
sentation of a q-state Potts system on SF: Let �i ∈{1; : : : ; q} denote Potts spin vari-
ables for i∈SF and consider the Hamiltonian H= − ∑

A∈EF JA��A where ��A=1
if all the spins in A are in the same state and is zero otherwise. Then if � is
the inverse temperature and JA and pA are related by pA=1 − e−� JA , a straightfor-
ward recapitulation of the usual derivation of the FK representation yields the weights
in Eq. (2.5).
The algorithm for these systems is the obvious generalization of the above algorithm:

Step 1 is the same using the appropriate notion of connectivity and replacing the word
bonds with connecting objects. Steps 2 are similar but here with the harsher restriction
that the new elements are constrained to provide connections exclusively between active
sites. (E.g. for a triangle to be placed, all three sites must be active.) A proof of detailed
balance for this algorithm follows the same lines as the basic case.
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In the remainder of this paper, for both Potts and other models, similar gener-
alizations are often possible. It will be clear from context which generalizations are
possible (and which ones are not). Hereafter these will not be mentioned explicitly and
generalizations of the algorithms and other results will be left an ongoing exercise for
the reader.

2.2. Cubic models

Another class of spin system that gives rise to successful FK-type graphical rep-
resentations is the Ashkin–Teller (AT) model and the generalization known as the
cubic model. These models are discussed at length in Ref. [1] so here we will be
succinct. Let G denote a graph. For the AT model, at each i∈SG there are four
spin states: �i ∈{−1; 0;+1; 2}. On the bonds 〈i; j〉 ∈BG the interaction energies satisfy
Ei; j(�i; �j)=Ei; j(�i+ �; �j + �)-addition mod 4. Two cases have been distinguished in
Ref. [1]:

Reformed ferromagnet: Ei; j(0; 0)¡Ei; j(0; 2)6Ei; j(0;±1) for all i; j ;

Orthodox ferromagnet: Ei; j(0; 0)¡Ei; j(0;±1)6Ei; j(0; 2) for all i; j :

The coinciding case is, of course, the four-state Potts model. In both regimes, there are
successful representations analogous to the random cluster representation of the Potts
model.
In the orthodox case, one considers two copies of G (i.e. two coupled spin systems)

denoted by G� and G�. A bond con�guration, !, has three types of bonds: Bonds in
G�, denoted by �-bonds, bonds in G�, denoted by �-bonds and a third type that has the
same e�ect as the simultaneous occurrence of a �-bond and a �-bond which are de-
noted by ��-bonds. Thus, the con�guration is represented as a triple: !=(!�; !�; !��).
Connectivity in G� is de�ned via the bonds in !� or !�� (i.e. in !� ∨!��) and sim-
ilarly in G�. The number of connected components, by these de�nitions, are denoted
by c�(!) and c�(!) respectively. The AT random cluster weights for the orthodox (o)
region are given by

WAT ;o;G
(2;2); P =BP(!)2

c�(!)2c�(!) ; (2.6)

where P=(p�; p�; p��) is determined from the temperature and the energy di�erences
(cf. Ref. [1], Eqs. (III.18)–(III.20)) and BP(!)=Bp�(!�)Bp�(!�)Bp��(!��) is the prod-
uct of Bernoulli factors each of which is as described in Eq. (2.1). The generalization
of this representation to the cubic models (in their orthodox regime, for the appropriate
temperature and energy di�erences) is achieved by replacing the two corresponding to
the �-layer by an s and the two corresponding to the �-layer by an r. A graphical
model is now be de�ned for any positive real values of r and s; the weights will be
denoted by WAT ;o;G

Q;P with Q≡ (s; r). Such representations have also been described in
Refs. [17,18].
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An algorithm for the cases s¿1; r¿1 can be designed along the same lines as the
one for the random cluster model:

2.2.1. Cubic model algorithm: Orthodox region
Step 0. Let !=(!�; !�; !��) as described.
Step 1. Each connected component in the �-layer is independently deemed to be

active with probability 1=s or inactive with probability 1 − 1=s. Similarly, for the
�-layer with s replaced by r.
Step 2. All � bonds connecting pairs of active sites are removed and all � bonds

connecting pairs of active sites are removed. The ��-bonds are removed only if all
four participating sites are active.
Step 3. The various bonds are placed in their appropriate slots subject to the

constraint that all the participating sites are active. In particular, the viable candi-
dates for the double bonds must have all of the four relevant sites in the active
state. The active=inactive status is then erased and a Monte Carlo step has been
completed.

Proof of detailed balance. The proof scheme is nearly identical to the one used in
the ordinary random cluster algorithm. Let �=(��; ��) denote con�gurations of active
sites in the �-layer and �-layer, respectively. Let �(�; !) denote the relevant constraint
function which vanishes if any bond connects an active to an inactive site and is one
otherwise. (Note that � does not vanish if, e.g. a ��-bond connects two active sites
in the �-layer and two inactive sites in the �-layer.) The algorithm evidently satis�es
detailed balance for the Edwards–Sokal measure with weights

Ko;G
Q;P(�; !)=BP(!)[s− 1]f�(��;!�;!��)[r − 1]f�(��;!�;!��) ; (2.7)

where f� is the number of inactive components in the �-layer calculated according
to the site con�guration �� and the bond con�guration !� ∨!�� and similarly for f�.
The right-hand side of Eq. (2.7) may be expressed as in the second part of Eq. (2.2),
i.e. WAT ;o;G

Q;P times the constraint function times a factor with the interpretation of two
Bernoulli sampling probabilities for independent assignments of active=inactive status to
the components in the � and � layers. This demonstrates that the bond marginal of the
measure de�ned by the weights in Eq. (2.7) is correct and that detailed balance holds
for the site moves. Taking into consideration which bond moves have been allowed
and which are forbidden it is seen that the quantities f� and f� remain constant. Thus,
the proof of detailed balance for the bond moves is established as in the usual random
cluster case.

In the reformed region, the graphical representation is con�ned to a single graph but
there are two colors of bonds, black and white. The black bonds may be envisioned
as sitting on top of the some of the white ones. Bonds that are one or the other are
called “grey”. Thus we have !⊂BG, the grey bonds, #⊂!, the black bonds and !\#
are the whites. Let �#⊂! denote the function that is one if this constraint is satis�ed



486 L. Chayes, J. Machta / Physica A 254 (1998) 477–516

and zero otherwise. Then the graphical measure for the AT model in reformed region
is de�ned by the weights

WAT ; r;G
(2;2); P (!; #)=


 ∏
〈i; j〉∈!

Ui; j
∏

〈i; j〉∈#
Vi; j


 2c(!)2c(#)�#⊂! (2.8)

with P representing the parameters (Ui; j) and (Vi; j) which in turn are determined
from the parameters in the spin system (cf. Ref. [1], the equations in the statement
of Proposition III.1). For the cubic generalization of this model, 2c(!) is replaced by
rc(!) and 2c(#) is replaced by sc(#). De�ning Q=(r; s), the corresponding weights are
denoted by WAT ; r;G

Q;P . For convenience, let us de�ne ui; j and yi; j by Ui; j = ui; j=(1−ui; j)
and Ui; jVi; j =yi; j=(1− yi; j). If r¿1 and s¿1, we have:

2.2.2. Cubic model algorithm: Reformed region
Step 0. Let (!; #) denote a black and white con�guration as described.
Step 1. Each grey component (component of !) is independently deemed to be inac-

tive with probability (1− 1=r) or partially activated with probability 1=r. The partially
activated sites may be envisioned as grey sites. The restriction of # to the clusters of
partially active sites de�nes black connected components. Each such connected com-
ponent is assigned the fully active status with probability 1=s or it remains partially
active with probability 1− 1=s.
Step 2. Remove all bonds connecting active sites. Leave intact all bonds (and their

colors) connecting the inactive sites.
Step 3. Independently, each neighboring pair i; j of fully active (black) sites is joined

by a black bond with probability yi; j or left unjoined with probability 1 − yi; j. Next,
all unjoined neighboring pairs of active sites i and j (including the black pairs that
failed to get a black bond) are joined by a white bond with probability ui; j or left
unjoined with probability 1 − ui; j. The active status of all sites is now erased and a
full Monte Carlo step has been completed.

Proof of detailed balance. Consider con�gurations of the full model simulated: black
and white bonds as well as black and white site occupation variables. Let �⊂SG

and &≺ � denote the partially active and fully active sites – or grey and black sites.
The whites sites are just the sites �\&. Let (!; #) denote the bond con�gurations and
D(�; &; !; #) the constraint function that vanishes unless (i) no bonds connect active
sites (partially or fully) to inactive sites, (ii) all black bonds connect only pairs of black
sites, and (iii) !�# and �� &; when all these are satis�ed, D=1. The Edwards–Sokal
weights are given by

K r;G
Q;P(�; &; !; #)=


 ∏

〈i; j〉∈!
Ui; j

∏
〈i; j〉∈#

Vi; j


 (r− 1)f(�;!)(s− 1)f(&; #)D(�; &; !; #) ;

(2.9)
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where k(�; !) and k(&; #) have the same meanings as in the ordinary random cluster
algorithm. After pulling out the weight WAT ; r;G

Q;P (!; #) the site moves are exhibited as
an independent sample of the conditional distribution and the bond marginal is seen to
be correct. As for the bond moves, the cluster factors are all in order for the same rea-
sons as in the previous algorithms, let us check that the bond weight factors are indeed
correct. Suppose that (�; &; !; #) and (�; &; !′; #′) are two con�gurations on which D
does not vanish and whose bond con�gurations are identical for all bonds joining sites
in SG\�. Let B� denote the set of bonds in G with both endpoints in � and similarly for
B#. Let !�=!∩B� and similarly #&, etc. To compute the transition probability from
(�; &; !′; #′) to (�; &; !; #) it is seen that the desired black move occurs with probabil-
ity yN (#&)(1−y)|B&|−N (#&). Then, the necessary white move happens with probability
uN (!�)−N (#&)(1− u)|B�|−(N (!�)−N (#&)). Thus, overall, the transition probability is

∏
〈i; j〉∈!�

[
ui; j

1− ui; j

] ∏
〈i; j〉∈#&

[
yi; j
ui; j

1− ui; j
1−yi; j

]

×
∏

〈i; j〉∈B�
(1− ui; j)

∏
〈i; j〉∈B&

(1−yi; j)∝

 ∏

〈i; j〉∈!
Ui; j

∏
〈i; j〉∈#

Vi; j


 (2.10)

with the constant of proportionality the same for the reverse transition probability.
Detailed balance is established.

