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Abstract 

Graphical representations similar to the FK representation are developed for a variety of 
spin-systems. In several cases, it is established that these representations have (FKG) mono- 
tonicity properties which enables characterization theorems for the uniqueness phase and the 
low-temperature phase of the spin system. Certain systems with intermediate phases and/or first- 
order transitions are also described in terms of the percolation properties of the representations. 
In all cases, these representations lead, in a natural fashion, to Swendsen-Wang-type algorithms. 
Hence, at least in the above-mentioned instances, these algorithms realize the program described 
by Kandel and Domany, Phys. Rev. B 43 (1991) 8539-8548. All of the algorithms are shown 
to satisfy a Li-Sokal bound which (at least for systems with a divergent specific heat) implies 
critical slowing down. However, the representations also give rise to invaded cluster algorithms 
which may allow for the rapid simulation of some of these systems at their transition points. 

Keywords: Graphical representations; FK representation; Swendsen-Wang algorithm; 
Invaded cluster algorithm; Ashkin-Teller model; Cubic models; Percolation transitions; 
First-order transitions; Li-Sokal bounds 

1. Introduction 

Progress in the area o f  statistical mechanics, both theoretical and computational,  

is often achieved by means of  graphical representations; the history o f  this subject 

constitutes a substantial fraction o f  the larger story. An exciting development that has 

taken place in the last few years has been introduction o f  cluster methods, in particular 

those o f  Swendsen and Wang [2] which facilitate the rapid computation of  equilibrium 
ensembles. 
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In their original versions, these algorithms were designed for the simulation of the q- 

state Potts models in direct conjunction with the Fortuin and Kasteleyn representation of 
these systems. Even in the more advanced versions [3,4,1 ], the vestiges of an underlying 
graphical representation are present. Although these algorithms have demonstrated a 
considerable improvement over the traditional single-spin update methods it seems that 
in general they do not overcome the problem of critical slowing down. In particular, 
if the specific heat is divergent, then for the algorithms introduced in [2] - the SW 
algorithms - this is the subject of a rigorous theorem [5]: 

~,.,,. >~ [const.]CH ( I. 1 ) 

where v,.,~ is the autocorrelation time and Cu is the specific heat. (In the language of 
critical exponents, this reads "z>~/v" . )  It also appears that in general, the algorithms 
introduced in [3] experience critical slowing [6]. What is more, these problems occur 
on top of the need for prior knowledge or extensive pre-computation of the critical 
temperature. 

This set of difficulties has apparently been reduced (and in certain cases appears to 
have been alleviated altogether) by the invaded cluster (IC) algorithm [7,8]. In addition, 
this algorithm provides a distinctive signal whenever the transition is discontinuous. The 
development of the IC algorithm is far from complete. In particular, in our own biased 
opinion, the following items represent the principal areas of deficiency, in decreasing 
order of importance: 

• theoretical understanding of the finite-size scaling behavior at criticality; 
• rigorous results concerning the validity of the algorithm; 
• the extension of the algorithm to systems other than the q-state Potts ferromagnets. 

The first two matters have been discussed in [8] and represent essentially uncharted 
territory. The third topic is a concern of cluster algorithms in general and is the principal 
focus of this work. 

Based on a notable insight concerning the original Swendsen-Wang (SW) algorithm, 
Edwards and Sokal [4] proposed a generalization of this algorithm to "arbitrary" spin- 
systems. However, when applied to particular problems, e.g. the 2-d X Y  model, the 
algorithm met with limited success. The key pitfalls of this and other similar approaches 
were pointed out in [1]. The problems fall into two (related) categories: Strong inter- 
actions between separate clusters and the generation of clusters that are impractically 
large. The first difficulty was neatly circumvented by a decoupling technique that de- 
fines a broad class of cluster algorithms. However, the second problem is often in force 
for any particular algorithm. Indeed, it seems that this problem can only be avoided 
when the active elements of the graphical representation form large-scale clusters just 
at the transition point of the spin-system. 

The class of algorithms considered in [1] is indeed quite general: for a given spin 
configuration, a definition is provided for the formation of random clusters, that satisfy 
an energy constraint. These clusters operate independently of each other and the rest 
of the system; transitions within the cluster that satisfy the constraint are permitted 
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which generates the new spin configuration. Unfortunately, the procedure is rather 
non-specific, in particular with regard to the sanctioned transitions within a cluster. 
Needless to say, almost any cluster method is a special case of the rules spelled out 
in [1]. Most of what we derive in this work will fall into this class, if not that of [4]. 

Our approach is considerably less general with regard to the systems discussed and 
is targeted at more specific phenomena. We start with a graphical representation for a 
certain class of discrete spin-systems that is a straightforward generalization of the FK 
representation for the Potts model. We show that these systems admit SW (and therefore 
IC) algorithms. The graphical representations are of interest in their own right; in 
particular they provide non-pertubative criteria for high-temperature behavior. However, 
they may be ill-suited for simulations in systems with a continuous transition directly 
into the low-temperature phase: First off, the SW versions satisfy a Li-Sokal bound 
but more importantly, even the IC versions will usually suffer from the "big cluster 
problem" discussed in [ 1]. Notwithstanding, the two provisos in the previous sentence 
are often violated: spin systems can have intermediate phases and phase transitions 
are (generically) discontinuous. The bulk of this paper is concerned with examples 
where these phenomena can be characterized by a percolation transition in the graphical 
representation. Along the way, modifications of the representation are developed (for 
special cases) that circumvent the slowing caused by the presence of an unwanted large 
cluster at the threshold of low-temperature behavior. 

In a future paper, we will describe a similar set of ideas as applied to lattice gasses, 
along with their continuum limits, random surface models and various other correlated 
graphical systems. This paper is organized as follows: 

(1) In Section 2, we develop a general representation for q-state ferromagnets that 
can be used for the construction of SW algorithms. With the help of some comparison 
inequalities, these representations are used to derive necessary conditions for the onset 
of long-range order. Finally, we discuss the circumstances under which these represen- 
tations may be useful for the direct simulation of phase transitions; in particular for 
first-order transitions and for intermediate phases. In Appendix A, we show that the 
SW algorithms associated with these graphical representations satisfy an inequality of 
the Li-Sokal type. 

(2) In Section 3, we study in detail the Ashkin-Teller (AT) model. For one region 
of parameters (where there is an intermediate phase) we prove that the representation 
developed in Section 2 provides a sharp criterion for the onset of long-range order. 
A refinement of this representation exhibits the onset of low-temperature behavior as 
a secondary percolation phenomenon. Thus, all known phases in this region are char- 
acterized by the geometric phase transitions of this (extended) representation. In the 
other portion of parameter space, we develop a different representation for the model 
that seems to have captured all the essential features in this region. For both regions, 
the graphical representation is easily generalized from the 4 (= 2 × 2)-state AT model 
to the q(=r  × s)-state cubic (or "N~, N f ' )  models introduced in [9,10]. However, the 
representation extends to non-integer values of q. General features of the phase di- 
agram are proved by means of the graphical representation. In Appendix B, we use 
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the representation to derive duality relations for these spin systems in d = 2. Although 

some of  these are well known e.g. [11,10] here they apply to the non-integer cases. 

Under some additional restrictions, the duality in the graphical representation allows a 
proof  that certain transitions actually take place on the self-dual curves. 

(3) In Section 4 we show that these representations are easily and efficiently welded 

together with the techniques of  reflection positivity. This combination is then used to 
prove discontinuous transitions in a variety of  "large entropy" models including models 
with intermediate phases characterized only by short-ranged order. 

2. q-state ferromagnets 

2.1. A generalized random cluster representation 

The graphical representations presented in this section, as well as their derivation, 

are a straightforward generalization of  the FK representation for the Potts models. 

We will treat ferromagnets with q equivalent internal states. To help get started, let us 
initially dispense with all superfluous generalities and agree to add the amenities later. 
We therefore consider a lattice A that is a finite piece of  the d-dimensional hypercubic 
lattice 7/d. To each site i E A, there is a spin variable that can take on one of  q values: 

ai E { l, 2 . . . . .  q}. I f  two sites in A, i and j ,  are nearest neighbors and have spin values 

ai and aj, the energy is given by some function d(ai, aj). We will temporarily assume 

that there are no other interactions and that the energy function respects the additive 
group s t r u c t u r e :  ~ ( a i , ( T j ) =  ~((7 i ~-o~, (7/-~ o~), o{ = 1,2 . . . .  where addition is understood 

to be modulo q. On physical grounds, we must have ~(qi, qj)= E(~Tj, ai) and to justify 
the use of  the word ferromagnetic, we will assume that for all 2, 

~(1 ,~)~>~(1,  1). (2.1) 

The Hamiltonian is given by 

"~'= Z o:(ai, aj) (2.2) 
(:,/) 

where (i,j) is here considered to be a directed bond from i to j .  (In particular, the 
lattice is oriented for once and all and each bond appears only once in the sum.) For 

a given bond, we may write 

d(ai, a/)=8~(1, 1)Z~_~, + ~(l ,2)Zg_~,+l  + . . -  + ~(l,q)z~_a,+q_ 1 (2.3) 

where Z, h is one if a = b and zero otherwise. Since the energies in Eq. (2.3) are not, 
in general, in increasing order, let us rewrite this equation: 

¢¢:(Gi, Gj)=~foZa,-ai  -]- ~l)~a,-a,+z¢, ~- " ' "  -[- d~q l•a,-o-:+ . . . . .  (2.4) 

where ~ = ~:(1, I + ~j) and it is assumed that gb ~<gi ~< " "  ~<6"q-1. Finally, let us 
assume, without loss of  generality, that the highest energy is zero. Thus, in Eq. (2.4), 



546 L. Chayes, J. Machta/Physica A 239 (1997) 542-601 

there are no more than q -  1 non-zero terms corresponding to the energies g0,. . . ,  gk 
with k ÷ 1 ~<q-  1. 

The partition function ZA, I~ at inverse temperature /~ is defined by TR[e -~'~] where 
TR[--] means sum over all spin configurations with a priori equal weights. 2 Notice that 
in accord with the fine print of the above definitions, what we have actually defined is 
the partition function with free boundary conditions. This will simplify the forthcoming 
derivation; the necessary modifications will be attended to later. The partition function 
now admits the expression 

Z~=TR ]-I  e-~[e~°z'i-"+"+~z~i ~+~k]. (2.5) 
(i,j) G A 

The above may be expanded in the standard fashion: 

ZA =TR 1--i [1 +RoZ~,-~,][...][1 +Rkz~/-o,+~k] (2.6) 
(i,j)GA 

with Rj = e/~l~'J I - 1. Opening up the product into individual factors, we may imagine 
k different types of bonds, colors, with a bond occupied in the rth color if the factor 
RrZ~,=~,+~, is selected. If no color is selected, the bond will be called vacant. Notice 
that (at least once the trace is performed) no two colors can be on the same bond 
because the product of the Z's is automatically zero and such terms may be omitted in 
the expansion. The lattice is now divided into multicolored connected clusters. Observe, 
however, that there will be additional constraints: Suppose that some of the occupied 
bonds form a loop. Moving around the loop, each color tells the successive spin to 
move up or down by the amount ~r, the sign of the change depending on the fixed 
orientation of the bond relative to the direction that it is being traversed. Obviously, 
the oriented sum of these er's must equal zero modq. It is clear that if this holds for all 
occupied loops the bond configuration is "consistent" with an actual spin configuration 
and vice versa. 

Let 05 denote a generic multicolored bond configuration and let D(05) be one if 
all the connected clusters of 05 are consistent as discussed above and zero otherwise. 
For each ~5 such that D(~5)= 1 the weight is 

k 

W(oS)= I ' I  RN'(°5) TR 1-I Z~,=~,+~<~.j~ (2.7) 
t=l (i,j)E~ 

where Nt(05) is the number of bonds of type t in the configuration 05 and ~(i,j)(~5) 
denotes the color of the bond (i,j) in 05. 

It is not difficult to see that the result of the trace is exactly the same as in the 
case of the standard random cluster models: Given the value of any particular spin in 
a cluster, the value of every other spin is completely determined. Since the "particular 

2Here we are primarily interested in problems with equivalent spin states. Asymmetries can, in principle, 
be incorporated by means of "ghost sites". However, except for the simplest cases, these modifications turn 
out to be somewhat intricate and we will refrain from a discussion of these problems. 
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spin" can be in any one of q states (recall that for simplicity, we have assumed free 

boundary conditions on A) we get q raised to the number of  connected components of 

the configuration. Thus, we have a generalization of the random cluster measures with 
weights of  multicolored bond configurations given by 

k 

t - 0  

(2.8) 

where c(~3) is the number of connected components, including isolated sites, of the 
configuration ~5. These weights, here expressed in their least refined form, serve as the 

basis of  a well-posed graphical problem. We will develop the representation further 
but first, a few comments are in order. 

2.1.1. Remarks  and generalizations 

(i) In the case of  the Potts models, it is seen that the above reduces to the usual 
weights of  the FK representation; here there is only one color and R0 is related to 

the usual parameter p by R0---p/(1 - p) .  (To obtain the commonly used formula, 

multiply the weight of each graph by (1 - p)  raised to the power of the total number 
of bonds in A.) This parameterization gives the problem a percolation-like character. 

A similar parameterization is available here as well but is more appropriate for the 
Swendsen-Wang algorithms that will be presented in the next subsection. 