3. Lattice gases

3.1. Formalism

We begin with some notation. For lattice gases, the state space at a single site i
consists of an occupation variable – ni=0 or 1 – and, given that ni=1, a variable
�i. Here we will focus on the discrete case so �i ∈{1; : : : ; q}. The model may be
viewed as an annealed-dilute spin-system (which is generally considered to be some-
what unphysical) or a multi-component lattice gas. In the former case, the variable �i
is interpreted as an internal state and in the latter as a label for the species. Finally,
there may be a physical motivation for regarding the model as consisting of a mixture
of a q-state particle (ni=1) and a single state particle (ni=0). For q=2 (written
�i ∈{+1;−1}) these are the BEG models [31] and from this perspective, the entire
section concerns generalized BEG models. Notwithstanding, all of these models are
mathematically equivalent; much of our terminology will be couched in the language
of dilute spin systems.
Consider, then, a graph G with site variables ni for each i∈SG and spin variables

�i for all i such that ni=1. Let H denote a Hamiltonian for the spin system alone

H =
∑

〈i; j〉∈BG

Ei; j(�i; �j) : (3.1)
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The corresponding lattice gas is de�ned by the Hamiltonian

H=
∑

〈i; j〉∈BG

ninjEi; j(�i; �j)−
∑

〈i; j〉∈BG

�i; jninj −
∑
i∈SG

�ini ; (3.2)

where it has been assumed that Ei; j(�i; �j) is non-positive and vanishes at its maximum.
(Thus, e.g. for the uniform Potts case, Ei; j(�i; �j)=− ��i; �j .) The partition function is
given by

ZH; �=
∑
ni=±1
i∈SG

∑
�i :ni=1

e−�H
∏
i:ni=1

vi(�i) ; (3.3)

where vi(�i) are the a priori weights. Regardless of the model, we will adapt the
convention that these weights sum to q:

∑
�i vi(�i)= q. This serves to de�ne the Gibbs

measure on the space of particle=spin con�gurations. It is remarked that the “trace” in
Eq. (3.3) may also be de�ned by summing over q states at all sites and shifting the
value of �. However, the more physical interpretation exempli�ed by the convention
in Eq. (3.3) is that “spins” on the vacant sites are not present. In any case, for a �xed
set of occupied sites, the distribution of the spin variables on the complementary sites
is simple product measure.
Systems described by Eqs. (3.2), (3.3), fall into two classes depending on the sign

of �i; j. For �i; j¿0, which we call super attractive (SA), many results from the cor-
responding uniform systems can be directly transcribed. In particular, the line �i; j =0
gives rise to complete characterization theorems when such results hold in the undi-
luted system. If �i; j¡0, our results are far less general so, to be concise, we will focus
our attention exclusively on the Potts cases. However, this region (even for the Potts
models) is known to exhibit some unusual phases [24] and also contains the point of
departure for the construction of various continuum models. Also, somewhat surpris-
ingly, certain comparison inequalities (e.g. with bond-site percolation) can be derived
here which, to date, we have been unable to produce in the SA region. We will there-
fore devote separate subsections to the SA region and to the dilute Potts model in the
region �i; j¡0. In a third subsection we will describe continuum limits and in a forth
subsection, we will present a uni�ed treatment of the cluster algorithms for all of these
models.

3.2. The SA region

Consider a non-diluted system with Hamiltonian H and let WG
H;�(!) denote the

weights of the so-called grey representation de�ned for con�gurations !∈
BG
:

WG
H;�(!)=

∑
�i :i∈SG

∏
〈i; j〉∈!

Ri; j(�i; �j) (3.4)

with Ri; j(�i; �j)= e−�Ei; j(�i; �j)− 1 (cf. [1] (Section II)) and 
BG
is the set of all bond

con�gurations on BG. Our �rst result shows that if the grey measure has desirable
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monotonicity properties, then, in the SA region, these are inherited in the site-diluted
version of the problem.

Lemma 3.1. Consider a lattice gas of the type described in Eqs. (3.1)–(3.3) with
�i; j¿0 and with the convention that Ei; j(�i; �j) is non-positive. Suppose that the graph-
ical representation for the grey measure de�ned by the weights in Eq. (3.4) is strong
FKG. Let 
SG

and 
BG
denote, respectively, the set of all site con�gurations and

bond con�gurations on G. Then there is a probability measure de�ned on con�gura-
tions (n; �; !)∈
SG

×
BG
×
BG

that is a faithful representation of this system and is
strong FKG with respect to the natural partial order.

Proof. First let us write

e��ini = zini+(1− ni) ; (3.5a)

zi= e��i . Next, using the fact that �i; j¿0 and −Ei; j(�i; �j)¿0, we may expand

e��i; jninj =(e��i; j − 1)ninj +1 ; (3.5b)

e�Ei; j(�i; �j)ninj =Ri; j(�i; �j)ninj +1 (3.5c)

with all the above written quantities non-negative. Expanding e−�H in this function,
multiplying out the three products and collecting all terms, each such term is seen to
be in a one-to-one correspondence with a con�guration on 
SG

×
BG
×
BG

. Such a
term, which is a non-negative function of the particle=spin con�guration will be denoted
by (n; !; �) and its weight is de�ned as the trace of this function. Explicitly, for the
bond 〈i; j〉, the quantity �〈i; j〉 is one if (e��i; j − 1)ninj appears in the term, etc. The
particle con�guration is its own representation. Indeed if the ni appears in the term,
the term vanishes unless ni=1 and if 1− ni appears, the term vanishes unless ni=0.
Hence, these variables are not distinguished notationally. The !-bonds will sometimes
be referred to as grey bonds and, for reasons that will become clear when we introduce
the cluster algorithms, the �-bonds will be referred to as anchor bonds (with apologies
to Ref. [32]).
It is observed that in this expansion, there will be constraints between the site and

bond con�gurations: For any bond 〈i; j〉, regardless of the values of ni and nj, it
is always permitted to select the “vacant bond” terms (i.e. the 1’s) in the ! or �
expansion. However, if an “occupied” term is selected, e.g. (e��− 1)ninj, the weight of
the entire con�guration will vanish unless ni= nj =1. Thus, all the bond con�gurations
– both the !’s and the �’s – must satisfy the rule that each occupied bond connects
two occupied sites. Let X (n;−) denote the indicator of this constraint, e.g.

X (n; !)=



1 if both endpoints of each occupied

bond in ! are occupied sites in n ;

0 otherwise :

(3.6)
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The weights for the graphical con�guration are given by

YG
H; �=W

G(n)
H;� (!)

∏
〈i; j〉∈�

Li; j
∏
i

znii X (n; !)X (n; �) ; (3.7)

where Li; j = e��i; j − 1 and where we recall that G(n) is de�ned as the subgraph of G
consisting of the sites in n and the bonds that connect them. However, it is noted that
WG(n)
H;� (!) di�ers from WG

H;�(!) only in the fact that with the present convention, the
vacant sites do not contribute their weight in the sum over the spin con�gurations. Thus,
let us rewrite Eq. (3.7) using WG(n)

H;� (!)=W
G
H;�(!)q

−(|SG|−N (n)) where N (n)=
∑

i ni is
the total number of particles in the con�guration. Then

YG
H; �∝WG

H;�(!)
∏

〈i; j〉∈�
Li; j

∏
i

[qzi]niX (n; !)X (n; �) : (3.8)

A proof of the strong FKG follows almost immediately from the hypotheses. First,
by de�nition, the min or max of a con�guration is found by taking the min of max
of each separate component: (n1; !1; �1)∨ (n2; !2; �2)= (n1 ∨ n2; !1 ∨!2; �1 ∨ �2) and
similarly for the min. Second, it is seen that if (n1; !1; �1) and (n2; !2; �2) satisfy
all of the X constraints, X (n1; !1)= · · ·=X (n2; �2)= 1, then so do the min and max
con�gurations, X (n1 ∨ n2; !1 ∨!2)= · · ·=X (n1 ∧ n2; �1 ∧ �2)= 1. Thus, let (n1; !1; �1)
and (n2; !2; �2) denote any two con�gurations with non-vanishing weights. Then

YG
H; �((n

1; !1; �1)∨ (n2; !2; �2))YG
H; �((n

1; !1; �1)∧ (n2; !2; �2))
YG
H; �(n

1; !1; �1)YG
H; �(n

2; !2; �2)

=
WG
H;�(!

1 ∨!2)WG
H;�(!

1 ∧!2)
WG
H;�(!

1)WG
H;�(!

2)
¿0 : (3.9)

As is often the case, monotonicity can be translated into de�nitive statements about
the unicity of Gibbs states. Here, as in previous cases, these questions can be tied to
percolation in the graphical representation.
Let us recall the usual working de�nition of percolation. For simplicity, we will

restrict attention to nearest-neighbor interactions on Zd but the following is not re-
stricted to graphical representations with the FKG property. Let �⊂Zd be a �nite set
and @�= {i∈Zd\� | dist:(i; �)= 1}. The relevant graph consists of the sites of �∪ @�
and the bonds connecting the neighboring pairs of these sites. Boundary conditions in
the spin system are de�ned in the usual fashion; �xing ni and, if relevant, �xing �i at
each i∈ @�. The graphical representations in the presence of boundary conditions lead
to weights with measures similar to those de�ned so far but with constraints (e.g. for-
bidding any con�guration that connects certain portions of the boundary). The details
of these modi�cations are unimportant, it is su�cient to know that in principle, the
representation exists. Even in cases where monotonicity properties hold on a general
graph (in the absence of boundary conditions) most of the above boundary conditions
will not lead to FKG measures. However, some do, in particular the free boundary
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conditions, ni≡ 0; i∈ @�, because this is equivalent to “no boundary conditions” on
the graph (whose sites are) �. Percolation is de�ned as follows: Let �k denote a se-
quence of shapes �k+1⊃�k with �k↗Zd. Let P!k (�) denote the probability that the
origin is connected to @�k by occupied !-bonds using the boundary condition that
optimizes this probability. Percolation of the !-type is said to occur if

0¡ lim
k→∞

P!k (�)≡P!∞(�) : (3.10)

(It is not hard to show the existence of this limit.) For the Potts and cubic model,
putting a particle at each boundary site and setting the spins on these sites to the same
state corresponds to the maximal FKG state for these systems: The wired and black-
wired states respectively. However, back in the spin system, these are just the boundary
conditions that one would use to induce the magnetized state (cf. [1] (Theorems III.3
and III.7)). This extra information allows for more complete results in the lattice gas
versions of these cases.
For a con�guration (n; !; �), let W denote the bonds of !∨ � and de�ne PWk (�),

and W-type percolation in the same way. (Ostensibly, this could require a di�erent
sequence of boundary conditions.) We now establish:

Theorem 3.2. (i) Consider a system of the type described by the Hamiltonian in
Eq. (3.1) endowed with a group structure: That is, the �i are elements of a group:
v(�i)≡ 1 and E(�i; �j)=’(�−1i �j) with ’(a)=’(a

−1). Then if P!∞(�) vanishes, all
Gibbs states are invariant under the action of the group. In particular, in the spin lan-
guage, the spontaneous magnetization is zero. (ii) In the monotone cases, as described
in the statement of Lemma 3.1, a su�cient condition for the unicity of Gibbs states is
PW∞ (�)= 0. For the Potts models and for the cubic models in the reformed region, if
�=0, (which implies W=!) then !-type percolation is necessary and su�cient for
the existence of multiple limiting Gibbs states.

Proof (Sketch). We will be content with an outline of the argument since the principle
ideas have appeared in Refs. [1,11].
In cases where there is an underlying group symmetry for the spin system, the

graphical problem is not e�ected if the value of all the spins on the boundary are
shifted by the same group element. Thus, in those con�gurations where the support of
the observable is disconnected from the boundary, the average of any local observable
is invariant under the action of the group. Such disconnections occur with probability
tending to one as �↗Zd if there is no !-percolation. See Ref. [1] (Proposition II.2)
for a detailed version of an argument along these lines.
Let us discuss the monotone cases. If free boundary conditions are imposed on �k

– which means ni=0 for all i∈ @�k – the limiting measure exists, independent of the
sequence (�k) by FKG monotonicity. Next, if k ′¿k, the absence of W-percolation
implies that the probability of a W-connection between �k and @�k′ tends to zero as
k ′ →∞ (holding k �xed) regardless of the boundary conditions on �k′ . This implies
the existence of a “separating surface” (composed of vacant W-bonds) in �k\�k′ .
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Given such a surface and conditioning on the outermost separating surface the restric-
tion of the measure to the interior is seen, to also provide a free boundary conditions
on this surface. Such a conditional measure, restricted to �k lies in between – in the
sense of FKG – the measure on �k with free boundary condition and the restriction to
�k of the measure in �k′ with free boundary conditions. Evidently then, every limiting
measure is the free measure.
Finally, if �=0, then !=W so !-percolation is necessary for non-uniqueness. For

the Potts and cubic models, the optimal �nite-volume boundary conditions are as dis-
cussed prior to the statement of this theorem. Furthermore for these models under these
conditions, percolation implies long-ranged order with a positive broken symmetry or-
der parameter, the magnetization.

It is noted that for the AT (and cubic) models, the grey representation may be
supplanted with the more sophisticated representations discussed in the previous section.
In the orthodox region, one uses a double layer representation and the weights are as
described in Eq. (3.8) using WAT ;o;G

Q;P as in Eq. (2.6), here subject to the constraint that
the bonds of both layers connect occupied sites. Similarly, in the reformed region, one
can represent the dilute model by going directly to the black and white representation
and use WAT ; r;G

Q;P from Eq. (2.8) (here subject to the constraint that all grey bonds
connect only occupied sites). A proof of the FKG property for the multi-layer=multi-
color measures in the dilute case follows exactly the proof of the FKG property for
these measures in the uniform case (Ref. [1] (Propositions III.6 and III.1 respectively))
combined with the arguments of Lemma 3.1. As a consequence we have:

Theorem 3.3. For the dilute AT and cubic models with �¿0: (a) In the orthodox
region percolation in (at least) one layer is necessary and su�cient for (at least partial)
breakdown of symmetry and percolation in both layers is necessary and su�cient for
full symmetry breakdown. (b) In the reformed region, percolation of greys without
percolation of blacks is necessary and su�cient for partial symmetry breaking and
percolation of blacks is the necessary and su�cient condition for the onset of the low
temperature phase. In both the reformed and orthodox cases, if �=0, the weaker form
of percolation is the sharp criterion for non-uniqueness.

Proof. The proof follows closely the arguments of Theorem 3.6 in conjunction with
Proposition III.6 (for the orthodox region) and Theorem III.3 (for the reformed region)
from Ref. [1]. For brevity, details are omitted.

Remark. In the region �¿0, a more de�nitive statement than that of Theorem 3.2 is not
possible. In particular, for some values of the parameters, there will be phase transitions
exhibited by the lattice gas variables in which the spin variables only play a peripheral
rôle. For example, in the absence of spin interactions, the lattice gas is equivalent
to an Ising system and therefore has a coexistence line. The interplay between these
two possible phase transitions – and their percolation properties in various graphical
representations – presents a challenging topic for study.
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3.3. The non-SA region

The conclusions of Theorem 3.2 demonstrate that the condition �¿0 is required for
this type of FKG property in the graphical representation, i.e. if �¡0, such a property
does not hold in general. Indeed, in Ref. [24], the �¡0 were studied. 3 For a variety of
site-diluted “large entropy” models, e.g. the q-state Potts models, with q large, it was
shown that this region possesses a staggered phase characterized by the preferential
occupation of the even or the odd sublattice. Under the conditions where such results
were established, it is also possible to show that there is no percolation of sites. Hence,
the existence of multiple phases without any sort of percolation.
Outside the SA region, it is evident that a di�erent sort of expansion (which appears

deceptively similar) is required. At present, the models that are amenable to cluster
algorithms are limited in scope; we will focus attention on the dilute ferromagnetic
Potts models de�ned by

H=−
∑
〈i; j〉

Ji; j(��i; �j − 1)ninj −
∑
〈i; j〉

�i; jninj −
∑
i

�ini : (3.11)

Here, Ji; j¿0; �i; j = Ji; j + �i; j and it is assumed that �i; j¿0. We write

e−�H =


∏

〈i; j〉
[pi; j��i; �j +(1−pi; j)]ninj +1− ninj




×

∏

〈i; j〉
Ki; jninj +1



[∏

i

zini+1− ni
]
: (3.12a)

After expanding the product, it is seen that the terms generated by the second two fac-
tors have similar interpretations as their counterparts from the previous representation:
occupied=vacant site con�gurations and occupied=vacant anchor bond con�gurations.
The �rst factor gives rise to three sorts of terms. First, between neighboring pairs of
occupied sites, there are the occupied and vacant random cluster bonds. Second, there
is a di�erent sort of vacant bond, the 1− ninj term, that labels pairs of sites that do
not have both members occupied. Notwithstanding their similarity, the two sorts of
vacant bonds play di�erent roles. In particular, these latter vacant bonds force at least
one vacant site at the endpoints of the bond and, of further signi�cance, have di�erent
weights.
The con�gurations are described by the triple (n; !; �). The objects n and � are as

before while ! is the random cluster representation on the graph of occupied sites.
The other sort of vacant bonds do not require a separate symbol. The weights are

VG
H;�(n; !; �)=B

G(n)
p (!)qk(n;!)

∏
〈i; j〉∈�

Ki; j
∏
i

zniX (n; !)X (n; �) ; (3.12b)

3 In Ref. [24] as in this subsection, this condition is expressed as �¡1; cf. Eq. (3.11).
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where k(n; !) is the number of connected components of ! on the graph G(n) and
BG(n)p (!) is the Bernoulli factor for the con�guration ! relative to this graph. The
�=0 (⇒ �= ∅) version of this representation has been discussed previously,
e.g. in Ref. [28].
The di�erence between this representation and that of Eq. (3.7) for the Potts model

can now be made explicit. Here pi; j =Ri; j=(1+Ri; j); let us multiply the weights in
Eq. (3.7) by a factor of

∏
〈i; j〉∈BG

(1−pi; j) and compare: In the �¿0 case, all vacant
bonds cost a factor of (1−pi; j) whereas when �¡0, only the vacant bonds between
neighboring occupied sites require the factor of (1−pi; j).
As a limiting case, we obtain the Widom–Rowlinson model introduced in Ref. [33].

Indeed, on Zd with pi; j ≡p and Ki; j ≡K if |i− j|=1 and zero otherwise, the nearest-
neighbor Widom–Rowlinson model is just the K→ 0; p→ 1 limit in the above rep-
resentation – corresponding to �→ 0 and J→∞. In this limit, there are no anchor
bonds and ! is trivial in the sense that it is identically BG(n). The weights for the site
con�gurations n reduce to

WWR;G
z (n)= zN (n)qk(n) ; (3.13)

where k(n)≡ k(n;BG(n)) is the number of components of the graph BG(n), i.e. the num-
ber of “connected clusters” of particles. These are the weights of the grey representation
for the Widom–Rowlinson model (see Refs. [12,13] and also Refs. [7,8]). It should be
noted that the Widom–Rowlinson (lattice) limit is two limits that may be taken sep-
arately. Of particular interest for the next subsection are the cases �=0; p¡1 which
lead to “soft core” continuum models that can be analyzed by graphical methods.
As mentioned previously, there is no hope for a general statement that the absence of

percolation in the representation de�ned via Eqs. (3.12a) and (3.12b) characterizes the
regime of a unique phase. Furthermore, even the weaker statement that !-percolation
is necessary and su�cient for symmetry breaking contains an un�lled gap: Percolation
with respect to some boundary conditions is necessary and percolation with respect
to the wired boundary conditions is su�cient. The case q=2, is exceptional and can
be entirely settled; results of this sort were proved for the Widom–Rowlinson limit in
Refs. [12,13]:

Theorem 3.4. Consider the system de�ned by the Hamiltonian in Eq. (3.11) with q=2
de�ned, for simplicity on Zd with isotropic couplings satisfying 06�6J or the J =∞
limits thereof. Then !-percolation or, for the J =∞ limit, percolation of n-sites (as
de�ned by the representation in Eq. (3.13) is the necessary and su�cient condition for
the existence of multiple Gibbs states.