(ii) With a few obvious modifications, a similar representation can be derived for 
arbitrary boundary conditions. As in the case of the Potts models, these differences are 
mostly reflected in the counting of c(~3). For example, if we wish to consider a fixed 

spin configuration on the boundary of A, we need to place the appropriate colored 

bonds between the neighboring sites on the boundary and now count all clusters that 
are connected to the boundary as a single component. It should be observed that these 

additional "permanent" boundary bonds introduce additional constraints that have to be 
satisfied by the configuration as a whole. 

(iii) The generalization to longer-ranged interactions is straightforward: For pair in- 
teractions, we allow for the possibility of (directed) bonds, with appropriate weights, 
connecting the sites that are supposed to be interacting. For multispin interactions, one 
can use other geometric objects, triangles, plaquettes, etc., weighted appropriately, all 

of  which are best thought of as constraining directed graphs that connect the interact- 
ing sites. Similarly, this sort of  representation can be defined for these models on any 

lattice. 
(iv) We have assumed, for simplicity, that the systems under consideration have an 

additive group structure describing the q-fold equivalence. Clearly this need not be 
the case and it does not cover problems that are conceivably of interest. For exam- 
ple, suppose that each (~i lies on the comers of a rectangle: ff iz(~l ,- izb) and that 
g ' (d i ,6 j )=  - cYi • ~Yj + const. If  b =  1, this is just the four state clock model but for 
b ;~ I this is an asymmetric Ashkin-Teller model. Such a system does not satisfy 
"~(o'i ÷ 2, o-j + ~)=  ~(o'i, o'j)" and yet can obviously be treated by these methods. The 
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desired internal symmetry condition can be formulated as follows: Let T2 . . . .  Tq de- 
note different permutations of { 1,. . . ,  q} (we will take T~ to be the identity) satisfying 
Tk(1)=k,  k =  1,. . . ,q and, in general, for any ~, {T~(~) . . . . .  Tq(~)}={1, . . .q} .  Then, 

for some such set of T's, the energy is required to satisfy g(ai, aj)= g(Tk(ai), Tk(aj)) 
for each k and for all values of (O'i,O'j). (In the above-mentioned example, we may 
take T2, T3 and T4 as the reflections along the midlines and the product thereof.) For 
systems that satisfy these more general conditions, it is not awfully difficult to see that 
a derivation along the preceding lines follows pretty much the same course. 

(v) These representations are faithful representations of the corresponding spin sys- 
tems meaning that, in finite volume with fixed boundary conditions, the Gibbs distri- 
bution is completely determined by the distributional properties of the graphical rep- 
resentation. Indeed, we have noted that the assignment of a value to a single spin in 
a cluster completely determines the value of all other spins in the cluster. If a cluster 
is connected to the boundary (corresponding to a fixed value of the boundary spins) 
then we know the spin values inside the cluster and if the cluster is detached, there are 
q equally likely possibilities. Thus, following the proof in [12] (Section 2.1) for the 
usual FK representation, the expectation of any observable in the spin system can be 
computed by knowing the statistics, including the colors, of the clusters in the graphical 
representation. 

The generalizations discussed above will be implicitly assumed in the remainder 
of this section unless explicitly stated otherwise. However, the notation will continue 
along the user-friendly lines and the missing provisos and extra details will be left to 
the reader. 

As things stand, the above representations are more or less on a par with standard 
high- or low-temperature representations - although here these enjoy the slight distinc- 
tion of being both simultaneously. Furthermore, percolation and long-ranged order are 
related in this representation: As will be demonstrated in Proposition 2.2, the absence 
of percolation in this representation indicates high-temperature behavior in the spin sys- 
tem. (This will be made precise in the statement of the proposition.) In several cases, 
the converse is true as will be demonstrated in Sections 3 and 4. We will pursue these 
lines of discussion after some further development of the high-temperature properties 
of this representation. 

The distinguishing feature of the FK random cluster representation is that the repre- 
sentation itself enjoys the FKG property. (We will assume that the reader is familiar 
with these matters. A complete treatment can be found, for example, in [13].) However, 
it is unlikely that in the present form, this could ever be proved for the more general 
representations: Any reasonable attempt at a partial ordering of the bonds will inevitably 
lead to violations of the consistency condition as we "raise" the configuration. We can 
avoid facing such difficulties head on by considering the measure that focuses only 
on the bonds that are occupied and weighting each configuration in accord with all 
legitimate coloring schemes. In certain cases, we can show that this leads to measures 
with the FKG property and in general, it permits comparison inequalities between these 
and random cluster measures with appropriate values of parameters. 
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Lemma 2.1. Let ~ denote the Hamiltonian of  a q-state ferromagnet o f  the type de- 

scribed with non-zero energies ~0 . . . .  gk let fl denote an inverse temperature and let A 
denote a finite lattice. Consider the measures t t e ; l~ ( - )  that assign the probability to 
the uncolored (grey) bond configuration o9 given by the sum of  the probabilities in 

the measure defined by the weights in Eq. (2.8) of  all the allowed colorings of  this 
configuration, with * denoting various appropriate boundary conditions for the graphical 

problem (e.g. free). Let fi be the inverse temperature defined by 

e fi 1 =R0  + . ' .  + Rk 

and let F~'~* Itq, l; ( - - )  denote the random cluster measures with parameters q and p>~l - 

e 1~. Then, for boundary conditions in which FX;*( Itq, p --) is itself FKG, including free 
and wired, 

FK; * I%,/,*(-) ~> ,u~;/~(-). 
FKG 

Proof Let us start with a construction of  the measures /~*;[~(-) with * = . /  corre- 

sponding to free boundary conditions on A. Let to denote a bond configuration on A 
and let ~(u)) denote a coloring scheme (in which one of  the (k + 1) colors are assigned 

to each bond of  to). Let R = R0 + • • • + Rk and let r / b e  defined by 

r~ - R i / R  • ( 2 . 9 )  

Notice that ~ j r / =  1. Obviously, the collection (to; ~(to)) is in one-to-one correspon- 
dence with the preceding multicolored ~5's. We may write 

It~/: fl(t~)) ,~ qC(~°)RN("') Z Br(-~(~o))D(~(~o)) . (2.10) 
,~(~,) ) 

In the above, N(~o) and c(co) are, respectively, the number of  bonds and the number 
of  connected components of  the uncolored 09, Br(~(to)) is the Bernoulli probability of  

the coloring scheme ~(to) using r = r0 . . . . .  rk for the probabilities o f  the possible colors 
and, finally, D ( - )  has the same meaning as before. 

Other boundary conditions that are of  interest have additional sites in the complement 
of  A that may be connected to sites in A by additional bonds. Certain of  these additional 
sites are connected to one another via their own fixed colored bonds (or weighted 
combinations thereof)  that in and of  themselves are a consistent scheme. Under these 
circumstances, /~*;/~(- ) is determined by a formula identical to Eq. (2.10) with the 
appropriate modification of  the counting of  the number of  connected components and 
the insistence that ~(~o) satisfy the additional constraints. To keep our notation at a 
manageable level, we will usually forfeit the privilege of  adding a * to the quantities 
c and D and allow these modifications to be inferred from context. 

Now the right-hand side of  Eq. (2.10) looks like (the numerator of )  the expecta- 
tion of  a function, namely ~]~l,,))B(_~(~o))D(~(~o)), with respect to the random cluster 
measure at parameters q and 2 with 2/(1 - ) . ) : R .  Provided that this random cluster 
measure is itself FKG, it is sufficient to show that the above-mentioned function is 
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decreasing. For free boundary conditions or for the more general boundary conditions 
(obtained by the stipulation that some boundary sites are connected to others in the 
complement of A) the random cluster measures are indeed FKG for all q~> 1. Thus, 
let us turn to the task of showing that the additional factor constitutes a decreasing 

function. 
To this end, let co C o9'. Writing co'= co U q with co N t /= 9, let ~(co) and g(q) denote 

colorings of co and I/. Further, let us use (~(co), gOD) as notation for the combined 
coloring as applied to the configuration o/. We may write D(~(co),g(q))= D(~(co)) • 
D(g(t/)l ~(~o)) where the first factor indicates if ~(co) is a respectable coloring of co 
and the second D-factor is non-zero only if g(q) is a "good coloring" of the rest of 
el given the coloring ~(co). Thus we have 

E B(~"(co'))D(~"(co'))= Z B(s(~°))B(~(q))D(s(co))D(~(q)l~(co))" 
~,,(~,),) .~(~,~), ~(q ) 

(2.11) 

But the term D(~(r/)] ~(co)) never exceeds one; setting it to one, the unrestricted 
sum over ~(q) is exactly one and this amounts to a statement of the desired monotonicity 

[] 

These domination inequalities are useful in conjunction with the following definition 
and elementary result: 

Definition. Consider a generalized random cluster model of the type described above, 
in a finite lattice A with * for a boundary condition. Let P~i(fl) denote the probability 
that the site i is connected to the boundary and let 

PA, i( f l )  = 1TIaX Pff, i ( f l )  

denote this probability given the optimal boundary condition on A. We will say that 
there is no percolation if for every (fixed) i, and for every increasing sequence of 
lattices that exhaust all of Zd, 

lim eA, i( f l)  = O. 
ATZ,I 

Proposition 2.2. Suppose, for a spin model of the type described, that at inverse tem- 
perature fl, there is no percolation in the graphical representation. Then there is no 
symmetry breaking in the sense that if (-),~;/~ is any infinite volume Gibbs state of 
the Hamiltonian ~ at inverse temperature fl, F is any summable function of spin 
configurations (tr), and F H  is the function defined (pointwise a.e.) by 

FM(ff) ----F(_6 + _~) 

where (_a + _~) is the configuration obtained from (tr) by adding ~ to the value of 
(a) at each site then (FM).g;ls = (F) ~.;/s. In particular, the spontaneous magnetization 
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vanishes. Furthermore, there is high-temperature decay of  correlations in the sense that 

if  G(cq . . . . .  ~ )  is any function of  n spin variables with 

0 =  Z G(~l . . . . .  ~.)  
;(i ,..., xn 

then (G(ai, . . . . .  oi,,)).;~;3 --~ 0 as the minimum separation between any of  the points 
tends to infinity. In particular, the n-point correlation functions tend to zero as the 

points become well separated• 

Proof Focusing first on the magnetization, the contribution from the ith site to the 

magnetization vanishes in those graphical configurations in which i is detached from 
the boundary. Thus, without percolation there is no magnetization. In more general- 
ity, it is sufficient to consider F ' s  that depend on only finitely many coordinates. Let 

,4;# F=F(~ri, . . . . .  ai~) denote one such function and let (-)~;1~ denote the Gibbs distri- 
bution for the spin system in finite volume A with boundary condition #. Let ~J~(#) 

denote the boundary conditions identical to # except that each spin on the boundary 
has been "jacked" down by the amount ~. It is clear, by relabeling, that 

• ,  ~ \ A ; #  / F \  A; Y'~(#) \/F [~l\'l;#/~,/~ ------ (F(~Til Jr- ~x,.. °'it + J/¢e;/~ = \-- / , , /~ . (2.12) 

However, the graphical representations corresponding to # and f ~ ( # )  are identical and 
A,# / F \  A; y~(#) thus the contributions to (F).~,;/~ and \-/-*;l~ are identical from all configurations 05 

in which the sites it . . . . .  ik are detached from the boundary. Hence, we may estimate: 

F[~] \,4, # I(F /~:l~ <~l£max-Fmml[P'4,i,([~)+"'+PA,i,,([:~)]~O (2.13) 

as A / ~ Z  ~z, which implies that in any limiting state, the average of F and F I~] are 
equal. 

Similarly, if  G ( ~ T i ,  . . . . .  ~7i, ,) is a function as described in the statement of  this propo- 
A;# sition, it is clear that the contributions to (G),,:/j  from configurations 05 vanish unless 

some pair o f  sites from il . . . . .  i~ are connected in 05. (Including, o f  course, the pos- 
sibility of  a connection via the component of  the boundary sites•) However, this has 

negligible probability for large separation: Suppose that i and j are sites with maximum 
difference in coordinates equal to l. Let A/(i) denote a hypercube of  side l centered at 
i (so that j is on the boundary of  i). If  A ~ A/(i), the probability that i is connected 

to j ,  with any boundary conditions on A, is surely less than the probability that i is 
connected to the boundary of  At(i) with boundary conditions on Az(i) chosen so as 
to optimize this probability, i.e. PA,U),i([3). Thus, for minimum separation between the 

A;# sites it . . . . .  i~ large, as A / ~  77 d, the average (G), ; /~ cannot exceed some small number 
that vanishes with increasing separation. This implies the desired result. [] 

As a consequence of  the above we have: 

Corollary. Let Pc(q) denote the parameter value in the random cluster model 
at which percolation first sets in. Let ~c(q)<~p~(q) denote the largest value of  p 
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below which there is always exponential decay of correlations. Then, for the gen- 
eral q-state ferromagnets discussed in the above propositions, if R < pc(q)/(1 - Pc(q)), 
there is no symmetry breaking and there is high-temperature clustering of correlations. 
If R < ~ ( q ) / ( l  -7re(q)), the clustering is exponential. 

Remark. It is widely accepted that in general, pc (q )=  7t~(q). For q = 2 ,  this was 
established on the square lattice by exact solution [14] and, in quite some general- 
ity in [15]. For q ~ l ,  this follows implicitly from any of the classic large q treat- 
ments of the Potts model, e.g. [16,t7] or [18]. Explicit details will be presented in 
Section 4. 