Proof. If q=2, the Hamiltonian in Eq. (3.11) is the usual BEG model with the iden-
ti�cation �i ∈{+1;−1}; si= �ini. By using the known FKG properties of the latter
(see, e.g. Ref. [34]), it may be concluded that the present model has the strong FKG
property with respect to the (sitewise) ordering ni=1; �i=+1� ni=0� ni=1; �i=−1
provided that J¿�¿0. Thus, by the standard ±-type FKG arguments, positive
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spontaneous magnetization characterizes the non-uniqueness regime. The optimal bound-
ary conditions for positive magnetization are, of course, the plus boundary conditions
and in the graphical system, these correspond to the wired boundary conditions. Thus,
“percolation” in (the limits of) wired states is indeed the characterization of the multiple
phase regime.
To establish all the stated claims, it must be demonstrated that whenever there is

percolation in some state, there is also percolation in the wired state. To this end,
let �⊂Zd denote some �nite set with 0∈� and let ∗ denote some arbitrary bound-
ary condition on @�. It may be assumed that ∗ is a “spin-system” boundary condi-
tion – an assignment of ni=0 or 1 to each i∈ @� and an assignment of �i=±1 to
each such i with ni=1. (All boundary conditions relevant for the graphical prob-
lem may be expressed as superpositions of boundary conditions of this sort.) Let
P!�;∗(=P!�;∗(�; �; z)) denote the probability that the origin is connected to @� by oc-
cupied !-bonds. For any ∗, we claim that P!�;w¿

1
2P

!
�;∗ where w denotes the wired

boundary condition.
Let @�+(∗) and @�−(∗) denote the ni=1; �i=+1 and ni=1; �i=−1 portions of

the boundary. In general, if �⊂ @�, let T!�;∗(�) denote the probability in the ∗-system
that the origin is connected to �. Thus, P!�;∗= T!�;∗(@�+(∗)) + T!�;∗(@�−(∗)). The
inequality P!�;w¿

1
2P

!
�;∗ follows if we can establish that T!�;w(@�+(∗))¿T!�;∗(@�+(∗))

and T!�;w(@�
−(∗))¿T!�;∗(@�−(∗)):

To this end, consider the relevant Edwards–Sokal weights for the problem

U�;∗
H; �(n; !; �; �)= z

N (n)BG(n)p (!)KN (�)X ∗(n; !)X ∗(n; �)�∗(�; !) ; (3.14)

where the ∗’s denote that the con�guration at the boundary has been �xed according
to the rule ∗. If u�;∗H; �(−) denotes the corresponding measure, and g�;∗H; �(−) the Gibbs
measure for the spin-system, we may write

T!�;∗(�)=
∑
n�

g�;∗H; �(n�)u
�;∗
H; �(�

!(0; �) | n�) (3.15)

where �!(0; �) is the event that the origin is connected to � by !-bonds and n� is
notation for a particle-spin con�guration on �. As noted previously, if ∗=w in the
graphical system, we should see ∗=+ (or ∗=−) in the spin system. In all cases,
the relevant connectivity probabilities have been expressed as the Gibbsian average
of a function. Now, let ∗ denote some speci�c boundary condition and consider the
e.g. the case, �!(0; @�+). It is clear that u�;∗H; �(�

!(0; �) | n; n�) is an increasing function
of (n; n�): For �xed spin and particle con�guration, this is the Bernoulli probability,
at bond density p, on the graph consisting of the +-sites and the bonds that connect
them that there is an occupied connection between 0 and @�+. Raising the particle-spin
con�guration will only increase this probability. But then, by using the FKG property
of the Gibbs measure, we have the desired inequality T!�;w(@�

+(∗))¿T!�;∗(@�+(∗)).
A similar argument establishes the inequality with the @�−(∗)’s. From this, it follows
easily that the limiting percolation density in the wired state is at least half of the
optimal density, and the characterization is complete.
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It is possible to establish a number of modest results for these systems when �=0.

Proposition 3.5a. Consider the isotropic nearest-neighbor dilute Potts Hamiltonian on
Zd with �=0. Let p=1− e−�J and a(z; q)= zq=[1+ zq]. Next; consider the bond-site
percolation problem on Zd with bond parameter p and site parameter a; 06p; a61.
Let �⊂[0; 1]2 denote the percolative region of this model. Then if (p; a)∈ Int(�c); the
interaction �H is completely analytic.

Proof. Consider the graphical weights as written in Eqs. (3.12a) and (3.12b) – with
K =0 so there are no �-bonds. The constraint function, X (n; !) has the undesirable
feature of being increasing in n but decreasing in !. However, at the special point
�=0, this may be overcome by the following device: Let !# denote an arbitrary bond
con�guration and for a site con�guraion n, de�ne

!(!#; n)= {〈i; j〉 ∈!# | ni= nj =1} : (3.16)

Consider the weights

V #;GH; �(n; !
#)=BGp (!

#)zN (n)qk(n;!(!
# ; n)) : (3.17)

It is clear that restricting attention to observables that depend only on n and !(!#; n),
the resulting measure is identical to the one de�ned by the weights in Eqs. (3.12a)
and (3.12b). Let us rewrite these weights:

V #;GH; �(n; !
#) ∝ BGp (!#)Ba(n)qk(n;!)−N (n) : (3.18)

We claim that k(n; !(!#; n)) – N (n) is a decreasing function of (n; !#) – which
implies FKG dominance of the independent bond-site measure over these graphical
representations for the spin-systems. First observe that if ! increases, then k(n; !) will
decrease or stay the same; adding bonds to an existing !# will only serve to increase
!. If we add a site, then k can only increase by at most one (here, it can actually
decrease if !# 6= !) so k − N cannot increase.
Now let us discuss the graphical representation de�ned by the weights in Eq. (3.18)

on some �nite �⊂Zd with �xed boundary condition on @�. Let A⊂� and consider
a (minimal) surface S composed of bonds and sites that separate A from @�. Consider
the measure conditioned on the event that all of these bonds and sites are vacant.
It is not hard to see that this measure, e.g. restricted to A is identical to the measure
(restricted to A) constructed with free boundary conditions on the exterior of S. Similar
statements, modi�ed appropriately hold for surfaces that separate A from a portion
of @�.
When (p; a)∈ Int(�c), these surfaces are abundant in the independent model due to

the exponential decay of the bond-site connectivity function. Using the comparison=
decomposition methods in Ref. [35], the proof of Theorem 4 in this reference is easily
modi�ed to establish complete analyticity under the stated conditions.
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Using the device of the !# con�gurations, dominations in the opposite direction may
be obtained. Let us write

V #;GH; �(n; !
#)∝BGp (!#)

1
qN (!# )

[
z

q(2d−1)

]N (n)
qk(n;!)+N (!

#)+(2d−1)N (n) : (3.19)

Now k(n; !)=N (n) − N (!) + ‘(!) where ‘(!) is the number of independent loops
in the con�guration. We claim that 2dN (n) + N (!#) − N (!) + ‘(!) is increasing:
Extra bonds can only increase ‘(!) and N (!#) − N (!). If we add a site,
N (!#) does not change, by de�nition, but N (!) could go up by as much as 2d
– without the formation of additional loops. But this has been compensated by the
2dN (n) and we may conclude that the above is indeed increasing. We thus
have

Proposition 3.5b. Let

p̃=
p

p+ q(1− p)
and

ã=
z

z + q(2d−1)
:

Then if (p̃; ã)∈ Int(�); the spin system is in the high-density=magnetized phase.

Proof. Rewriting the weights

V #;GH; �(n; !
#) ∝ Bp̃(!)Bã(n)q2dN (n)+N (!#)−N (!)+‘(!) ; (3.20)

the corresponding measure dominates the independent measure at parameters (p̃; ã).
Now if, in �nite volume with wired boundary conditions, the probability that any
site is connected to the boundary by a bond=site path is uniformly positive, there
is symmetry breaking in the in�nite volume limit. Such uniform positivity is
evident if (p̃; ã) is in the percolative region for the independent bond=site
model.

Remark. Graphical representations for the AT model along the lines of Eqs. (3.12a)
and (3.12b) are of course possible, and presumably the analog of Proposition 3.5 can be
established in these cases. However, nothing along the lines of Theorem 3.4 has been
shown in any (non-trivial) case. More pertinent to the central theme of this work is
the fact that, at present, we cannot even write down cluster algorithms for these cases.
These matters are currently under intensive study. However, for the interim, there is
a continuum version of the (orthodox region) AT model introduced in Ref. [36] that
does admit a cluster algorithm. Since this model is certainly not the straightforward
limit of the AT model, we will discuss this model solely in the context of continuum
systems.
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3.4. Continuum limits

If �=0, continuum limits of the dilute Potts systems along with their graphical
representations are readily obtained. 4 This provides a vehicle for the proof of
various results about these continuum gases but also (and of primary import-
ance here) allows for the construction of cluster algorithms directly in the continuum.
Around the time that the results of this subsection were derived, another group
(H.O. Georgii and O. H�aggstr�om) studied the same set of problems and arrived
at essentially the same graphical representations. The principal di�erences are:
(i) The degree of generality – Georgii and H�aggstr�om have treated all of the sysems
discussed here with the addition of a species independent “background interaction”
which we have not considered. (ii) A cleaner proof of the existence of a region of
multiple phases (the analog of Theorem 3.5b in the continuum). In light of (i) and
(ii) – not to mention that the work [16] was written up well in advance of the present
work – we will keep details to the minimum requirements for self-containment and
defer altogether to Ref. [16] for the proof of Theorem 3.6. However, certain results in
this section, e.g. Theorem 3.7 are in the complement of Ref. [16].
Let us start with the Hamiltonian in Eq. (3.11) on Zd with �i; j ≡ 0 and the fer-

romagnetic term given by −∑
〈i; j〉 Ji; j[��i; �j − 1]; with Ji; j¿0 and the value Ji; j =∞

formally permitted and understood as a restriction on the particle con�gurations. Now
suppose that Ji; j is of the form

Ji; j = J (|i − j|=�) ; (3.21)

where |i − j| denotes Euclidean distance and for simplicity it is assumed that e−J (r)
is piecewise continuous identically one for r¿2a¿0. The number a is called the
interaction radius. Let y¿0 denote a real number and let us scale the fugacity z
according to z=y�d. Now, let A⊂Rd a �nite regular region. Let G(�;A; a) denote
the following graph: the site set of G(�;A; a) is given by (�Z)d ∩ A where (�Zd)
denotes the d-dimensional hypercubic lattice with lattice spacing � and the bonds of
G(�;A; a) are all pairs of such sites that are separated by Euclidean distance less
than 2a. For case of exposition, let us temporarily consider the case of free boundary
conditions on G(�;A; a). It is straightforward to show (e.g. as in Ref. [37]) that with
this scaling, the � → 0 limit is a classical q-component gas with mutual fugacity y
and a pair interaction, VA;B(r) that depends on the species (A; B);A; B=1; : : : ; a that is
given by

VA;B(r) =

{
J (|r|); if A 6= B ;
0; otherwise :

(3.22)

4 The same holds e.g. for the AT model but for reasons mentioned in the above remark, these will not be
discussed. Similarly, �¡0 limits are possible but will not be described in the present work. Note that if
�¿0 then the continuum limit is unstable.
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These models admit a class of continuum graphical representation that may be de-
rived directly in the continuum or via the lattice approximations. (To the author’s
knowledge, such models were �rst discussed in Ref. [7].) We start with the multi-
species versions: Let n denote q collections of points in A and let Gn; a denote the
graph imbedded in A with sites at the points n and bonds connecting all sites separated
by a distance less that 2a. Let !⊂BGn; a , let p(r)= 1− e−� J (r) and let Bp(r)(!) denote
the Bernoulli factor for the con�guration ! with independent bond probabilities deter-
mined according to the length of the bond by the function p(r). Finally, let �(n; !)
denote the function that is zero if any occupied bond of ! connects points of di�erent
species and is one otherwise.
Given that there are n1 particles of type 1; : : : and nq particles of type q, the

density (with respect to Lebesgue measure on A|n1+···+nq|) for having the graph
Gn; a and the bond con�guration !⊂BGn; a is B

Gn; a
p(r) (!)�(n; !). The constant of propor-

tionality, ZV;�;n(A)−1 is, of course, the inverse of the canonical partition function at
inverse temperature � and interaction Hamiltonian determined by the pair potentials in
Eq. (3.22). The probability of observing a con�guration of this constituency is given

by yn1+···+nq [ZV;�;n(A)=�A;�; y(A)] where �V;�; y(A) is the grand canonical partition
function for the region A. Summing over all possible colorings of |n| particles located
at the points n=(r1; : : :; r|n|); we obtain the grey densities for the graph Gn; a and the

bond con�guration !⊂BGn; a that are given by Bp(r)(!)q
k(n;!) where k is the number

of components (clusters) of Gn; a is the con�guration !.
A few elementary calculations show that the above describes graphical representa-

tions of the previously discussed continuum models and it is not hard to see that this is
exactly the continuum limit of the (� = 0) graphical representations that were analyzed
in the previous subsection. Indeed, this follows almost immediately from elementary
considerations of continuity, much the same as the arguments used in Ref. [37].
So far, we have only discussed the case of free boundary conditions. Other boundary

conditions for the continuum gas may be constructed in a straighforward fashion: �nite
(�xed) particle con�gurations may be (approximately) placed outside G(�;A; a) and
the limiting �nite volume Gibbs measures constructed accordingly. In the context of
these models, various in�nite densities (outside A) can also be handled in a straighfor-
ward fashion. Of principal concern in this work will be the wired boundary conditions.
In the �→ 0 limiting procedure, one of the species is selected and a particle of this type

is placed at every site in (�Z)d\G(�;A; a) that is within a distance 2a of the boundary.
In the continuum limit, this forces every particle (in A) that is within a distance 2a
of the boundary to be of the same species as the outside particles. In the graphical
representation, these boundary conditions dictate that we count components according
to the rule that all particles within a distance 2a of the boundary are considered to be
in the same cluster.
It is highly plausible that percolation (the formation of in�nite clusters of sites

connected by occupied bonds) in the graphical representation provides the signal for
the species density symmetry breaking phase transitions in these models. (Although we
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caution that in d=3, if q/1, there may be crystalline phases with no broken sym-
metry among the various species.) However, as is the case in the lattice models, the
characterization of symmetry breaking via percolation falls somewhat short of a com-
plete theorem: Percolation in the wired state is su�cient and percolation in some state
is necessary. Furthermore, even to prove the existence of multiple phases dominated
by a single species requires some e�ort:

Theorem 3.6. Consider the soft-core WR models as described above with e−J (r)¿0
for r¡2a. Then, for � and z su�ciently large, there is percolation in any state that
is the limit of wired states which further implies the existence of multiple
Gibbs states.

Proof. See Ref. [16] (Theorem 1.1).

For q=2, the + � ∅ � − FKG property is inherited in the (two-component)
continuum version by continuity – as was the case in the Widom–Rowlinson limit
[12,13]. A proof of the analog of Theorem 3.3 follows in this case from nearly identical
arguments.

Theorem 3.7. Consider the above described systems for q=2. Then percolation occurs
i� it occurs in the (unique) limiting wired state and thus is the necessary and su�cient
condition for multiple Gibbs states.

Proof. The absence of percolation in any state implies uniqueness while percolation in
the wired state implies symmetry breaking. All that remains is to show that percola-
tion in some state implies that there is percolation in the wired state. Consider some
boundary condition on a regular A⊂Rd and let @A+ and @A− denote the portions
of the boundary that permit a connection of the + and − type, respectively. Assume,
for simplicity, that the probability of a connection between the origin and @A+ is not
smaller than the corresponding probability for a connection to @A−. By considering
these probabilities given the (approximate) locations of all particles in A, the relevant
Edwards–Sokal coupling allows us to conclude that this is an increasing function of the
con�guration: Indeed, the rules of the conditional measure are to independently place
bonds between particles of the same type. The presence of additional + particles allows
for additional mechanisms for connections to @A+. Evidently, the overall probability
of a connection to the boundary does not exceed twice the probability in the wired
state.

3.4.1. Graphical algorithms
We now proceed with graphical algorithms de�ned for all the problems and their

representations described in this section. These algorithms are not dissimilar to the
ones in the previous section. Thus, in these systems, it also turns out that there
is no obstruction to the use of non-interger values of q provided that q¿1. Most
of our attention will focus on the lattice versions. The continuum problems are, in
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essence, an afterthought: Here, as with the graphical representations themselves, the
limit of the algorithm is the algorithm of the limit. To simplify all descriptions, we
have ignored listing the provisos required for various boundary conditions; what follows
is strictly true for free boundary conditions (i.e. on a general graph, no boundary con-
ditions). Other boundary conditions may be incorporated in a routine fashion – usually
by freezing appropriate graphical elements (and, possibly, their connected components
for the duration of the Monte Carlo step).
The simplest case is the WR model described by Eq. (3.13). Let us start here and

work our way upwards.

3.4.2. Hard core lattice WR (p = 1; � = 0) algorithm
Step 0. Let n⊂SG denote a site con�guration. The con�guration n is divided into

connected clusters K1; : : : ; Kk(n).
Step 1. Each cluster is removed with probability 1=q or left intact with probability

1− 1=q. The removal decisions are independent from cluster to cluster.
Step 2. The vacant sites are of two types: Those that border on one or more of

the surviving clusters and those that are “out in the open”. Those sites that neighbor a
cluster remain vacant. The vacant sites in the open are independently left vacant with
probability 1− s or awarded a new particle with probability s where s= z=(1 + z).
This cycle constitutes a single Monte Carlo step.

Proof of detailed balance. Detailed balance will be veri�ed by the construction of an
intermediate model – which for integer q essentially is the WR model – and demonstrat-
ing that this is an Edwards–Sokal coupling. Consider then a model with two species
of particles, brown and white. There is no interaction among whites but the system
is constrained so as to forbid browns and whites to occupy the same or neighboring
sites. For each connected brown cluster, there is a weight factor of q−1 and a particle
(brown or white) located at the site i provides a fugacity factor of z (assumed, for
simplicity to be independent of i). Thus, if (nB; nW ) is a particle con�guration, the
weight is given by

U (nB; nW )= znB(i)+nW (i)(q− 1)k(nB)�(nB; nW ) ; (3.23)

where �(nB; nW ) vanishes if any brown particle shares a site or neighbors with a white
particle and is one otherwise and k(nB) is the number of brown clusters.
It is immediately seen that if we sum over all brown-white particle con�gurations

that have particles at the positions n⊂SG, we get the grey representation weights of
Eq. (3.13). Step 1 is a random selection of (nB; nW ) given n and step 2 is a random
selection of nW given nB. Detailed balance is established.

Remark. For integer q, the brown particles consist of q − 1 particle species and the
algorithm may be reformulated as one that keeps track of all the q species at all times.
In step 1, one of the q species is selected and the lattice is depleted of that particle
type. In step 2, the lattice is repopulated with the species that was depleted in step 1
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by independently occupying, with probability s, each vacant site that does not neighbor
a site already occupied by another species. Finally, in a third step, a new species is
randomly assigned to each cluster and the cycle is complete.
The case with p ¡ 1 and �=0 is nearly identical with a rede�nition of “clusters”

and an extra step for the bonds.

3.4.3. Soft core lattice WR (p ¡ 1; � = 0) algorithm
Step 0. Let n⊂SG denote a site con�guration and !⊂BG a bond con�guration

satisfying X (n; !)= 1. The con�guration n is divided into clusters K1; : : : ; Kk(n;!) where
connectedness is here de�ned via the occupied bonds.

Step 1. Each cluster – bonds and particles – is removed with probability 1=q or left
(completely) intact with probability 1− 1=q.
Step 2. Independently, for each vacant site i, a particle is placed at the site with

probability s(i) or i is left vacant with probability 1 − s(i). The quantity s(i) is
given by

s(i)
1 + s(i)

= z
∏
j∈nB

e−�Ji; j ;

where nB is the con�guration of the sites that were not removed.

Step 3. Of the bonds connecting the newly arrived particles at sites i and j, indepen-
dently, with probability pi; j such a bond is declared to be occupied or with probability
1− pi; j it is vacant.

Steps 1–3 constitute single a Monte Carlo step.

Remark. It is of course observed that if pi; j is identically one, the above collapses
into the algorithm for the usual lattice Widom–Rowlinson model with the notion of
neighborhood determined by the graph.

Proof of detailed balance. A proof of detailed balance along the lines of the previous
proof follows immediately once we have set up the intermediate model. Here we again
consider brown and white particle con�gurations (nB; nW ). Let n= nB∪nW and let ! be
a bond con�guration on G(n). These bond con�gurations will be subject to the further
constraint that no occupied bond connects a white to a brown site. For convenience,
let us therefore wite !=!W ∪ !B with !W ∩ !B= ∅. The full weights are similar to
those in Eqs. (3.12a) and (3.12b) – with K =0:

ṼG
q;p; z(nB; nW ; !B; !W )=B

G(n)
p (!)z|n|(q− 1)k(nB;!)X (nB; !B)X (nW ; !W ) : (3.24)

Summing over all (nB; nW ) that are consistent with a given ! and satisfy that nB ∪ nW
is equal to some �xed n, we get the weights of Eqs. (3.12a) and (3.12b) with K =0.
The various steps of the algorithm are seen as selections from appropriate conditional
distributions of the measure de�ned by the ṼG

q;p; s.
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3.5. Continuum limits