Proof If p < pc(q), the consequences of no percolation in the FK random cluster 
models carry over to the generalized random cluster problems by the domination 
lemma whenever R < pc(q)~(1 -Pc(q) ) .  The conclusions about the absence of symme- 
try breaking and the clustering of correlations follow from Proposition 2.2. Further, if 
R<rcc(q)/(1 -rcc(q)), the decay of correlations is exponential. [] 

Remark. Even assuming the stronger condition, the above does not prove the best 
possible result: unicity of the limiting Gibbs state (or that of the associated random 
cluster measure). A complete proof might follow from some further analysis and/or 
would follow if FKG properties in the generalized random cluster measure could be 
established. As for the latter, we have several examples where this can be proved but 
no general results in this direction. In any event, both lines of attack are currently 
under investigation. 

2.2. Swendsen-Wang algorithms 

In accord with the primary goals of this paper, we will devote this subsection 
to a demonstration that the q-state ferromagnets just described admit SW-type algo- 
rithms. The principal feature of this subsection will be an explicit verbal descrip- 
tion of the algorithm, thus we will restrict our attention to the simplest algorithms 
for the user friendly cases. In Appendix A, we will discuss these algorithms and 
the various generalizations from the perspective of Li-Sokal bounds. Apparently, all 
of the algorithms are special cases of the algorithms described in Section 2 of [1]. 
However these have the advantage of a closed form expression for the Edwards- 
Sokal weights so that various properties, e.g. detailed balance, are manifestly 
apparent. 

2.2.1. Description of the algorithm 
Let A C 7/a be a finite lattice with free (or periodic) boundary conditions and consider 

a nearest neighbor q-state ferromagnet with Hamiltonian as described in Eq. (2.2) (with 
the additive version of the internal symmetry) on A. Let P0, P l , . . . ,  pk be defined by 
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pj = Ri/[R i + l] where the Rj's are defined below Eq. (2.6). The algorithm is described 
as follows: 

Step 0: Start with a spin configuration, ~rA, on this lattice. 

Step 1: On each directed bond (i,j} in A check whether ai = °'i ~- :~s for some 
s = 0 . . . . .  k. If  this is the case, then with probability Ps place the sth-type bond between 
o-i and ai and with probability (1 - P s ) ,  do nothing. If  Cry ~ Cri AV(~s for any s (i.e. if the 
spins are in a zero energy state) then do nothing. This procedure is done independently 

for each bond of the lattice. 

Step 2: The lattice is now divided into connected clusters. Erasing the existing spin 
configuration, there are exactly q spin configurations in each cluster that are consistent 

with the bond coloring scheme tying the cluster together. For each cluster, including the 
isolated sites, independently pick one of these q allowed configurations. This completes 
step 2; erasing all bonds brings us back to step 0. 

The following is readily established: 

Proposition 2.3. The above described algorithms satisfy detailed balance: For the spins, 
this is with respect to the Gibbs state corresponding to the appropriate Hamiltonian as 
written in Eq. (2.2). For the bonds, this is with respect to the appropriate random 

cluster measures as in Eq. (2.8) or Eq. (2.10). 

Proof (Kandel and Domany [1] and Edwards and Sokal [4]). It is noted that the 

algorithm simulates the joint measure on bond-spin configurations (o5,1, C~A) that has the 

weights 

k 

W((F)A, erA) = A((Y-)A, CrA)I- [ Bp, ( (~A)  ( 2 . 1 4 )  

j = 0 

where A ( ~ A ,  erA ) is one if the bond-spin configuration is "consistent" and zero otherwise 

and where 

Bp , (~A)  = pUj('5~)(1 - p j )  B'-NI(~;)') (2.15) 

is the Bernoulli factor for the configuration of bonds of the j th color with B.4 denoting 

the total number of  bonds in A. Each move of the algorithm is now interpreted as 
"applying the conditional distributions" and it is not hard to verify that the marginals 
of (2.15) are exactly the appropriate Gibbs distribution for the spins and the random 

cluster measures for the bonds. [] 

We now turn attention to the most pertinent facet of this subsection: When might 
we expect these algorithms to be useful? 

As was demonstrated in the previous subsection, percolation in the graphical rep- 
resentation is required for low-temperature behavior. Unfortunately, for ferromagnets, 
this sort of percolation is not sufficient. For the purposes of the present discussion, 
let us assume that g (~ ,cc )<g(~ ,~ ' )  for ~ ¢ ~ '  (so that for d>~2, there is always a 
low-temperature magnetized phase). Furthermore, here and throughout the remainder 
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of this paper, we will refer to the low energy bonds in the multicolored representation 
as "blue" and to the (generic) bonds of the measures defined in Eq. (2.10) as "grey". 

It would seem that some form of percolation of the blue  bonds is required in order to 
have magnetic ordering in the spin system. (Notwithstanding, this appears to be difficult 
to prove in the general case. For the additive version of the 4-state models where the 
pairing energy increases with the distance of the spin states, a nearly complete statement 
can be made: blue percolation for s o m e  boundary conditions is a necessary condition 
and with a particular boundary condition a sufficient condition for magnetic ordering. 
Since this result is rather limited in scope, its proof will be relegated to Section B.3 
of Appendix B.) And worse yet, in the general case, mere percolation of the blue 
bonds is not sufficient - cf. the discussion following the proof of Theorem 3.3 and 
[19]. However, even in a system where percolation of blue bonds is necessary and 
sufficient for magnetic ordering, it is easy to envision what will go wrong with this 
representation: Spontaneous magnetization will not occur until the formation of infinite 
clusters of blues but multicolored infinite clusters, without infinite subclusters of blues, 
are bound to form at higher temperatures simply because there are more players on 
the team. In particular, this "false percolation" obviously occurs if the different colored 
bonds are independent and, to be definitive, on the Bethe lattice for the four state 
model described in the above parenthetic remark [20]. 

Thus, the general implication is that the percolation threshold in the grey represen- 
tation is at a higher temperature then the transition temperature for magnetic ordering. 
What is more, in the context of an actual simulation, if the grey infinite cluster occu- 
pies a significant fraction of the lattice at the magnetic ordering temperature, we have 
walked right into the "large cluster problem" discussed in [1]. It is almost certain that 
we will experience severe slowing down under SW dynamics and doubtless that there 
will be slowing down under IC dynamics as well. However, regarding these represen- 
tations on the whole, there are two important possibilities that have been overlooked: 
(A) The possibility that the grey percolation transition is signaling the presence of 

another phase that is different from the low-temperature magnetized phase. 
(B) The possibility of a first-order transition in the grey representation where the in- 

finite cluster density is discontinuous at threshold. This almost certainly indicates 
that there is a first-order transition in the spin system. Under such circumstances, 
the intuition that was exploited in the preceding paragraph is no longer appli- 
cable: The transition could be into an intermediate phase or directly into the 
low-temperature phase. The former case falls under item (A) and in the latter 
case, magnetic ordering indeed coincides with the grey percolation transition. 

We will explore these two possibilities in the remainder of this paper. In the context 
of the Ashkin-Teller model we will show (Section 3.2, The Reformed Ferromagnetic 
Region) that percolation in the grey representation targets perfectly the intermediate 
phases in these systems. Similar results hold for a generalization of the AT models. 
In the following section, for a slightly restricted class of models (the nearest-neighbor 
additive cases on yd) we will show how these graphical representations can be used 
in conjunction with reflection positivity. Using the techniques pioneered in [16] we 
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will demonstrate that (B) is in fact quite typical for large q models with relatively few 

low-lying energy states. In many cases, we will show that this leads to a transition 

directly into the magnetically ordered phase and in any case, for these systems, the 

discontinuous transitions in the grey representation imply first-order transitions in the 

spin system. 

However, beyond the Potts models, the subject o f  continuous (or weakly first-order) 

ferromagnetic transitions out of  the high-temperature phase or ferromagnetic transitions 

out o f  an intermediate phase remains largely uncharted. As emphasized in the intro- 

duction, we believe that at present, the goal o f  complete generality is over ambitious; 

problems must be solved on a case-by-case basis. Restricting attention to the user- 

friendly systems, let us therefore work our way up the list. The cases q = 2  and q = 3  

are just the Potts models so the first new item is q = 4 ,  the Ashkin-Teller model. Here 

there are two distinct lines o f  ferromagnetic transitions: the first, interpolating between 

the 4-state clock and Potts transitions is directly out of  the high-temperature phase and 

the second one is out o f  the intermediate phase. We will prove by overt demonstration 

that it is possible to treat these transitions by cluster methods. Needless to say, most 

of  the higher spin cases remain both interesting and open. 

3. 4-state ferromagnets (and generalized AT models) 

3.1. The Ashkin Teller model 

In this section, we will study in detail the case q = 4 .  Under the restriction that the 

interactions enjoy the additive version o f  the internal symmetry, these are known as 

the symmetric Ashkin-Teller models [21]. 3 We will define graphical representations 

leading to effective algorithms that exhaust most o f  the phase diagram in these cases 

and also discuss the asymmetric cases under certain conditions. Usually, this model is 

described in terms of  a pair o f  coupled Ising systems. Although we will have to resort 

to this trick for a portion o f  our analysis, for the most part, we will treat this as a 

traditional four state spin system. 

Let us start, then, with the symmetric version. We will denote the possible spin 

states as 0 , + 1 , - 1  and 2 which may be viewed as points on a circle. Under the 

assumption of  additive symmetry, we need only specify a few energies: do,o, go,±1 

and do,2. These energies may be displayed in the form of  an "energy level diagram" 

as is done near the bottom of  the phase diagram in Fig. 1. Under the constraints 

o f  ferromagnetism, there are only two basic possibilities, 0%, 2 ~> do, + 1 or '~'0, 2 ~< do. ± 1. 

The boundary case, ~0,2=~0,+1 is, o f  course, the Potts model. Under the condition 

g '0,2>~o.±l,  the system is truly ferromagnetic whereas if go,2~<gO,±l, the system 
has a degree of  antiferromagnetic character which, as we shall see, opens up some 

3An interesting historical note: the actual model of interest to Ashkin and Teller was none other than the 
4-state Potts model and the general model was defined only to aid in the study of this case. The definitive 
result of their paper was the location of the self-dual point along this single line in parameter space. 
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interesting possibilities. We will denote these two scenarios as "orthodox ferromagnetic" 
and "reformed ferromagnetic", respectively. 

To keep things at a manageable level, let us fix g0,+l - g0,0 - 1 and define A - 

g0,2 - g0,0, using temperature and A as our variables. The line A---=2 corresponds to 
the usual 4-state clock model which turns out to be equivalent to two decoupled Ising 
models, the line A--1 is the Potts model and the line A---0 also an Ising magnet. 

(with a superfluous, decoupled degree of freedom at each site). There are even more 
Ising magnets hidden inside this model, the subtler ones are better seen without the 
benefit of the Ising-spin representation. For technical reasons, we will not discuss A > 2 
(except briefly in Section B.3 of Appendix B). 

In the phase diagram we will plot T versus 2 -  A. The broad features are as follows: 
In the orthodox region, there is a single ordering transition into a magnetized state. 
The phase boundary continues into the reformed region where at some point it splits. 
(In d = 2 ,  this presumably happens at the dividing line between the two regions but 
in d > 2, this probably does not happen until A < 1.) Between the upper and lower 
branches of the split line, is a partially ordered phase where the density of one pair 
of species whose spin values differ by 2 is enhanced. Further details may be read off 
the figure caption. All of the above, save for the parenthetic remark, will be proved in 
this section. Much of this was established a while ago in [22]. 

We will divide this section into two further subsections: The first, constituting the 
bulk of our analysis, will concern the "reformed ferromagnetic region" 0 ~< A ~< 1. Here, 
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the general representation of the previous section provides us with a canonical example 

of an intermediate phase on display as a percolation phenomenon. We rewrite the grey 

measure introduced in Lemma 2.1 replacing the colored degrees of freedom by a 
related set of variables that we call "black and white", The entire phase structure is 

characterized by the percolation properties of this representation: The end of high- 
temperature behavior is signaled by percolation in the grey measure and the onset 
of the low-temperature phase is indicated by the percolation of black-only degrees of 

freedom. The intermediate phase occurs precisely when there is the former without 
the latter. This, without pain, covers and extends the relevant portions of [22]. This 
representation extends to the natural generalization of the AT models known as the 
cubic models and for these cases, similar results are established. Finally, we discuss 

the SW algorithm that is tied to the black and white representation. 
In the next subsection, on the "orthodox ferromagnetic region", we will use the 

Ising-spin representation of this model to derive an entirely different sort of graphical 

expansion within which the ferromagnetic transition can be understood as a straight- 
forward FK-type percolation problem. 

3.2. The reformed ferromagnet ic  re qion 

We turn our attention to the region to the right of the Potts line, A <~ 1. As will be 

discussed below, if IA] < 1, then +A are equivalent. Generally, we will assume that 
A > 0 and discuss things in as ferromagnetic a language as possible. 