The above-described algorithms themselves converge to a continuum algorithm that
manifestly satis�es detailed balance for the limiting continuum system. Thus, in these
cases, there is nothing that can be added beyond an informal description of
the limiting algorithm. Let us �rst consider the usual q-component WR (hard core)
models:
Here particles are regarded as spheres of radius a with connectivity de�ned in

the sense of overlapping spheres. A speci�cation of points constitutes a grey con-
�guration which is then divided into distinct connected clusters. In the �rst step of
the algorithm, with probability 1=q, each cluster is removed from the system or,
with probability 1 − 1=q, left in place. The free volume is de�ned to be the set of
points a distance greater than 2a from any of the remaining particles – so that if
a new particle of radius a is placed in the free volume, it does not intersect any
of the particles in the cluster that survives the �rst step. In the second step, par-
ticles are placed in this free volume according to a Poisson process at intensity y
and we are back to a full con�guration. If q is an integer, a q-component con�gu-
ration may be obtained from a grey con�guration by independently assigning, with
equal probability 1=q, any of the q labels to the individual clusters. This hard core
algorithm was discovered independently by Ref. [15] and has been used e�ectively in
simulations [25].
The algorithm for the soft-core continuum models is similar. Here there are

grey particles and bonds (of length 62a) connecting certain pairs of particles with
connectivity de�ned via these bonds. Starting with a con�guration of particles and
connecting bonds, clusters are independently retained, with probability 1 − 1=q or
discarded with probability 1=q. Denote by nB the set of locations of the remain-
ing particles. Particles are replenished in the free volume by a Poisson process with
position dependent intensity ỹ(x) given by ỹ(x)=y exp{−�∑x′∈nB J (|x − x′|)}. Fi-
nally, bonds are occupied between pairs of the new particles with a probability p(r)
where r is the distance separating the pair; no bonds are permitted between the old
and the new particles. It is clear that this algorithm reduces to the hard core algo-
rithm when p(r)= 1 for r62a and zero otherwise. For integer q, a multi-component
con�guration is obtained from a grey con�guration in the same way as described
above.
In closing, let us remark that other continuum models of the WR-type admit cluster

algorithms of this sort. For example, in the model introduced in Ref. [38], there are
four species, R, Y, G and B at mutual fugacity y and two interaction radii, a and
A with A ¿ a. The interactions between R and Y and the interactions between B
and G are hard core exclusion with the smaller radius. All other pairings of distinct
species interact with hard core repulsion at a distance 2A and there is no interaction
between particles of the same species. The two radii de�ne two notions of connected,
a-connected and A-connected. The algorithm for this model is a straightforward exten-
sion of the previous ones.
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We now return to the lattice for the analysis of the more complicated models.
As should be clear, the introduction of anchor bonds will require some additional
dynamics:

3.5.1. Dilute Potts model algorithm (non-SA region) I
Step 0. Consider a con�guration (n; !; �) consisting of occupied sites (n); occupied

bonds (!) satisfying X (n; !)=1 and anchor bonds (�) satisfying X (n; �)=1: The !-
bonds divide G(n) into connected clusters of which there are k(n; !):
Step 1. Each !-cluster is, independently, with probability 1− 1=q left alone or, with

probability 1=q; selected for removal. All !-bonds of these clusters are removed as
well as all sites within a given selected cluster except for those that are attached to an
anchor bond. These preserved sites will be denoted as anchored sites and they remain
in place for the duration of the Monte Carlo step.
Step 2. This is identical to Step 2 from the soft core (lattice) WR algorithm but it

is understood that the anchored sites do not contribute to nB:
Step 3. This is identical to Step 3 from the soft core WR algorithm with the exception

that here new !-bonds are permitted between the new sites placed in Step 2 and the
anchored sites preserved from Step 1.
Step 4. All �-bonds are removed. New �-bonds are independently placed between

any pair of occupied sites with probability ri; j=Ki; j=(1 + Ki; j) or, such a pair is left
without an anchor bond with probability 1− ri; j :

Steps 1–4 constitute a complete Monte Carlo step.

Proof of detailed balance. It is again only necessary to present the joint model and ver-
ify (1) that the marginal is the (full) grey measure de�ned by the weights in Eq. (3.12)
and (2) that each step of the algorithm is a random selection from an appropriate
conditional distribution. Here, the relevant joint distribution is the generalization of
Eq. (3.24):

ṼG
q;p; s(nB; nW ; !B; !W ; �) = B

G(n)
p (!)z|n|BG(n)r (�)(q− 1)k(nB;!)

×X (nB; !B)X (nW ; !W )X (n; �) : (3.25)

In brief: Given (n; !; �); the weights in Eq. (3.13) are obtained by summing over
all (nB; nW ) and (!B;!W ) consistent with n and !: Step 1 starts with a selection of
(nB; nW ) and (!B;!W ) given n and !: Step 2 and the rest of Step 1 results in the
selection of a new nW given nB and �: Observe that in these steps, the white particles
attached to the �-bonds must remain in place because the presence of an anchor bond
– without a brown particle at one or both ends – necessarily implies the presence of
a white particle at these sites. Clearly, Step 3 produces an !W con�guration with the
correct statistics given nW and Step 4 a �-bond con�guration given n:

An alternative representation and algorithm is possible in which the vacancies are
elevated to a dynamical status but acts as the soft core algorithm=representation with
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regards to the occupied sites. Indeed, let us write

∑
〈i; j〉

�i; jninj=
∑
〈i; j〉

�i; j[(1− ni)(1− nj) + ni + nj − 1] (3.26a)

and de�ne

�̃i=� +
∑

j:〈i; j〉∈BG

�i; j : (3.26b)

We may write e��i; j(1−ni)(1−nj)=(e��i; j − 1)(1− ni)(1− nj) + 1 ∝ rvivj + 1− ri; j where
vi=1− ni and ri; j=1− e−��i; j :
Upon expansion, this produces a di�erent set of bond con�gurations – here denoted

by # which have the property that they must connect pairs of vacant sites. The weight
of a (total) con�guration is given by

UG
q;p; z̃; r=B

G(n)
p (!)BG(v)r (#)

∏
i

z̃ nii q
k(n;!)X (n; !)X (v; #) (3.27)

where v≡SG\n is notation for a con�guration of vacancies and z̃i=e��̃ i: A cluster
algorithm for this representation is a simple extension of the Soft Core Lattice WR
Algorithm that includes #-bonds.

3.5.2. Dilute Potts model algorithm (non–SA region) II
Step 0. Start with a con�guration (n; !; #) satisfying X (n; !)=X (n; #)=1: The !

bonds divide G(n) into k(n; !) components.
Step 1. Each !-cluster is independently removed with probability 1=q or left intact

with probability 1 − 1=q: The con�guration of remaining occupied sites is denoted
by nB:
Step 2. Independently, for each vacant site that is not attached to a #-bond, a particle

is placed with probability s(i) which is given by

s(i)
1 + s(i)

= z̃i
∏
j∈nB

e−�Ji; j

or otherwise left vacant.
Step 3. Independently, for each pair of newly occupied sites, i and j, place an !-bond

on 〈i; j〉 with probability pi; j
Step 4. Remove all # bonds. Between every pair of vacant sites, i and j; place a

#-bond with probability ri; j

Steps 1–4 constitute a single Monte Carlo step.
Both of the above algorithms can be used in the Potts case when �¿J (�¿0) how-

ever in these cases, a somewhat di�erent algorithm associated with the representation
from Eq. (3.7) or (3.8) may be used. We will start with the simplest version – Potts
at �=0 – and then treat the general case.
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3.5.3. Dilute Potts model algorithm (integer q; �=0)
Step 0. Let (n; !) denote a site-bond con�guration with X (n; !)=1
Step 1. All isolated sites are removed from the lattice. Now, all vacant sites of the

lattice are independently repopulated with probability t where t=zq=(1 + zq):
Step 2. Each connected component of sites is independently assigned one of the q

spin states. All !-bonds are removed and new bonds independently placed between
spins of the same type with probability p.

A single Monte-Carlo step has been completed.

Remark. Notice that despite apparent similarities to the non-SA algorithms, there are
a number of important distinctions. First, clusters do not get removed, only isolated
sites. (In this sense, the rôle of the anchor bond has merged with that of the !-bond.
Nevertheless, for �¿0; the anchor bond reemerges as an independent entity.) Second,
in this algorithm, the sites are removed without regard to their species – the criterion is
isolation. Third, in this algorithm new sites may be placed at vacancies on the boundary
of the present clusters without any apparent “interaction penalty”. Despite these peculiar
features, this algorithm satis�es detailed balance with respect to the representation that
percolates precisely at the phase boundary of the uniqueness regime.

Proof of detailed balance. We will omit any speci�cs save for the explicit form of the
Edwards–Sokal weights for the bond-site-spin con�gurations. In this case, these read
BG(n)p (!)(qz)|n|X (n; !)�(�; !) where �(�; !) is one if each bond of ! connects only
spins that are of the same type and is zero otherwise. Using these weights, it is easy
to verify detailed balance in this case. A more complete proof may be obtained as a
special case of the proof for the general SA algorithms.

The generalization is as follows:

Proposition 3:8 (General dilute systems; �¿0). Suppose that a graphical problem
for bond con�gurations on graphs G has the weights WG(!) for bond con�gurations
!⊂BG: Suppose, further, that for all graphs G; if a site and no bonds are added;
G→G′ with BG=BG

′ , SG
′ =SG ∪ s then for all !⊂BG; WG′

(!)=qWG(!): Next
suppose that WG(!) is the marginal of some joint measure, with weights MG(!; �);
where �≡(�i | i∈SSG) It is supposed that for any G and G′ as described above,
MG′

(!; �; �s)=v(�s)MG(!; �) where v(�s) sums to q: Finally, suppose that for any
�nite graph G there is an ergodic algorithm TG : (!; �)→(!′; �′) satisfying detailed
balance with respect to measure de�ned by the weights MG(!; �); the �rst step of
which is to randomly select a �′ from the conditional distribution given !: Then, let
G denote a graph and consider the algorithm for con�gurations (n; !; �) with n⊂SG;
!⊂BG and !⊂BG de�ned by

Step 0: Let (n; !; �)⊂SG×BG×BG:
Step 1: Remove all sites of n that are not the end points of any bond in or ! or

�: At each vacant site (including those freshly created) independently, with probability
qz=(1 + qz) install an occupied site.
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Step 2: All �-bonds are removed. New �-bonds are independently with probability
L=(1 + L) placed between each pair of occupied sites.
Step 3: On the graph consisting of the sites that are endpoints of bonds in ! (and

all bonds of G that join them) apply the �rst step of T to obtain spin values for
the sites. On the remaining sites i of the current n; independently assign spin-values
�i with probability v(�i)=q: Then ! and all these spin values constitute a bond-spin
con�guration on G(n) to which the second step of T is applied in order to obtain the
updated !-bond con�guration.

A single Monte-Carlo step is completed.

Then this algorithm satis�es detailed balance with respect to the measure de�ned by
the weights

YG
H; L; z=W

G(!)
∏

〈i; j〉∈�
Li; j

∏
i

[qzi]niX (n; !) X (n; �) :

In particular, this is a cluster algorithm for any dilute spin systems with a graphical
representation of the type described in Eq. (3.7).

Proof. Given the bond con�gurations ! and �; there have to be occupied sites at all
endpoints of occupied bonds. The (conditional) distribution of the remaining sites is
that of independent Bernoulli variables with density qzi=(1 + qzi): Step 1 is therefore
a random selection of one such con�guration. Similarly, given the site con�guration
n; Step 2 is seen to be a random selection of a �-bond con�guration from this condi-
tional distribution. Finally, the desired consequences of Step 3 follow directly from the
hypotheses: Starting with the endpoints of !; the �rst step of T assigns a spin con�g-
uration to these sites. Next, the selection of spin values for the “newly occupied” sites
of n are seen to be independent of ! (and one another) which, due to the hypothesized
factorization, MG′

(!; �; �s)=v(�s)MG(!; �); evidently satis�es detailed balance for the
joint measure de�ned by the M-weights on G(n): The remainder of the T algorithm
now generates a new !-bond con�guration for the graph G(n) in such a way as to sat-
isfy detailed balance for the measure de�ned by the weights WG(n)(!): Now recall that
for any !⊂BG(n) we have WG(!)=WG(n)(!)q|SG|−N (n): It therefore follows that for
any !; !̃⊂BG(n), the ratio WG(n)(!)=WG(n)(!̃) equals WG(!)=WG(!̃). It thus follows
that the new !-con�guration is a random selection from the conditional distribution
given n: Detailed balance of the algorithm is established.

4. 2-D SOS and XY models

4.1. The restricted SOS model

The connection between certain two-dimensional random surface models and spin
systems is well known (see, e.g., Ref. [39]). Usually, the approach is to start with
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a familiar spin system and show that the system admits a height representation. Of
course one consequence is that the resulting surface model may have “peculiar” features
– for example the restriction that neighboring height di�erences are always ±1 or that
the height variable itself is a multi-dimensional object. Here (as in Ref. [40]) we
will follow a less traditional approach: We consider familiar random surface models
– explicitly the restricted k-step SOS models – and demonstrate that these are height
representations of various spin systems. Of course, now the latter may be a bit peculiar
– e.g. have constraints but nevertheless will be amenable to some analysis: graphical
representations and cluster algorithms. Our prototypical example will be the one step
restricted solid-on-solid model that is de�ned as follows:

De�nition. Let �⊂Z2 denote a �nite connected set, and, for i∈�; hi∈Z an integer
valued height variable. It is assumed that the height on the boundary is identically
zero. The Hamiltonian is given by the formal expression

H=
∑
〈i; j〉

|hi − hj|T1(|hi − hj|) (4.1)

with T1(s) in�nite if s¿1 and one otherwise. In particular, hi is an integer-valued
height �eld on � with the restriction that the height di�erence between neighbors does
not exceed one.

It is anticipated that such a model di�ers in no essential way from the usual SOS
model (de�ned as in Eq. (4.1) but without the factor of T1) and in particular to have a
roughening transition at some temperature that is the order of unity. (Cf. the discussion
in Ref. [41] on p. 29.) In more generality, we may consider models of this form with
nearest neighbor interactions given by F(|hi − hj|)Tk(|hi − hj|) with Tk in�nite if its
argument exceeds k and one otherwise. Depending on the details of F (and the size
of k) the preceding sentence may or may not apply.
Focusing attention on the model described by Eq. (4.1), consider the following spin-

system with four spin-states per site: �i∈Z4≡ which may be better envisioned as
colors {Y; B; G; R}: Let (�i − �j)∈{0;±1; 2} denote the Z4 di�erence between states
and |�i − �j| (=0; 1 or 2) the distance between states. We de�ne the Hamiltonian

− H=
∑
〈i; j〉

[��i;�j − ��i;�j ]
∑

〈〈i; j; k; ‘〉〉
��i; �j ; �k ; �‘ : (4.2)

In the above, ��i; �j is in�nite if |�i−�j| is 2 and is zero otherwise; the objects 〈〈i; j; k; ‘〉〉
are the elementary squares of the lattice and ��i; �j ; �k ; �‘ is in�nite if all four colors
appear on the square and is zero otherwise. On a �nite �∈Z2; the boundary conditions
that are of relevance are those in which all the spins on the boundary are in the
same state.
Thus we have a four state Potts (or clock) model with constraints. Clearly, we

may de�ne the di�erence in “heights” vis-�a-vis hi − hj=(�i − �j) and the restriction
enforced by ��i; �j forces this di�erence to be one. What is not so clear is that it is
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possible to de�ne an unambiguous hi in the �rst place. In particular, assuming h≡0 on
the boundary, let P :@�→ i denote a path from the boundary to i: We may of course
de�ne hi(P)=

∑
〈i; j〉D∈P(�j − �i) where 〈i; j〉D is a directed bond, but then we must

address the question of whether hi(P) is independent of P. This is where the second
constraint comes in and is the subject of our �rst proposition.

Proposition 4:1: Let �⊂Z2 denote a �nite connected set, let ��∈{0;+1;−1; 2}� denote
a spin con�guration on � and set �@�≡0: Suppose that the two constraints discussed
are satis�ed: ��i; �j is �nite for every 〈i; j〉 and ��i; �j ; �k ; �‘ is �nite for every 〈〈i; j; k; ‘〉〉.
Then if P : x→ i is any directed path from the point x on the boundary to the point i
in �; the quantity hi(P)=

∑
〈i; j〉D∈P(�j − �i) is independent of P.

Proof. The proof is elementary and involves nothing more than the Stokes theorem:
Let 〈〈i; j; k; ‘〉〉 denote an elementary square. The quantity (�j − �i)+ (�k − �j)+ (�‘−
�k)+ (�i−�‘) is, of course, zero mod 4; it is su�cient to show that it is actually zero.
Since the absolute value of each term is bounded by 1, it is enough to show that it
cannot achieve ±4 without a violation of the four-color rule. This is easily checked:
suppose that there are two of the same color on the square and that the �-constraint
is enforced on each bond. If the said two colors occupy adjacent sites on the square,
then |�a−�b| is only non-zero on three legs of the square and the fact that |�a−�b|61
does not permit an overall change of four. On the other hand, if the two sites with the
distinguished color are diagonally opposed – say at i and k – then any choice of �j
for which |�i − �j| = |�k − �j|61 puts (�j − �i)=(�k − �j)=0 Similarly, in this case,
the last two legs add up to zero.

From the above example, it is clear that virtually any restricted SOS-model can be
described in this fashion; if the height restrictions are |hi − hj|6k all that is needed
is a spin model with q¿2k + 1 states. The only requirement, which is both necessary
and su�cient, is that the constraints force the height change around each elementary
plaquette to be zero; the more spin states, the fewer constraints. In particular, if q¿4k
(for the square lattice) the only needed constraint is that |�i−�j|¡k on each bond. The
simplest example, namely q=5 for the one-step restricted SOS model was discussed
a while ago in Ref. [40]. However, as we shall see, the spin representations with the
extra constraints are particularly useful for the construction of cluster algorithms.
A graphical representation for these spin-systems is readily developed; for simplic-

ity, let us con�ne attention to the four-state spin-model corresponding to the one-step
restricted SOS model. Let �⊂Z2 be a connected �nite set and consider the system
with �i constant on @�: Let !⊂B� denote an occupied bond con�guration and let
Q�(!) denote the number of ways that the components of ! can be assigned one of
four colors in such a way that the � and � constraints are satis�ed at each site. (Note
that Q(!)¿0 since we can always color every site red.) It is evident that if we write
the weights

W SOS
�;p (!)=Bp(!)Q�(!) ; (4.3)
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then the resulting graphical measure, denoted by �SOS�;p (–) faithfully describes the spin
system and the associated SOS-model.
The representation is somewhat di�cult to work with and its properties have not

yet been fully explored. Although we are tempted to believe that the roughening and
percolation transitions coincide, we have only partial evidence to this e�ect. In partic-
ular, if there is percolation then the surface cannot be “rough” in the sense that h0 = 0
with uniformly positive probability. Further, if we consider the toy “Wedding Cake”
model in which (loosely speaking) the surface is only allowed to go up, the corre-
sponding underlying spin-system is precisely the Ising model [42]. Here, the analog of
our representation turns out to be exactly the FK representation and thus percolation
and “roughening” indeed coincide.
Finally, it is noted that Q(!) is a decreasing function (because a “greater” bond

con�guration implies that there are more constraints). Hence, the measures �SOS�;p (−)
are dominated by the density p Bernoulli measures which implies the surface is rigid
if p¿1=2:
The standard approach to the design of cluster algorithms for surface models which

dates back to Refs. [43,44] is based on reections of the surface itself. Here, the
graphical representation of the constrained spin system leads to a di�erent sort of
algorithm. The following simulates the restricted one-step SOS model and the above
described graphical representation:

4.1.1. SOS algorithm
Step 0. Let !⊂B� and ��∈{R; Y; G; B} denote a legitimate bond-spin con�guration.

In particular, (i) there is no elementary square that is occupied by more than four
distinct colors, (ii) the combinations RB and YG never appear on any neighboring
pair of sites, and (iii) each occupied bond of ! connects only sites that are of the
same color.

Step 1. Select two “compatible” colors i.e. any pair except RB or YG. This may
be done randomly or according to some sensible deterministic rule that regularly se-
lects all allowed pairs. For the sake of de�nitiveness, let us proceed assuming that
R and Y have been chosen. Remove all R-sites that are not neighbors of G-sites
or connected to an R neighbor of a G-site by occupied bonds. Similarly, remove
all Y-components save for those that border on a B-component. (For the duration
of this step, all bonds of ! are to be left in place.) There are now uncolored !-
components left behind where the “internal” R and Y sites used to be. These may
be divided into components according to the usual connectivity rules for sites and
bonds.

Step 2. Each blank !-component is colored R or Y with probability one half.

Step 3. Remove all bonds of !: On each satis�ed (i.e. same color) neighboring pair
of sites, a bond is independently occupied with probability p or the bond is left vacant
with probability 1− p:
Steps 1–3 constitute a single Monte-Carlo step.
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Remark. It is noted that there are certain similarities between the preceding and the
algorithm used for the three-state Potts antiferromagnetic in Refs. [45,46].

Proof of detailed balance. We consider the joint measure with weights

Y SOSp;� (�; !)=Bp(!)Q(�)�(�; !) ; (4.4)

where Q(�) is one only if all the � and � constraints are satis�ed and is zero otherwise
and �(�; !) is the usual enforcer of the constraint that occupied bonds connect only
satis�ed pairs. It is evident that the marginals of the joint measure resulting from these
weights reproduce the appropriate bond and spin models de�ned by Eqs. (4.2) and
(4.3).
The third step of the algorithm is the usual selection of a bond con�guration from

the conditional distribution given the spin con�guration. Similarly, but slightly less
obviously, steps 1 and 2 are seen to be a random selection from the conditional dis-
tribution for the two selected colors given the speci�cation of the other two colors
and the bond con�guration !: With the stated boundary conditions, the algorithm is
obviously ergodic since, e.g. the all red con�guration can be reached from any given
con�guration in a few steps.