Let us consider the multicolored representation as defined in Eq. (2.8). Although 
there are ostensibly three different colors of  bonds, raising the spin value by two is 

the same as lowering it by two, so the corresponding colors are equivalent. This also 
allows us to do away with the orientation of the lattice; we are down to undirected 

configurations with two colors. These will be denoted by orange (connecting neighbor- 
ing pairs that differ by two) and blue (for low-energy pairs). Models of this type that 

are (more) genuinely antiferromagnetic can be treated within these frameworks: If the 

lattice is bipartite and g0,0 > ~0.2 we can exchange the roles of orange and blue and 
quietly redo the forthcoming treatment. This is equivalent, in the spin language to the 
relabeling on one of the sublattices: (0 ,±1,2)- -+ (2,~-1,0). Of course when there arc 
more complicated interactions or more complicated lattices, these simple minded treat- 
ments break down. The "antiferromagnetic" models that can be treated yield exactly 

nothing new and need not be discussed further. 
Coming from the high-temperature side, the (first) ordered phase of this model is 

characterized by an abundance of O's and 2's  over ± l ' s  or vice versa. This phase is 
distinguished from the low-temperature phase because, e.g. in the 0 and 2 rich phase 
there are equal amounts of both. In any case, it would seem that percolation point of 
combined orange and blue clusters - or plain old percolation in the grey representation 
described in Eq. (2.10) corresponds to the boundary of the high-temperature phase: 
within each connected cluster, spins either agree or differ by 2. This notion will be 
made precise after we develop the alternative form of the grey representation. 
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Definition (The black and white representation). Consider the weights of  a grey con- 
figuration co as defined in Eq. (2.10); let us denote this object by W~r(oo), temporar- 

ily suppressing the dependence on parameters. For simplicity let us discuss only the 

case of  free boundary conditions. First, notice that the sum over all possible colorings 
of m factors into the product of  (the sum of) all possible colorings of  each cluster 

of co: 

G t °°) oc RN(~°)4 c(°~) H B(p~,p,,)(s(Kj))D(~(Kj)) . (3.1) 
j= l  L~(K,) j 

In the above, Kj(oo) is the j th  connected bond cluster of  09 - of which there are a 
total of  k(oo), the object ~(Kj) denotes a coloring of Kj by orange and blue bonds, 

B(ph, p,,)(~(Kj) ) is the Bernoulli factor for this coloring assigning Pb for each blue bond 

and po = 1 - Pb for each orange bond of ~. As usual, the D factors tells us which 
colorings are allowed; here they are written so as to act separately on each cluster. 

The key observation is that the cluster coloring factors, the terms in square brackets 
on the right-hand side of  Eq. (3.1), have the interpretation of a partition function 

for a spin system defined on (the graph of) the cluster. Although this interpretation 
holds, more or less, for the general cases described in the previous section, here it 

is the partition function for a ferromagnetic Ising model. Indeed, let K denote any 

connected cluster. If  the value of a single spin in K is fixed, say at 0, then in every 
legitimate coloring, the value of  every other spin in the cluster is uniquely determined: 

the colorings are in one-to-one correspondence with the possible spin configurations. 
However, since there are no "red" bonds that allow neighboring spins to differ by one 

each "spin value" in the cluster (given that one of them was a 0) is either a 0 or a 
2. The weight for a given spin configuration/coloring, the Bernoulli term, is a given 

by factor of Pa for every neighboring pair in agreement and Po for every pair in the 
cluster that differs. Identifying pb/po =- e ~'~ and summing over all such configurations 
completes the identification: the O's are the + ' s  and the 2's are the - ' s .  Let us write the 

Hamiltonian in Potts form, ~¢g= -~(ij)CKj[6~ri,a,- 1]. (Here, of  course, the summation 
takes place only on the edges of the graph defined by the cluster Kj.) Then, the precise 
relationship is 

1 N(Kj ) 
Z Bp~,p,,(~(Kj))D(~(Kj))= ~Pb Zf(Kj; fleg) (3.2) 
~( Kj ) 

where Z f ( - )  is the Ising partition function with free boundary conditions, N(Kj) is 
the number of  bonds in the cluster Kj and the factor of  1 accounts for the fact that, in 
contrast to the preceding discussion, we will not lock down the value of any particular 
spin in the cluster. The product of  all these terms must be multiplied by RN(')4 ew'). 

]-[k(¢o) N(KI ) N((~) 
We see that lxj=l Pb =Pb  so this will simply redefine the parameter R: /~ = 

pbR. Next, let us write 4c("~)=2 ~(~) × U (~), leave the first factor alone and for the 
second write c(oo)=k(oo) + I(oo) where I(oo) is the number of sites left isolated by 
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the configuration o9. We thus cancel the (½)k(,,)~ and we are left with a factor of 2, the 

Ising partition function, for each isolated site. We can thus express the weights as an 
"outside factor", /~N(~)2c(~), times the product of the Ising partition function on each 
component of ~): 

c(~o) 

wGA/'(¢O) = /~N(')2c(~°) H Zf(CJ; fleff) (3.3) 
j I 

where Cj is the j th  component of co. It should not go unnoticed that the outside factors 
are themselves none other than the random cluster weights for the Ising system. 

The next step is to take the Ising partition functions and develop them in a random 
cluster expansion: 

ZK(Cj;/Jeff) = Z Ba(qj)2<(~ti) (3.4) 
nJ c G 

where Ba(qj) is the Bernoulli factor for the configuration q; explicitly, B , , ( t / j ) -  a 'v°l, I 

(] - a )  N(c'\'t') and in various places, Cj is understood to mean the bonds in Q and in 

others, the graph (bonds and sites) itself. Of  course here, a = l - e  -/~,~. [t should be 

observed that c(qj) is relative to the background of  G: c(qj) + N(qj)  = [# of  loops 

of t/j] + [# of  sites in G]" If  we consider a giant q = Uj q j,  one rlj for each G, the 
counting works perfectly because the sum of all the sites in all of the Q ' s  is the total 
number of  sites in the lattice. Thus 

~-~c(~/) = c (q)  (3.5) 

J 

where the right-hand side is the number of components relative to the full lattice. We 

arrive at the formula for the weight of configurations (og, r/) with q C e): 

AT WAr( ~o, q) -- W~w;(g,o)(¢o, q) B,(e))2°(')Ba(q)2<(")7ol c .... (3.6a) 

where Z,~ c ,,, enforces the constraint q C (o. 
This is the black and white representation; black bonds are those in t/, white bonds 

are the ones in o9\~/. It is not hard to show that the derivation and formulas hold 
for more general boundary conditions. In particular, a generous class of  boundary 
conditions coming from the spin system can be obtained by declaring certain sets 

of  boundary sites to be "preconnected" by white bonds and others by black bonds. 

In these cases, one need only modify the definition of c(~)) and c(q) as appropri- 
ate. Of  particular importance will be the black-wired boundary conditions meaning 
that all boundary sites are to be considered as part of the same black component; 
in the spin system, this corresponds to setting all the boundary spins to the same 
state. 

The form of the weights as written in Eq. (3.6a) is already perfect for the design 
of cluster algorithms. For the purpose of some of the up and coming analysis, it is 
better to separate the t/ and eJ terms completely (in Eq. (3.6a), the Bernoulli factor for 
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t/depends on the number of bonds in co). Thus, writing Ba( t l )=aN(• ) (1  - - a )  N(~°)-N(q) 

and B.q(o~) = gN(~°)(1 - 9) N(A)-N(c~), we may say 

WBg(O~ , rl) oc uN(~°)2 c(c°) vN(ti)2c(~t)Z~ c ~,~ (3.6b) 

with V = a / ( 1  - a) and U = g ( 1  - a)/(1 - g). 
The utility of  this representation is underscored by the following: 

Proposition 3.1. In any finite A, the black and white graphical measures as defined 
by Eq. (3.6), and their extension to various other boundary conditions are a faithful 

representation of the corresponding AT system at parameters fl and A with 0 ~< A < 1 

and fl < cx~ related to g and a by 

and 

o r  

and 

g =  1 - e  -/~ 

a = [1 - e-i3d]/[1 - e-~].  

U = e 130 - A ) - 1 

V = e  [~A [ 1 - e  -13A ] 

L 1 - e-/~(I-A)J 

Furthermore, in free boundary conditions (or for those discussed in the previous para- 

graph), the measure is strong-FKG with respect to the ordering 0 -< [white] -< [black]. 
Finally, these measures are separately increasing in the parameters U and V. 

Proof  The relationship between the parameters follows from a thorough once-over of 
all the steps in the derivation. Faithfulness of  the black and white measure in any 
finite volume setups described so far is clear: Sites in different ~o-components are 
independent, sites that are connected by black bonds are in the same state and sites 
within the same o>component that are not connected by black bonds either agree or 

disagree by 2 with equal probability. In the black-wired problems, corresponding to a 
particular value at the boundary, the black component of  the boundary is assigned the 

boundary value. 
General measures with boundary conditions coming from the spin system are handled 

in the obvious way: The free boundary sites may be dismissed from consideration 
and the remaining sites are divided into four separate components according to their 
assigned spin values. Each of these four components are considered to be "already" 
connected by black bonds. The weights of  the corresponding graphical measure are 
determined in accordance with the formula in Eq. (3.6) with the provisos that: 

(1) There can be no black connections between any of above-mentioned four bound- 
ary components. (These four may or may not be figured into the counting of cOD since 
this will factor out in either case.) 
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(2) For the white bonds, the boundary components corresponding to 0 and to 2 are 
here considered to be the same and similarly for +1 and - 1 .  No white connections 

are allowed between the (0, 2) boundary component and the ( + 1 , -  1) boundary com- 
ponent. (These two white components may or may not be figured into the counting 
of c(~o).) 

To prove the FKG property, we need only verify the lattice condition tbr the weights. 
Notice, that in Eq. (3.6b) the weights have been factored into a product of terms each 
of which individually satisfies the lattice condition. It turns out, as is easily seen, 

that for ((D l, ?]1 ) and (o a2, t12) satisfying t h C O)i, we get (w l, q l )V (w2, q2)= (wl V w2, 
r/t V q2) and similarly for (Wl,~lj) A (w2,t/2). The FKG property follows 
immediately. 

Finally, to demonstrate the monotonicity in U and V, observe that if U'>~ U and 
V'~> V the weights for the system with parameters U'  and V' may be written 

(3.7) 

and the coefficient of WSAWr(w,r/) is seen to be an increasing function. This gives us 
the desired monotonicity. [] 

Of additional interest is the following: 

Proposition 3.2. The grey measures satisfy the strong FKG property. In particular, if 
A T *  . /~C ' (--)  is the grey measure defined by integrating out the black and white degrees of 

AT '~  . . freedom with (black and white) boundary conditions *, then FG ' (--)  is strong FKG. 
Finally, if *' >- . ,  

AT:* . ~ A T ' * -  . 
/~(; t - ;  ~> g o '  (--)" 

FKG 

A T ; * -  . Furthermore, we may define the AT-black measures, /~B (--) by integrating out the 
A T ' * -  ~ AT?C.  

white components: l~B' U1) = ~-~,mCo~#BW (W,~I). These measures are also strong 
FKG and satisfy the above sort of dominance relations with respect to ordered *'s. 

Remark. In fact this proposition follows from hypotheses that are somewhat weaker 
than those implied by the explicit form of the weights. Furthermore, the above type 
of result holds in various other contexts that will be needed later. We therefore will 
prove this proposition in the form of a more general lemma. However, the full content 
of  this lemma are not of immediate importance except that it allows for a smoother 
ride through Theorem 3.4. In this regard, the bottom line is that in finite volume, the 
maximal grey FKG measure is the one obtained from the reduction of the black-wired 
boundary conditions. The lemma and its proof have been relegated to Section B.3 of 
Appendix B. 

Proof of  Proposition 3.2. Follows from Lemma B.4. 
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The principal result of  this subsection can now be readily derived: 

Theorem 3.3. Consider the Ashkin-Teller model with 0 ~< A ~< 1 at inverse temperature 

/~. Let g=g(t~,A)  and a = a ( ~ , A )  be as described and, for a finite box A C Z  a let 
At ~ A w~ BW;(g,a)~--~ , , denote the AT black and white random cluster measures at these 

parameter values in the finite box A with black-wired boundary conditions on •A. 

Then 

AT;w . ~ • AT 
~BW.(y a)t--) = ,.,  l iz~.  ~ sw;(y,a)(-lA, w ) 

exists (and is unique and translation invariant) for any increasing sequence of boxes 

that exhaust the lattice. For these problems, let us define "percolation" to mean that 

the probability that the origin is connected to the boundary does not tend to zero as 
A ,/~ 7/d. Then the absence of percolation by grey (black and white) bonds, in the black- 

wired system is the necessary and sufficient condition for unicity of the Gibbs state in 
the spin system. Furthermore, percolation of black bonds in the black-wired setup is 

the necessary and sufficient condition for the low-temperature phase (as characterized 

by the positivity of  the spontaneous magnetization). If  fl is large enough while flA is 
not too large, there is no spontaneous magnetization but there are (at least) two Gibbs 
states that are characterized by an abundance of 2 's  and O's over + l ' s  and - l ' s  and 

vice versa. In these states, the density of  2 's  equals the density of  O's and the density 
of  + l ' s  equals the density of  - l ' s .  On the other hand, for any fixed A > 0, if fi is 

large enough, there is a low-temperature magnetized phase corresponding to (at least) 
four distinct states. Thus, at least for some values of  A there is an intermediate phase. 
Finally, the order parameters for the associated phases defined via the excess of O's 

and 2's  over + l ' s  and - l ' s  and the excess of O's over 2's in an appropriate state are 
precisely the above-mentioned percolation densities (which are well defined). 

Remark. The existence of this intermediate phase was first proposed in [23] and 
established, by rigorous methods, in [22]. 

Proof  Certain portions of proof follow the methods used in [12] where corresponding 
statements were established for the Potts/FK system. Notwithstanding, we will provide 

/~Ar (_  a complete albeit abridged proof. I f  AI c A2, the measure ~w;(g.a) IA~,w) dominates, 
AT in the sense of FKG, the measure #sw,(g,a)(-IA2, w) restricted to A1. Thus, the average 

of any local function that is FKG increasing converges along any nested sequence of 
boxes that exhaust ya. By comparison to an appropriate subsequence of any standard 
sequence of boxes, e.g. increasing hypercubes centered at the origin, it is seen that the 
ultimate answer for this average is, in fact, independent of  how A ,7 7/a. Since any 
local function can be expressed as combinations of  increasing functions, this establishes, 
unambiguously, the existence of a limiting measure for these boundary conditions. This 
measure will be referred to as the black-wired measure. By examining expectations of 
local functions in shifted boxes of  any standard sequence, translation invariance is 
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established and similarly for the various lattice symmetries (and similarly for other 

lattices, etc.). 