4.2. The XY model

In this �nal subsection, we treat the standard XY model on a graph G: Here, to �x
notation, for i in SG let si denote the spin variable at i which is a two-dimensional
vector of length one. The XY -Hamiltonian is given by

HXY =−
∑
〈i; j 〉

Ji; jsi · sj (4.5)

with Ji; j¿0. For this system, we will use (and modify) the representation implicit
in the Wol� algorithm [9] that was described in Refs. [20,21]. Let â denote a unit
vector and b̂ an orthogonal unit vector – to be de�nitive, rotated by −�=2. We de�ne
ai= |si · â| and similarly for bi. Letting �i=sgn(si · â) and �i=sgn(si · b̂) we may write
the Hamiltonian as a sum of three terms: HXY =−∑

〈i; j 〉 Ji; j(aiaj+bibj)+ Ia(�)+ Ib(�)
where �=(�i | i∈SG) denotes an Ising con�guration on SG, similarly for � while a
and b are con�gurations of a’s and b’s and Ia(�) is the Ising Hamiltonian

Ib(�)=− 2
∑
〈i; j 〉

Ji; jbibj(��i�j − 1) : (4.6)

Thus, for each realization b, we have one or two Ising models that can be expanded
in an FK representation. This is the basis of Wol�’s algorithm. 5

5 It should be noted that two non-trivial ingredients were introduced in [9]: First, a cluster method for
various continuous systems – including the XY -model and second the use of single cluster methods. The
single cluster methods will not concern us in this work.
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4.2.1. The Wol� algorithm
Step 0. Let S = (si | i∈�) denote a spin con�guration. Select an â uniformly from

the circle. For each i de�ne �i=sgn(si · b̂):
Step 1. Independently, for each neighboring pair of sites 〈i; j 〉, if �i= �j occupy a

bond between these spins with probability pi; j =1 − e−2�Ji; jbibj . If �i 6= �j the bond is
vacant.
Step 2. Perform a standard SW Ising spin-ip move: each connected cluster – includ-

ing isolated sites – is independently assigned a new � value that is constant throughout
the cluster. All the bonds are erased, the new �’s and the old b’s are constitute the
updated spin con�guration.

A single Monte-Carlo step has been completed.

Proof of detailed balance. Since a proof of detailed balance for (the single cluster
version of) this algorithm already appeared in Ref. [9], we will be concise. Let � de-
note an angle on the circle corresponding to the direction of â. Let Ai= si · â ≡ ai�i
and let A denote the con�guration (Ai | i∈SG) and similarly for �, etc. Then the
spin con�guration S is completely determined by the variables (�; a; �). Denoting
the bond variables by !, the algorithm evidently samples some joint measure, W ,

on the con�gurations (�; A; �;!). We may denote by W (�; ! | �; A) the weights for
the (Ising) spin con�guration and the bond con�guration given � and a. Here, it is

clear that W (�; ! | �; A) is of the form of the standard Edwards–Sokal weights – as in
Eq. (2.2) – for the Ising Hamiltonian in Eq. (4.6). Now it is seen that summing over the
bond con�gurations gives the (conditional) Boltzmann distribution for the con�guration
of �’s. Since the spin and bond moves select independent samples of bonds and spins
from the appropriate conditional distributions (given the �xed values of � and a) de-
tailed balance is satis�ed.
Needless to say, if we stuck with a single value of â, the entire system would

be all but frozen. However, a fresh direction for â is selected on the zeroth step –
which obviously satis�es detailed balance. It is easy to see that in �nite volume, it
is possible to get arbitrarily close to any spin con�guration in a �nite number of
steps.

Remark. It is obvious that this algorithm can be “improved” (presumably only by a
constant factor) by the introduction of a second set of Ising=FK variables associated
with the a-components of the spins. The algorithm is essentially the same as above only
there are now two bond moves – one for the �’s and one for the �’s – and two spin-
ip moves. Note that while the bonds associated with the two types of spins are not
mutually exclusive they tend to be non-cooperative in the sense that a large bibj, which
enhances the probability of a �-bond implies a smaller value of aiaj which disfavors
the �-bond. Although we do not expect substantial improvement in this algorithm over
the usual Wol� algorithm, this extra ingredient may be important in the analogous IC
algorithm.
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Any cluster algorithm is of limited use for the simulation of a phase transition unless
this phase transition is reected in the underlying graphical representation. Although
the numerical evidence (e.g. in Ref. [9]) is convincing, to date there has been limited
theoretical understanding of this problem and, with the exception of Ref. [21], essen-
tially no rigorous work on the subject. Below we will show that indeed percolation (or
more accurately, the onset of percolation) in the underlying graphical representation
indeed coincides with a phase transition in the XY model.
Let us start with some notation. We will assume, for the bulk of this analysis that we

are dealing with some �nite connected �⊂Zd. In�nite volume analogs of all statements
in general follow via a limiting procedure. Here, we will consider, for once and all, a
�xed values of b̂ and â say the X and Y directions, respectively. Unless otherwise spec-
i�ed it will be assumed that the boundary conditions on � are free, periodic or that all
of the bi on the boundary are positive. We denote by MW (b; �;!) the Wol� density for
such a con�guration and by EMW (−) the expectation with respect to this measure. Let
mW (b) denote the density for the con�guration b alone (mW (b)=

∑
�;! M

W (b; �;!))
and �nally, �Wb (!) the conditional probability of the con�guration ! given b. Note that
at least here the measure �Wb (−) may be explicitly computed via the random cluster

weights with pi; j=1 − e−2�|bi||bj| and q=2. Observe, if relevant, that the boundary
conditions in these conditional measures will be the wired ones. We establish the fol-
lowing, half of which was already proved in Ref. [21]:

Lemma 4.2. Let 〈s[X ]i s[X ]j 〉 ≡ EMW (bibj�i�j) denote the usual correlation function for
the X -components of the spins for the XY on model Zd in any �nite volume system
with boundary conditions as described or an in�nite volume limit thereof. Let Ti; j
denote the probability in the Wol� measure that the site i is connected to the site j –
including, if relevant, connections via the boundary component. Then, for |i − j|¿1

C[Ti; j]3=26〈s[X ]i s[X ]j 〉6Ti; j

where C is a constant that depends only on the temperature and the dimension.

Proof. We follow Ref. [21] for the upper bound. Let us start by writing

〈s[X ]i s[X ]j 〉=
∫
b

dm (b)bibjEMW (�i�j | b) : (4.7)

Let Ti; j denote the event that i is connected to j by occupied bonds. It is noted that
if ! 6∈Ti; j, then EMW (�i�j | b) vanishes because in one or both of the components of
the sites i and j, the � value is + and − with equal probability. Indeed, this holds for
the expectation of any f(bibj)�i�j. On the other hand, if !∈Ti; j then �i= �j and the
contribution is one. We thus have the identity

EMW (�i�j | b)= EMW (5Ti; j (!) | b) ; (4.8)
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where 5Ti; j (!) is the indicator for the event Ti; j. However, since bibj61; the integrand
in Eq. (4.7) is bounded by EMW (5Ti; j (!) | b) which integrates to Ti; j.
As for the lower bound, let �¿0 and de�ne the set g�= {b | bi¿� and bj¿�}. Then,

the integral in Eq. (4.7) may be split into a sum of two pieces one from the b’s in g�
and the other from b’s in gc� . By the identity in Eq. (4.8), both terms are positive so
we may discard the latter and degrade further the remaining term by the replacement
of bibj with � 2:

〈s[X ]i s[X ]j 〉¿� 2
∫

b∈ g�

dm (b)EMW (5Ti; j | b) : (4.9a)

Adding to both sides of this equation the integral of EMW (5Ti; j |b) over gc� , we get

〈s[X ]i s[X ]j 〉+ � 2
∫

b∈ g c�

dm (b)EMW (5Ti; j | b)¿� 2Ti; j : (4.9b)

We claim that this extra (unwanted) integral is at least of the order �4. Indeed, if Ti; j
is to occur, then i must be connected to one of it’s neighbors as must j. However, the
occupation for the bonds emanating from i and j are themselves of the order �: If i′

denotes a neighbor of i then pi; i′ =1− e−2�bibi′62��. Furthermore, in a q¿1 random
cluster system, the probability of any given bond being occupied is bounded above
by the associated p parameter. Thus for any b in gc� , we have EMW (5Ti; j | b)6[2d��]2
(where here we have used the fact that |i − j|¿1).
Finally, the measure of the set gc� is itself of the order �

2. Indeed, consider this
event with the con�gurations neighboring i and j that optimize the probability of this
event. (Here we again use |i− j|¿1 which allows us to decouples the problem.) Now
for any con�guration of bi′ ’s, the distribution of bi is given by a density function that
can be bounded above and below independent of the bi′ . Hence, for the event bi¡�
we obtain a constant times � and similarly at the site j. Thus, all in all, we have

〈s[X ]i s[X ]j 〉+ const : �6¿� 2Ti; j : (4.10)

The result follows by setting �6 = 〈s[X ]i s[X ]j 〉:

Corollary. Let X∗ denote the expected size of the connected Wol� cluster in any
translation invariant and spin rotation invariant state 〈−〉∗ that arises as a limit of
the �nite volume states discussed and let �∗u denote the corresponding untruncated
susceptibility:

�∗u =
∑
i

〈s[X ]0 s[X ]j 〉∗ :

Then �∗u is �nite if and only if X∗ is �nite.

Proof. Under the conditions stated, to within factors of 2, we may replace 〈si · sj〉∗
with 〈s[X ]i s[X ]j 〉∗ and vice versa. In these systems, by means of a Simon inequality [47],
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if �∗u is �nite then the decay of correlations is exponential. Hence, using the lower
bound of Lemma 4.2, there is also exponential decay of the connectivity function Ti; j
and hence X∗ is �nite. On the other hand, if �∗u is in�nite then according to the upper
bound, so is X∗. Thus, in general one anticipates the onset of ordering – or near
ordering – in the XY systems to correspond to percolation – or “incipient percolation”
– in the Wol� measure providing a distinctive geometric signature of the transition out
of the high temperature state.

Note added. Recently, the connection between phase transitions in XY -systems and
percolation in their associated Wol� representation has been sharpened. For example,
the percolation density has been proved to be equal (modulo uniform constants) to the
spontaneous magnetization. Details to appear in Ref. [22]. Similar results have also
been established for the isotropic O(3) – model in Ref. [23].
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