In finite volume, any given site must be disconnected from the boundary, connected 
to the boundary by a black path or connected to the boundary in such a way that 
any connecting path uses at least one white bond. In the infinite volume limit, these 

probabilities converge to well defined densities; let us denote the second by the black 
percolation density and the sum of the last two by the grey percolation density. We 

say there is grey or black percolation if the corresponding density is positive. 
Suppose, then, that there is black percolation in the black-wired state. Then, clearly, 

there are (at least) four distinct extremal Gibbs states depending on our identification 
of the limiting boundary component. Consider a finite volume spin system with each 

boundary spin taking on one of the four values. It is not hard to see that the excess 
density of O's over 2's, the order parameter for the low-temperature phase, is the 

percentage of sites black-connected to the 0-component of the boundary minus the 
percentage of sites black-connected to the 2-component of  the boundary. This does not 

exceed the positive term alone which is in turn optimized by setting all the boundary 

spins to zero, i.e. the wired state. But here the aforementioned inequality saturates. 
Evidently, the black percolation density in the black-wired state is exactly the order 
parameter of this phase. 

Next, suppose that there is grey percolation but no black percolation in the black- 

wired state. Then, with the same identification of the boundary component as above, 
the grey percolation density is the excess density of O's and 2's and clearly, the wired 

state is just the one that optimizes this commodity. However each site in the boundary 
component that is white-connected to the boundary is equally likely to be 0 or 2. 
Hence, the region where there is grey percolation without black percolation represents 
the intermediate phase. 

By standard arguments, it is possible to show that for any fixed A > 0 there is 
magnetization for fl sufficiently large and a high-temperature phase for fi sufficiently 

small. (This will do for the time being; some reasonable bounds will emerge from 
our later analysis.) Let us now establish the existence of a region where there is grey 

percolation but no black percolation - our intermediate phase. 
As argued previously, the measure is separately increasing in U and V and therefore 

dominates its V - +  0 limit. However, this limiting measure assigns zero weight to 

any configuration with black bonds, hence qCl,7) is a constant and what emerges is 
the random cluster version of the Ising magnet at the effective inverse temperature 

fi(1 - A ) .  Thus, for any V, the grey measure FKG dominates the usual lsing random 
cluster measure at parameter pv,~ = 1 -- e /~(I 1): 

AT ~ . ~ FK 
/'/G;(,q,a)[ )F~'~GlAq=2, ps,.,,(-- ) " (3.8) 

In particular, there will be grey percolation if fl(1 - A ) >  fllsing. On the other hand, 

the measure is dominated by its U-~  cc limit which forces every bond to be black or 
white. The qC(,,~) drops out of the picture and, as far as the blacks are concerned, we 
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have another effective Ising random cluster problem here at the density parameter a. 

This may be expressed: 

AT FK 
# B ; ( g , a ) ( - - )  ~ # q = 2 , a ( - - )  " (3.9) 

FKG 

So if a < 1 - e -/31s~°~ _-- pIsing then there is no percolation o f  blacks. 

Thus, all we need is to satisfy Pq, a > pIsing > a. However, a ~ 0 as A ---+ 0 while 
Rising py, a increases to 1 - e  -/~. It follows that whenever/3 > ee , we are in the intermediate 

phase for all A sufficiently small. 

Finally, let us show that when there is no grey percolation in the wired state, 

the graphical measure has a unique limit. Using straightforward arguments based on 

Proposition 3.1 this result will carry over to the desired uniqueness statement in the 

spin system. Denoting the free boundary condition measures in a finite box A by 
AT ~ ~A BW(g a)t-- , f ) ,  we have a similar sort o f  volume dominance as in the wired case 

but pointing in the opposite direction. Thus we arrive at an unambiguous limiting mea- 
A T ; f  r sure that we will denote by ~Bw;(g,a)t--~" Now let A denote a large finite volume and 

let A C A. Let * denote any boundary condition on A and consider the resultant mea- 

sure restricted to A. I f  we condition on the event that there is no connection between 

A and 0A, it can be shown that the resulting measure is above (in the sense of  FKG) 
AT AT ~ the measure #BW;(g,a)(--]A,f) and below the measure #BW;(~,~)(--]A,f) as restricted 

to A. Notice that as A 7 Z d and A 7 77a, these latter measures agree. Now if there is 

no grey percolation, in the black-wired state, the probability o f  a connection between 

A and 0/1 tends to zero regardless o f  the boundary condition * because this is true 

even with the best boundary conditions on/1 .  Evidently, when there is no percolation, 
, A T ; f  t all o f  the limiting graphical measures agree with ~BW,~g,a)t--)" 

Uniqueness o f  the Gibbs measure in the spin system now follows from the fact 

that the average o f  any local observable in any thermodynamically increasing sequence 

o f  finite volume states is independent o f  the sequence and equals the corresponding 

average in the infinite volume free state. All o f  the stated claims have now been 
established. [] 

Remark. In the region A ~ 1, it appears that the antiferromagnetic aspects of  the this 

Hamiltonian has rendered the multicolored representation o f  the previous section almost 
useless for the analysis o f  the transition into the low-temperature phase. Indeed, if 
A = 0, we get an infinite temperature Ising system on the graph provided by the grey 

(as in white) clusters. I f  this is sufficiently dense (/3 ~> 1 ) and the dimension is greater 
than two, it is fairly certain that the plus-spins (i.e. the O's) percolate which Would 

imply percolation o f  the blue bonds. Hence this scenario is likely for /3 large and /3A 
small. In particular, this occurs in the limit A = 0, /3 --~ cx~ by the result o f  [24]. In 
any case, blue percolation occurs on the Bethe lattice before the onset of  the low- 
temperature phase [ 1 9]. 

This finishes our discussion of  the statistical mechanics o f  the standard AT model 
for this region of  parameter space. Before we get to a discussion of  the algorithms, let 
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us describe some generalizations of  the AT model and the associated representation. 

The representations and cluster algorithms for all these spin systems differ only in 

the values o f  certain parameters. As a side benefit, this will allow, via comparison 

inequalities, improvements in the estimates for the various transition temperatures. 

The generalization of  the AT model is immediate from the form of  the graphical 

weights in Eq. (3.6): Clearly, we may replace the 2 's  by arbitrary positive numbers. 

Thus, for r and s positive, we can define the generalized AT-random cluster models 

at density parameters P = (g, a)  and geometric parameters Q = (r ,s)  by 

AT (3.10) ~IAQT, p(O), t~) ~ ~IBW:Q,p(O0 , 17) CX B ~ j ( ~ o ) r C ( " n B a ( q ) s C ( ' l ) Z ,  I c .... 

where, if unadorned, it will henceforth be assumed that the measure refers to the black 

and white problem. (Of  course, the above formula is only for finite volumes where some 

additional fuss should be made about boundary conditions. Infinite volume measures 

are then extracted through weak limits.) I f  both r and s are integers exceeding one, 

this is the graphical representation of  a genuine spin system. Indeed, this is just a 

q = rs-state spin model, with an additive structure satisfying 

- 1 - ~ 0 , 0 ~ <  - ( 1  - A )  = g~0,, ,  = . . . . .  5~(),(r 1 ) ~  < 0  = g 0 . ~  ( 3 . 1 1 )  

where ~ is any spin state that is not a "multiple" of  s. A restricted version of  this 

model ( s = 2  in a different region of  parameter space) was introduced in [9] and is 

known as the cubic model. The full model treated here and in the next subsection was 

described in [10] and christened the (N~, N/~) models. This nomenclature does not seem 

to be in common use and these systems are usually referred to as the cubic models or 

generalized AT models, a convention to which we will adhere. 

Needless to say, nothing beyond the elementary FKG properties of  the black and 

white representation were used in any of  the proofs of  this subsection. These are easily 

established for the above measures and we get, for free, 

Theorem 3.4. For r~>l and s>~l all o f  the results stated in Proposition 3.1 and 3.2 

and Theorem 3.3 with the exception of  the faithfulness clause o f  Proposition 3.1 hold 

for the generalized AT-random cluster measures ~t Ar ew:e.Q(-) provided that various 2 's  

and 4 's  are replaced by r ' s ,  s ' s  and rs ' s  when appropriate. For integers r>~2 and 

s >~2 these graphical problems are faithful representations o f  the rs-state spin system 

(generalized AT model) described in Eq.(3.11). In particular, all of  these systems have 

intermediate phases. 

Proo[; Follows from the existing argument mutatis mutandis. [] 

Remark. If  r =  1 and s > 1 is an integer, it is clear that the generalized random 

cluster problem is the graphical representation for the annealed bond-diluted s-state 

Potts model; the P-parameters are determined by a - 1 - e l~ and g = 1 - e -/~;~ where 
2 is the bond chemical potential. As was demonstrated in [25], this is equivalent to a 
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uniform s-state Potts model. 4 Here the derivation is even simpler: The black measure 
is obtained by summing the weights of  all the configurations co that contain a given r/: 

mB;(r=l,s)p AT O( S c(q) [. 1 --'i'--~J o) 3Zn g ) = sc(q) ~ a g  

(3.12a) 

which is exactly the weights of  the FK random cluster measure at parameter p given by 

p = ag. (3.12b) 

As we shall see shortly, this will serve a useful function. The models with s = 1 are 

also (thermodynamically) equivalent to the r-state Potts models and will also serve a 
useful function. However in such systems, the physical interpretation is not so clear. 

In [27,12], a certain class of  comparison inequalities for the random cluster models 

were derived that are easily be extended to the AT-random cluster systems. 

Proposition 3.5. Consider two AT-random cluster measures pAr;C;Q,,p,(_) and IIC;Qe,p2AT; 

( - )  defined either in finite volume with the same boundary conditions or constructed in 
infinite volume from the same sequence of boundary conditions and where C denotes, 

B, G, or BW. Consider the quantities U(a,g) and V(a,g) as defined in Eq. (3.6b) and 

denote, e.g. U1 = U(al,gl). Then, if Ui ~>U2 and V1 ~>V2 while rl ~<r2 and sl ~<s2, we 
have 

AT AT ( ). 
~lC;Q,,p,(--) ~ ~Ic;Q2,P 2 -- 

FKG 

On the other hand, if Ul/rl <~U2/r2 and V~/sl <~ V2/s2, while rl ~<r2 and sl ~<s2, we have 

AT AT 
]2C;Qr,P,(--) ~ ~C;Qz,P2(--)" 

FKG 

Proof Writing the AT-weights as in Eq. (3.6), it is noted that the geometric factors, 
c(co) and c(q) are decreasing functions of the configuration. Thus, e.g. for the black 
and white, 

• ,N((o) c(~o).~N(q) c(~l) 
WQ2,p2 AT(co, q)  o( u 2 r2 I/2 s2 Zq c a, 

= , ( u 2 ~ N ( ° ' ) ( r 2 ~ C ( ~ n ) ( V 2 7 ( r t ) ( s 2 ~  . (3.13) 
WQ, p, AT((D,~) ~ ~11/] \ r l  J ~-~1/] \s , . ]  

Hence if U1 >~U2, VI/> ~ rl ~<r2 and s I ~$2, the weights of  the second measure have 
been expressed as the weights of  the first measure multiplied by a decreasing function 

4The existence of a relationship was noted earlier. In [26], a complicated formula related the bond fugacity, 
bond concentration and temperature of the annealed system to the temperature and energy density of the 
corresponding pure system. However, it seems that this formula is parts of Eq.(3.12b) - which is Eq.(l.4b) in 
[25] - and Equation (2.6) in [8] tangled together. As is explicitly seen in Eq.(3.12b), the effective temperature 
can be calculated from the actual temperature and the bond fugacity without knowing the energy density as 
a function of temperature in the pure system. 
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which, for the black and white case, gives us the first domination. As an elementary 

consequence of  the considerations in Lemma B.4, this argument carries us through for 

the grey and black measures as well. For the dominations in the other direction, we use 

c(co) = E(co) - N(co)+ [const.] where ((co) is the number o f  independent loops and 

similarly for q. Notice that ¢(co) and {(q) are increasing functions. Thus we obtain, 
for the black and white, 

( Ul ) N(̀ '~) VI ~N('I~S/I(,1 ) 

\U2r,/ \ r : /  \VT,/ 

which implies the second set o f  comparison inequalities. [] 

(3.14) 

As was alluded to above, if either s or r is one, the model collapses into the Potts 

(or random cluster) model in the remaining variable. Proposition 3.5 then gives us 

Corollary. Let Pc(q) denote the percolation threshold in the random cluster models 

with parameter q. Consider the general AT-random cluster models as described with 

parameters g, a, r, and s and, for simplicity, assume that r and s are not less than one. 

Then, if ga < pc(s) there is no black percolation, if g < pc(r), there is high temperature 

behavior while if ga/[g + r(1 - g ) ]  > pc(s) the system has black percolation (positive 

spontaneous magnetization) and it has grey percolation (implying multiple phases) if 

[gs - ga(s - 1 )]/[s - ga(s - 1 )] > p~.(r). 

Proof The first case is an immediate consequence of  Proposition 3.5 and the derivation 

in Eq. (3.12) - set r = 1 to get the bounding measure. Let us explicitly do the last 

case. Writing the weights in the form of  Eq. (3.14): 

G:Q.P '?A r/t'") Z s/('7) (3.15 ) 
~1 C ~,~ 

This dominates the measure whose weights  are def ined as above but w i th  s j(" ') set 

to one. For the latter weights, the sum may be performed explicitly and the result is 
proportional to rC(")[U(1 + V/s)] m(',). This is the r-state Potts model at the stated value 

of  parameter. The other cases follow similar arguments. [] 

Remark. Notice that the appropriate upper and lower bounds in terms of  the s-state or 
r-state Potts models become exact as we approach the phase boundaries. Of  particular 

interest is the point A = 0, T = 0 where the statistical mechanics is ambiguous. This is 
obvious if we examine the approaches A = 0, T ---+ 0 and T = 0, A ---+ 0 respectively; 

in both cases, the grey bonds are saturated but in the former approach, they are all 
white and in the latter, they are all black. As will become evident, this point on the 
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phase diagram is a K-point, i.e. it embodies an entire statistical mechanics problem 
where the parameter is determined by the angle of  approach. For the usual AT-models, 
this K-point is the Ising magnet and for the generalizations, it the s-state Potts model. 

Indeed, let us write flA = a and let fl ~ cx~ and A ~ 0 in such a way that ~ tends to 
a finite constant. Then, our upper and lower bounding measures agree with the naive 

limit which is g ~ 1 and 

a ( ~ ) =  1 - e - ~ / 1 - e  l ~  1 - e  ~. (3.16) 

With 9 saturating at one, the only action is in terms of the black bonds which 
play the role of  the usual s-state random cluster model at p = 1 - e  -~ (as is the 

case in the coinciding domination bounds in this limit). In this way the limiting 
slope of the magnetization phase boundary is established exactly and with complete 
rigor. 

Let us note, in closing, that schemes for the construction of new graphical models 

need not stop with the usual random cluster weights for the "grey" and "black" bonds. 

Indeed, if Wi and W2 are some other type of graphical weights - preferably with the 

FKG property - we can always define Wlz(~,t/) = Wl(w)W2(q)Z,c .... Furthermore, 
the ~o and the q can have compound structures themselves. Clearly, if Wl and W2 
correspond to spin systems, so does W~2 but we have not yet performed a systematic 

study of just which systems can be reached by these constructions. But, for an example, 
if  W1 is the three state Potts model and W2 is the Ashkin-Teller model then the 

combination is a twelve state model with ~ 0 , 0 ~ 0 , 6  ~ ' 0 ± 3  ~ 0 ± 1  . . . . .  6~0±5 • 

Obviously such a system will have two intermediate phases the existence of which 
could be readily established by graphical methods. These sorts of generalizations will 
be pursued at some future point. 

3.2.1. Swendsen- Wang algorithms 
The algorithms suggested by the black and white representation are almost inevitable. 

Although these are covered by the formalism in Appendix A, the crucial point (which 
cannot be addressed in so general a context) is that here the "spin moves" can be 
performed in time proportional to the volume. 

3.2.1.1. Description and detailed balance. Consider an AT-model with parameters Q = 
(r,s) and P=(g,a) .  Starting from a black and white bond configuration, each grey 
cluster is independently assigned an integer 1 ,2 , . . . , r .  All of the white bonds can 
now be erased leaving a collection of black connected clusters. Each black cluster 
is independently assigned an integer 1,2 . . . . .  s and the resulting spin value, which is 
constant within each black cluster, is given by the product of  the two integers that 
were assigned to the spin. This defines the updated spin configuration. Bonds are now 
placed as follows: Between every pair of neighboring spins that agree, a black bond 
is placed with probability .qa. Among those pairs where the black bonds have failed 
or among those pairs where the spins agree modulo s, white bonds are placed with 
probability [g(l - a ) ] / [ 1  - g a ] .  An elementary calculation or (more difficult) a detailed 
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look at Appendix A with the Hamiltonian written as 

,~(f(O') = Z ~0'SZ(O'i = O'j mod s)  + (~o.o - '~o,,)g(ai = oj)  
(i,j) 

establishes detailed balance via the appropriate ES weights. 

(3.17) 

3.3. The or thodox  f e r romagne t i c  re~,tion 

Now, finally, to the Orthodox Ferromagnetic Region, 2 >~ A ~> 1. At first glance, this 
would seem to be a standard ferromagnetic phase transition - less interesting than 

in the unorthodox region. However in two-dimensions, presumably, the phase bound- 
ary is a self-dual line that represents a line of  continuously varying exponents. This 

provides an incentive for the development of graphical representations and cluster al- 
gorithms for this regime. It turns out that what follows is closely related to the cluster 

method proposed in [28]; indeed the SW-type algorithms here and in [28] are nearly 
identical. However our derivation will be quite different (and somewhat more straight- 
forward) leading to a closed form FK-style expression for the weights of the graphical 

representation. This in turn allows us to establish rigorously that the graphical repre- 
sentation "captures the basic excitations of the model" i.e. a percolation phenomenon 
characterizes the low-temperature phase as was indicated by the success of the sim- 
ulations in [28]. 

The above-mentioned duality is manifest in the graphical representation; indeed, 

it may be derived for the graphical representation itself. Furthermore, the derivation 

applies to the generalized AT (cubic) models, in both regions, without the restriction to 
integer values of the parameters r and s. For the spin systems, duality was derived in 
[10,29] by standardized machinery. The graphical method is more transparent and, ct: 

Section 4, allows various results to be established with mathematical rigor. However, 
these specialized issues are peripheral to the central objectives of  this work and hence 
the duality relations will be derived in Section B.1 of Appendix B. 

In the orthodox region, 2 ~> A ~> 1, one anticipates (and here we prove, cf. Theo- 
rem 3.7 for a precise statement) that there are no ordering transitions other than the 
ferromagnetic one. Thus, the general representation from Section 2 will be susceptible 
to a "false percolation transition". In particular, it seems that this representation corre- 
sponds to the "naive SW option" discussed in Section l) of [28] which indeed turned 

out to be impractical for numerical simulations. We therefore turn to the lsing repre- 
sentation of this system. Here, each spin is written in double lsing form c~g - ( ; , ; ,  z;); 
;c, -- 4_1, ri -- 2_1. The correspondence is 0 - - ( + , + ) ,  1 - - ( + , - ) ,  1 - (  , + )  and 

2 = ( - ,  - ). Writing 

rid/{ -- Z [K~-KiKj 4- Kr'ciri q- LKi~iz i r / ] ,  (3.18 ) 
( i , j)  

the symmetr ic  cases correspond to K.. = K~ = K and the relat ion to our previous 

notat ion is L ¼fl(2 - A)  and K = ¼flA. 
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The graphical representation follows immediately by writing 

- / ~  = 

(i,j) 

=Z 
(i,j) 

K[26 . . . .  ; - 1 + 26~,,~; - 1] + L[(26~,,xj - 1)(26~,,~; - 

fl(A - 1)[6~,,~; + 6~,.~;] + fl(2 - A)6~,,Kj6~,,~; + const. 

1)] 

(3.19) 

We may visualize the system as having a r-layer of  spins one unit "below" the x-layer 

and the partition function is expanded in the usual fashion. Bonds can occur between 

neighboring pairs of  x-spins with density parameter Pl = 1 - e  -/~(~-1) tying these 
spins together in the same state and similarly for pairs o f  z-spins. In addition, there are 
double bonds that have the same effect as the simultaneous occurrence of  a z-bond and 
a x-bond. Such objects occur with density parameter p2 = 1 - e - ~ ( 2 - A ) .  A given pair 

of  spins may be tied by either or both mechanisms; the presence or absence of  one 
type does not exclude nor imply the presence of  absence of  the other. Any collection 

of  these sorts o f  bonds divides both the ~ and z layer into connected components, 
of  which there are c~ and c~ respectively. I f  ¢o=(09~,09~,co~) is a configuration of  
these three types of  objects, there are 2c~(°~)2c~(°~) spin configurations consistent with 

this configuration. (Note that c~ actually depends only on 09~ and 09~ and similarly 

for c~ with K ~ z). Evidently, on a finite lattice the weight o f  a configuration 09 is 

given by 

y AV ( 09 ) = Bp, ( 09~ )Bp, (09~)Bp~(09~)2¢~(~)2 c~(~') (3.20) 

where Bp, (09~), Bp,(09~) and Bp2(09~ ) are the usual Bernoulli factors associated with 

the separate configurations of  K-bonds, r-bonds and xr-double bonds. 
We remark that for a general Hamiltonian of  the form given in Eq. (3.19), provided 

that the coefficients o f  all the Kronecker 6 's  functions are kept positive, there is no 
need to insist that the coefficients o f  6~;,~ and di~,,~; are the identical. In the future, we 
will not do so, and we will name the associated density parameters p~ and p~ and use 

P ~  = P2. Furthermore, there is no compelling reason that the x ' s  and r ' s  have to be 
2-state Potts variables. We will replace the 2 's  in Eq. (3.20) by an r and an s. It is 
noted that these generalizations tack directly onto the generalizations discussed in the 
previous section forming a single phase diagram. 

The first proposition of  this subsection demonstrates the utility of  the graphical rep- 
resentation in Eq. (3.20) and its various generalizations: 

Proposition 3.6. Consider an r x s state model with a Hamiltonian of  the form de- 
scribed in the last line of  Eq. (3.19) with all coefficients positive. Then, the analog of  
the weights described in Eq. (3.20), yAT (_ Q,P ) with Q = ( r , s )  and P=-(p~,p~,p~r)  de- 
fines a measure that faithfully describes this model. Furthermore, these measures have 
the strong FKG property under the ordering co ~ ~/ implies 09~. ~ q~ and 09~ ~ q~ and 
09~.~ ~ q~.~ (not necessarily strict). 
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P r o o f  To establish the FKG property, it is enough to verify the lattice condition for 
the weights AT YQ, p ( - )  which are now written as 

(3.21) 

Thus, it is sufficient to separately establish that 

c~.(~o A ~) + c~(o v q)>~c~(.~) + c~(o) (3.22) 

and similarly for c~(- ) .  We have now, in essence, reduced the problem to the familiar 

one for the FK representation of  the Potts models - all that is involved concerns single 

layers, one at a time, consisting of  sites with bonds between certain pairs. It seems 

clear that almost any derivation for the Potts model is applicable in this case; for 

completeness, we will recapitulate the proof in [12]. 

Writing ~ = o9 A t/, the desired inequality reads 

c~(~,) v tt) - c~ (~ ) />  c~(~o v ~) - c A T ) .  (3.23) 

It is claimed that Eq. (3.23) holds for any ¢o and t/>- ~ for the simple reason that for 

fixed oJ, the left-hand side is an increasing function o f  q. If  ~ contains only one object, 

i.e. it is just one ~c-bond or just one double bond that connects the sites i and j ,  we get 

that c~(~o V ~1)-  cA-(q) is zero if i and j are connected in r /and negative one otherwise. 

This is clearly increasing. If  the (simple) statement is true for any eJ containing k - 1 

objects, let ~o ~ --o~ V b denote a configuration consisting of  k objects. Then 

ch.(~o' V q)  - ch.(q) = [c~(¢o V b V q) - c,~(b V t/)] + [c~.(b V t/) - c,~(q)] (3.24) 

is the sum of  two increasing functions. This completes the proof of  the FKG property. 

The graphical representation is faithful for the usual reasons: the expectations of  

local observables may be expressed as the sums and differences o f  various connectivity 

properties between subsets o f  the set of  sites on which the relevant spins reside. ~] 

As an immediate consequence, we obtain: 

Theorem 3.7. For the AT models as described in Proposition 3.6, the phase structure 

of  the model is characterized by the percolation properties o f  the graphical represen- 

tation. In particular, the Gibbs state of  the spin system is unique if and only if there 
is no percolation, in either layer, in the limiting wired state. If  s = r  and p~ . -p~ ,  

there is a single ordering transition as the temperature is varied. However it, e.g. p~ 
is sufficiently large and p~ and p ~  are sufficiently small there will be ~c ordering 

without r ordering while if all parameters are close to one, there is percolation in 

both layers. Thus, for certain values o f  the parameters, there is an intermediate phase. 
In all cases, the relevant percolation density corresponds to the order parameter for the 

appropriate phase. 
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Remark .  For the (asymmetric) 4-state Ashkin-Teller model the intermediate phase in 

this regime was established in [22]. The method also used correlation inequalities but 

these were of  the GKS-type which, by and large, are restricted to Ising systems. 

P r o o f  The argument connecting unicity of Gibbs states to absence of percolation is 
the same as was used in Theorem 3.3. When there is percolation, in only one or in both 
layers, the relationship between the various percolation probabilities and the appropriate 

order parameters is obvious and need not be made explicit. Under the conditions of 
complete symmetry between the layers, it is clear that there is percolation in the r-layer 

if  there is percolation in the ~c-layer. 
The existence of intermediate phases in asymmetric cases is a consequence of the 

following dominations. Let us denote these generalized Ashkin-Teller graphical mea- 
sures by v~,%(-). We may consider the restriction of this measure to (events in) the x 

AT layer, VO, p ( - ) l l ~  and similarly for the z-layer. Note that for the graphical representation 
AT (~-bonds or the top half of double bonds) the measure VQ, e(-) l t~ is an effective s-state 

FK measure with complicated correlations. We claim that 

,uFK ( ~ A T . .  ~ FK 
s,p,. - ,  <- It s,p* ( - )  (3.25) 

FKG VQ, pI, )11~ V~Q 

where FK * ]2q, p( - - )  are the usual FK measures and p~ = p~ + p~, - p ~ p ~ .  For the above, 

in finite volume, it is assumed that the K layer in the AT system has the same boundary 

conditions as the comparison measures. 
The lower bound is completely trivial; v~,rp(-) is FKG increasing in all of the 

• FK I ) is exactly what we get if we set p~ = p~-~ = O. On the "P" parameters, and t ~ s , p , t  - 

V AT (_ '~  other hand, whenever we condition Q,e ~ on a positive event, we get an increased 

measure. Let us condition on the event that all the bonds in the z-layer are occupied. 
(For infinite volume problems, where this procedure sounds a little singular, note that 
it is sufficient to establish the inequalities in finite volume and take limits later.) But, 
under this condition, the measure in the top layer is seen to be another s-state Potts 
model of  the usual sort: Now all bonds can be either a double bond or a single bond 

with no interplay between the two types. This gives us an effective s-state random 
cluster measure with parameter p~(1 - p ~ )  + p~(1 - p~)  + p~ .p~  = p* .  Of course 

the same set of  ideas holds for the restriction to the z-layer and, if we have p~ > po(s)  

and p* < pc(r) ,  there is percolation in the a-layer but not in the z-layer. On the other 
hand, for all the p~s close to one, there is percolation in both layers. All claims have 
now been established. [] 

Remark .  Without much additional labor, an improvement can be made in the first of  
the domination inequalities in Eq. (3.25) along the lines of Proposition 3.5. Indeed, it 
is noted that for these AT measures, there is also an FKG monotonicity in Q: larger Q 
is worse for fixed p ' s  and larger Q is better for appropriately lowered p 's .  (Indeed, the 
right-hand domination may be obtained by setting r = 1.) First off, we set p~ = 0 to 
get a lower measure. Now, the only forces creating clusters in the r-layer are the double 
bonds. Furthermore, as in previous arguments the weights may be rewritten in terms 
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of  the loops resulting i n  ]~q,p(CO)FK ~X Bb(co)q/'~) where b = b(p,q) = p/[p + q(1 - p)]  

and {(co) is the number of  independent loops in the configuration. For fixed b, these 

measures are FKG increasing in q. Back to the AT measures with pr  = 0, we can 
write the z-layer portion of  the measure in this form and then, as a lower bound, set 
r = 1. As a result, we obtain 

FK A T 
I t s .p**(- )  <. pQ, p(--)llK ( 3 . 2 6 )  

" FKG 

with p~** =p~-+ b ~ -  pKb~ and br = b(ph-r,r). Obviously these bounds constitute 
an improvement over the ones used in Theorem 3.7 (and over those existing in the 
literature). 

3.3.1. Swendsen Wan9 al(jorithms 
The SW algorithms and the requisite proofs for the systems described in Proposi- 

tion 3.6 and Theorem 3.7 are straightforward extensions of  the standard Potts cases. 
A brief description and proof  sketch is as follows: Starting from a spin configura- 

tion, bonds connecting satisfied neighboring pairs of  r (t,-) spins are independently 

placed with probability p~ (p~.). Regardless of  the outcome of  these r-bond or ;,-bond 
events, a double bond may be (independently) placed with probability p ~  on any 

fully satisfied neighboring pair o f  t, and r spins. The resulting bond configuration de- 
fines connected components in the r and ~- layers each of  which (boundary conditions 
permitting) is independently reassigned to be one of  the r (s) values with equal prob- 

ability. This completes a Monte Carlo step. Detailed balance is established, as in other 
cases, by writing down the weights for an Edwards-Sokal joint measure which in this 

case is 

yEsAT(CO; if, r )  = B~(CO~-)B~(CO~)B~.~(CO~.r)A(CO; h,_z) (3.27) 

where A(co;_K,_r) is one if the bond-spin configuration is "consistent" (as can be in- 

ferred from the above description) and zero otherwise. The remaining details follow 

exactly the lines of  the previous derivations. 
An algorithm for all o f  these systems was also devised in [28] (although only the 

4-state models were discussed explicitly) and on the basis of  the general considerations 
in [1] was shown to satisfy detailed balance. Despite the fact that a graphical represen- 
tation was never actually discussed, as is clear from the "lsing Embedding" derivation 
in their appendix, the amalgamation of  "generalized freezes" is evidently described by 

.pAT ¢ "~ the measures ~ p,Q~-I]]a. Returning to the (primitive) Ising version of  the Hamiltonian, 
Eq. (3.18), and letting (z) denote a configuration in the r-layer, the idea is to write an 
effective Hamiltonian for the K-layer, given by 

II~')~ = - Z Ji(J ) Ki~/ (3.28) 
( i , l )  

where J~;) = K~. + Lzizj and then the idea is to use ordinary SW dynamics in the ;c 
layer with this effective Hamiltonian. After an update of  the to-layer, the same is applied 
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to the r-layer (thereby updating the effective Hamiltonian) and a cycle is completed. 

Examining the K move,  for fixed configuration (_r), suppose that r i ~  zj. Then, if  xi = Kj 
a bond occurs with probability 1 - e  -2(K-L) which is equal to p~. On the other hand, 

if  27 i = ~j, the bond occurs with probability 1 - e -2~K+L) which is seen to equal p~ + 

p ~  - p ~ p ~ .  Thus the algorithm is the same as ordinary SW - using the graphical 
representation featured in this subsection - but alternating between the x and r layers 

and allowing the double bonds to be reset in each half  step of  the process. Thus, as 
far as SW simulations are concerned, there is really nothing new in this subsection. 

However,  having our hands on a closed-form expression for the graphical representation 
has distinct advantages, e.g. Theorem 3.7. Furthermore, one of  the stated objectives 
of  [28] was to test for the validity and possible saturation of  a Li-Sokal  bound in this 

system. Although we cannot begin to address the question of  whether such a bound 
saturates, the existence of  the representation implies, via Theorem A.2; a Li Sokal 

bound for these dynamics. 

4. First-order transitions 

4.1. Reflection positivity 

Reflection positivity (RP) was introduced into statistical mechanics in the late 1970s 

and early 1980s in a variety of  contexts. (cf. the review by [30] and references therein.) 
O f  particular interest is the work of  [16] where RP was shown to be the ideal technique 

for establishing discontinuous phase transitions. Recently, it was demonstrated that RP 
can be combined with graphical expansions of  the FK type [31]; here this result will 

be generalized and further developed. The combination of  graphical techniques with 
reflection positivity allows a simpler proof  of  the standard large entropy type transitions 

and further provides a well defined arena in which these results can be generalized. Of  
course here we will run up against the usual limitations of  the RP technique: we must 
(essentially) confine ourselves to nearest neighbor interactions and in addition we must 
work on the turns. 

In order to keep this work down to a manageable length, rigorous proofs will 

be provided only for two-dimensional problems. This allows us to use the diayo- 

nal torus (SST) which cuts down on the number of  diagrams that need to be con- 
sidered. Furthermore, mostly for the purpose of  conceptual clarity, we will discuss 
only the "user friendly" cases featured in Section 2. All o f  the principal results in 
this section can be extended to d > 2 and to the non-additive cases with suitable 
modification of  the hypotheses. The results that specifically pertain to duality are, o f  
course, special to d = 2 ;  these will be set aside as corollaries to the more general 
results. 

Let J u  denote the two dimensional diagonal torus with N sites. Here the sites have 
coordinates i = ( ~ ,  i~)E 772 with the lines ix+iy = [const.] identified modulo L, assumed 
even, and similarly for the lines ix - iy = [const.]. (Thus a total of  N = ½L 2 sites.) Let 
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P0- be the notation for the pair o f  lines 

P0  = {i ~ .Y-N l i,. -- i~ = 0 or i l. -- ix = L/2 } (4.1) 

and similarly for Pa- and Pk +. It is observed that P0  divides the torus into two equal 

halves that have the sites of  P0  in common. We will denote these halves by ,el and .'d. 
Let us assume that we are dealing with a finite system of configurations defined on the 

sites and bonds (or, occasionally plaquettes, etci of  .YT.v in accord with the conventions 
of  the preceding sections. Let ~ denote the set of  all such configurations and let us 

denote by E,i and E~ the set of  configurations that are situated in the two halves of  

the torus. Let Oe~ 7 denote a function that maps each q~i in -v,i to an q~ in E,,  and, 
by abuse of  notation, let 'Oe,, also denote the inverse of  this function. Such a 'Os~ ' will 

generically be called a reflection. If  f =  j"(q.~) is a real-valued function on E~, we 

will define Ot]--f=.f(Oe<-q.<i) to be the reflected function and similarly for functions 
on ~,1. The starting point is: 

Definition. Let P denote a probability measure on - and Oe., * = 4: a reflection of  
the type discussed above. Then P is said to be reflection positive with respect to 0 U 

if for every f and .q defined on the configurations q, ,  
(i) ~-(.fOpuf )>0 

(ii) E( f  Oi;;,q) = E(giT47 f ) 
where E ( - )  denotes expectation. For other lines P~  we may have various other Os3; 
and O/t and reflection positivity can be defined in a similar fashion. Denoting the 

collection of  all these reflections by O, the probability measure is said to be reflection 
positive with respect to '3 if  the analogs of  (i) and (ii) hold for all the 0/;=. 

Let us now turn attention to the reflections that are of  use in the present context. 

Recall that in the general multicolored representation, the bonds have to be oriented. 
Throughout this section, we will assume that the bonds are always oriented in the di- 

rection of  increasing coordinate. Further, let us refer to bonds that change the spin an 
equal but opposite amount as complementary bonds. In case the change is by q/2, the 
bond is its own complement. (In the non-additive cases, there may be other bonds that 

are self-complementary.) Complementary configurations (that is the complement of  a 
given bond configuration) will be denoted by affixing a # to whatever symbol describes 
the original configuration. The reflections that we use are slightly different for the lines 

P~/, and P~.  It is clearly sufficient to discuss the reflections 0 U and .Or; ' , let us begin 
with the latter. Let us define, by further abuse of  notation, Op, 7 as a mapping of  the 
sites and bonds of  .~'/ to their mirror image in /3 through the line i, i~. = O. Writing 
~1,t = (N<,o:~t) the reflection Op 5, (now defined on configurations in .~i) consists of  
the same spin-states and bond values located at the reflected sites. Formally, for i ~ .~i, 

'OIL a(Op/ i )=a( i )  and for b = { i , j ) E , e /  we have Opt, ~ ( ~ 9 ~ / b ) = ~ ( b ) .  It is observed 
that this maps consistent configurations into consistent configurations. As tbr the object 
Os],, we will also use reflection to define the image of  the spin configuration. However, 
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after a moment's consideration, it becomes clear that we must use the complementary 
bonds in the reflected positions in order to maintain a consistent configuration. We 
thus have Op,~-~(Oub)=-65#(b ). It is noted that in both cases, the only objects in the 
reflection plane itself are sites and spins which, in all cases are left invariant. 

The following is a generalization of the result in [31]: 

Proposition 4.1. Consider the multicolored bond/spin problems defined by the weights 
in Eqs. (2.14) and (2.15). Then the associated probability measure is reflection positive 
with respect to all the reflections ~ as defined above. 

Proof Here we will use an alternative (but equivalent) version of the standard proof 
which has the advantage that it makes no explicit reference to an underlying 
Hamiltonian. Starting with ~gp,, let a(P o)  denote any particular configuration of spins 

in the lines P0-- It is not hard to see that for any such cr(P 0 ), the conditional distribu- 
tions in the left and right halves of the torus are independent and identical under the 
reflection 0p,-. Indeed, P(rL~ ] a(P0- )) is just the product of all the fugacity factors for 
the bonds and the A-consistency condition between the bonds and spins. If ~/,~/is a con- 
figuration, we have the same bonds in 04-(q.~/) and it is clear that A(~.~t,a~i)= 1 ¢~ 
A ( ~ . ~ i ,  ~ - a ~ l ) -  1. Running through all configurations, 

Z f(~47 q.<,')P(q.<.i I ,~(Po)) = ~ f (o~  ° ,# ~,,)P(op,, ,#<J I o-(Po)) 
q <i q,t 

= Z f(q~)P(q~la(Po ) ) '  (4.2) 
q~ 

Thus, the conditional expectation of fOeo f is the above quantity squared and hence 
fOR-f averages to something positive. The derivation for Op,;, is identical after the 
observation that reversal of the reflected bonds preserves the consistency condition. 
Similar considerations demonstrate that ~_(gO~f)= Y_(fO~g). [] 

Remark. On the d-dimensional tori with the usual sort of periodicity, it is clear that 
the same kinds of results go through: Reflections are through the usual hyperplanes of 
sites, spins get mapped by pure reflections as do the bonds parallel to the hyperplane 
while the bonds perpendicular to the hyperplane are replaced by their complements. 
With this definition, the derivation follows the same course as the above. 

The above implies a Cauchy-Schwartz inequality: W-(gi~c± f )  <~ [E(./'~)~± f )] l/2[~(,q 
O~±g)] j/2. By repeated applications of the appropriate reflection operations, a local 

event can be reflected until "it covers the toms". This leads to expressions involving 
constrained partition functions that, in our case, all turn out to be graphical configu- 
rations blanketing the toms. Furthermore, the probability of separated events may be 
estimated by the product of the estimates corresponding to the individual events; these 
are known as the chessboard estimates, cf. [30, Section 2.4]. 
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For the proofs of  discontinuous transitions, we will use the following from [16]: 

L e m m a  4.2. Let , ~  be a Hamiltonian o f  the type described and [ / the  inverse tempera- 

ture assumed to lie in the range [/~.~,/!v] and let G..v./~(-) denote the Gibbs,..' 

random cluster measure on -TN induced by the Hamiltonian ,~  at inverse tempera- 

ture [/. Let b~ and b,. denote two disjoint bond events (i.e. distinctive types of  bonds) 

for some particular bond. Finally let A ~- (½, 1] and B E [0, 1] be such that 

[ 1 , 
B~< 2 + V 2  2 3 

and let c.,., c~. C (0, ½). Suppose that for all ~ ¢ [2x, ~,], and for all / ,m  ~ 3~v, one has 

(i) G.v.#(b,- U b,.)>~A, 
(ii) G.v./~(b,(m) N b , . ( f ) ) ~ B ,  

and, meanwhile, 

(iiix) GN.l~,(bx) > 1 - r.,. 
and 

(iiiy) G.v.#,(b~.) > 1 - ev. 
Further, suppose that the above holds for all N in some sequence .Y~ / "  Z:.  Then there 

is a value [4t C (fix, fly) with two distinct (infinite volume) states G ~ ( - )  and G~ ' ( - ) .  

These are characterized, e.g. by the fact that G~,(bx)~1 - 6  and G~i(a~,)>~l-<S, where 

6 is a particular function of  A and B such that 6 -~ 0 as A -~ 1 and B ~ 0. In 

particular, if ,4 > 1 - q  and B < q, with q ~ l  then 6(71)~ ½x/-O. 

Proo f  Follows [16], Theorem 4, see also [30] where some slight variants were also 

proved. [] 

In what follows, we will consider a q-state spin system with the additive internal 

symmetry. The lowest energy is for complete alignment and the gap will be set to one: 

60 = - 1. In addition, there will be s non-zero-energy levels corresponding to 2s distinct 

alignments relative to the state 0: - 1 < 61 = ~(0, :¢~ ) ~< 62 = 6~(0, ~2 ~ ) ~< •. • ~< d~',. = d(0, 
~6)  < 0. For large q, under the condition that s/q is small and that most of  the energies 

are close to zero, it will be shown that there is a first-order transition directly into the 

magnetized phase. Here, in the graphical representation, one anticipates a discontinuous 

percolation transition from a state where occupied bonds of  any type are rare into a state 

where most of  the bonds are blue and belong to an infinite cluster. On the other hand, 

if either o f  the above-mentioned conditions are violated, there can be an intermediate 
phase corresponding to the percolation of  various other colors. Since the problem with 
a single transition is easier both conceptually and analytically, let us begin with these 

c a s e s .  

L e m m a  4.3. Consider a spin system/graphical problem with the above described sym- 

metry at inverse temperature /J on a diagonal torus with N = 2" sites and let P ( - )  
denote the associated probability measure. Let b = (i,j) denote a given bond and let 
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a: T h e  e v e n t  
Fig. 2. 

bo, b{ . . . .  b~ denote the event that this bond is occupied and is colored blue, red~ . . . . .  
red~ corresponding to the appropriate energy state and let b 0 denote the event that 
this bond is vacant. Then P(bo) <~ ql/ZNRo/[Z]I/2N, P(b~-) = P(b~-) ~< ql/2NRk/[Z]I/2N, 
k =  1 . . . . .  s and P(bo)~ql/2/[Z] I/2N where Z denotes the partition function (i.e. the 

sum of all the graphical weights as written in Eq. (2.8)). 

Proof Consider, for example, the event b0 that the bond (i,j) is blue. I f  vg' is the re- 
flection through a line containing i, the Cauchy-Schwartz inequality reads E(b0)~< [E(b0 

vg~b0)]U2. The square of the upper bound is the probability of two blue bonds sharing 
the endpoint i. Repeated reflections are performed, doubling the size of the cluster at 

each stage until the entire torus is covered, a total of  n + 1 times. The ultimate estimate 
is therefore the 1/(2N)th root of the probability that all the bonds on the torus are 
blue. The latter has the interpretation of the ratio of  the constrained partition function 

in which all bonds are blue, Z0, to the total partition function Z. The calculation of Z0 
is trivial: if each blue bond is occupied, the fugacity factor is R 2N and are exactly q 
(fully ferromagnetic) spin configurations that are consistent with this bond configura- 
tion. The bounds on the other probabilities follow similarly. In the "all vacant" case, 
where the associated constrained partition function may be denoted as Z 0, the result 
ZO = qN follows from the fact that every spin configuration is consistent with all bonds 
being vacant. [] 

The graphical picture of  such a single transition is that, depending on the temperature, 
the dominant configuration is either all blue or all vacant and then at some temperature, 
both of these "states" are allowed. Thus, the first ingredient is the assertion that the 
probability of  anything else, i.e. a red bond, is uniformly small. Then it must be 
shown that the simultaneous presence of vacants and blues is always unlikely. The 
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b: The pattern 
Fig. 2. Continued. 

second issue requires an additional RP derivation but the first can be handled on the 

basis of Lemma 5.3. Indeed, for all temperatures, the bounds 

[]Z(b~.)~<('~fq+l)lg~l I ~ Vk~<q-(l'2)ll I~,~13 (4.3) 

are readily obtained. Starting with Z < ~ Z  0 + Zo, we have 

Rk (4.4) 
P(bk)~ [Rg N + qN]I/2N " 
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For q>~R~, we may neglect the smaller term in the denominator and the resulting 

expression is increasing in [3 and hence should be evaluated at the temperature where 
Ro = q l/2. At this temperature, Rk = (x/q + 1 )le~ I _ 1 ) which is in turn less than q~ J/2)~,. 

On the other hand, for Ro >~ql/2, we neglect the qN in the denominator. It is readily 

demonstrated that Rk/Ro is decreasing in ]3 hence this estimate is maximized at the 

point where R0 = ql/2 as well. 
As an indication that coexistence is unlikely, let us start with the (necessary) demon- 

stration that the probability of  a vacant and blue bond sharing an endpoint is uniformly 

small: 

Lemma 4.4. Let iE•--u, and let b =  (i,j) with j - i = ( 1 , 0 )  and b ' =  ( i , f )  with j '  

i = ( 0 ,  1) denote a pair o f  adjacent bonds. Then, for a system as described in 

Lemma 4.3, 

P(b0 N b~) ~< q 1.,4 

Proof The event, as depicted in Fig. 2(a) after n reflections results in the pattern 

depicted in Fig. 2(b). Let us denote the associated partition function by Zoo. As N ---+ 
cx~, the only important features are that Zoo has half  the bonds blue, the other half vacant 
and one quarter o f  the sites unconstrained. Thus we may write ZoO = q~I/4)NRff~N with 

[CI)N] 1/N ----+ 1 as N tends to infinity. Estimating Z>~Zo + ZO, we obtain 

qh'4R0 I/N (4.5) 
~Z( bo N bo ) <<. [qN Jr R2N]I/N ~l) x " 

The right-hand side is optimized when R~ = q resulting in the stated bound. 

The final ingredient that we will need is a contour estimate. I f  { c .Y-N, let bo({) 
denote the event b0 translated to the bond <i + { , j  + () and similarly for the events 
b+(m), etc. Let us consider the simultaneous occurrence of  the events b0(()  and bo(m). 
In a given configuration, let us call any site in which the four bonds that emanate from 
it are all vacant or all blue a 9ood site. Any other site will be deemed to be a contour 
site. It is clear that if  the events b0(()  and bo(m) both occur, than any connected path 
from one of  the blue endpoints (at i + # or j + {) to one of  the vacant endpoints (at 
i + m or j + m) must use at least one contour site. This implies that the respective 
bonds are separated by a *-connected circuit o f  contour sites which leads to: 

Lemma 4.5. Let ~; ( =  e.(-)~¢)) denote the quantity 5q I/4 + 8 ~ .  Vk. Then, for e suffi- 
ciently small, 

P(b0({)  N bo(m))<.qt: 

with cl a constant of  order unity holds for all {',m ~ YN. 

Proof As mentioned previously, the bonds in question are separated by a *-connected 
circuit of  contour sites, a contour. For a given contour, C, o f  length ]C], the standard 
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Fig. 3. 

chessboard estimate allows us to break the contour into its constituents and apply the 
previous estimates to each piece. Provided that all quantities are sufficiently small, this 

will result in an estimate on P(C)  that is exponentially small in ICI. 
Since the events in question actually involve bonds, let us conservatively select only 

one in five sites of  C to insure that we do not count any bond twice. (More precisely, 
we use [~ICI] ~ sites where [ - ]+  denotes "smallest integer larger than".) 

For contour sites that are endpoints of red bonds, there are a total of two species of 
each color and four lattice orientations, which accounts for the factor of eight in front 
of the sum of the Vk's. If  a site houses both vacant and blue bonds, then, as is easily 

checked, one of the five configurations depicted in Fig. 3 must occur. Hence the fhctor 
of five in front of the q-l"4. 

Performing a standard Peierls estimate, where the minimal contour size is two, the 

stated result follows if ~: is sufficiently small. 

T h e o r e m  4.6. Consider a q-state spin system as described in Eqs. (2.1)-(2.4) with 
~ : - t : ( ,~)  as described in Lemma 4.5 sufficiently small. Then there is an inverse tem- 

perature [it at which there exists (at least) q + l  distinct phases. One of these is a 
high-temperature phase characterized by the exponential decay of the two-point cor- 
relation function and the other q are the various magnetized phases. In the graphical 
representation, the magnetized phases correspond to a phase with an infinite cluster of 

blue bonds while in the disordered state, the cluster connectivity decays exponentially. 
Hence, this system exhibits a discontinuous percolation transition in the grey and in 

the multicolored representation. 

Proo f .  The existence of a transition temperature 1/[Jt where high- and low-temperature 

phases coexist is a direct consequence of Lemma 4.2 and the estimates obtained in 

Lemmas 4.3 4.5. 
In what follows, it would be convenient to assert that the high- and low-temperature 

phases actually emerge, in the form of a convex combination, simply by taking the 
thermodynamic limit of the torus states. However, such an assertion can only be 
proved in special cases [32]. We may circumvent this minor difficulty by adding to the 
Hamiltonian a local term that couples linearly to the desired bond event. For example, 
in the case of blue bonds, we fix all parameters save for the lowest energy level which 



582 L. Chayes, J. Machta/Physica A 239 (1997) 542 601 

we now write as ~0(1 +)~).5 Then, for a discussion of  the low-temperature phase we 
may consider the 2 .L 0 limit of  the positive 2 states that are limits of  states on ~-U. 

By the usual convexity arguments, any 2 = 0 + state cannot have a smaller blue bond 
density than any state constructed from the 2 = 0 Hamiltonian. It is further noted that 
the estimates obtained in Lemmas 4 .2-4 .5  are continuous in all parameters and hence 

may be freely used for [21 ~ 1. It follows that we can find a sequence Ni ~ ~ and 

2 j ~ 0  such that in the finite volume states Pxi,/~,;.,(-) the results o f  the above men- 

tioned hold and we may rest assured that for all j ,  ~N.lJ~)./(bo)>~ 1 - - 6 .  Similar devices 
will be used in our discussion of  other states. 

Let us start with a proof  that at /~t there is a percolating state in the graphical 

representation. Consider a box of  side k lying in the center o f  a box of  side L ( N )  >> k 

with L --~ cx~ as N ---, ~ .  Let Bk denote the event that there is a connection between the 
two boxes by a path of  "good" sites. It is clear that the event Bk occurs with probability 
close to one because the complementary event requires that a contour surround the inner 

box: 

t c,k ~Ni,[~,)~ ' (B  k ) ~ 1 --  CZe, " (4.6) 

where the c2's are constants of  order unity and s is now taking on some mild 2 
dependence. 

Notice that Bk may be written as the disjoint union of  two events depending on 

what type of  good sites are making the connection: Bk B~ U B °. We claim that if k 
[p 0 is large enough, Ni,l~,h(Bk ) is bounded below uniformly in j .  Indeed, for any bond b 

that is well separated from the boxes, 

1 -- ~ <~ ~N./~,).(bo n B ° )  + PN.ll,).i(bo A B~) + PN~.[3,)~j(b 0 N Bk)  (4.7) 

where the tilde denotes complementation. The third term may be estimated by c~e, "-4 
and the first by PN.[~,).,(B°). A s  for the second term, it is clear that the event b0 nB~  

implies that there is a contour surrounding b (or, negligibly unlikely in the large j 
limit, a counter surrounding the good sites that caused the event Bk). This can be 

handled by the techniques of  Proposition 4.5. Hence D Z N , 1 3 , L ( B k ) > ~ l - 6 - ~ C l ~ - °  i i , cl2~,c,~._ 

(with c~l essentially the same as Cl from Proposition 4.5) and we have established the 
percolation claim. 

Let us now turn attention to connectivity function in a "vacant" state. Let h- be the 
parameter that couples linearly to the vacant bond density and consider the torus states 
PN,/~,K~(--) that are tending to a limiting state with bond density less than 6. Further, 
consider the event /~ff that is the event B~ translated to the back of  the torus. By an 
argument similar to that used above, PN,,IS,~j(/~) is uniformly positive and hence any 
limit o f  the conditional measures PN,/~,~-,(--1#~) is also a state with low bond density. 
Now let i and i' be two (fixed) sites and consider the event Ti.i, that these sites belong 
to the same cluster o f  occupied bonds. The event / ~  N T~,,, implies the existence of  k 

5it is obvious from the Edwards Sokal form of the weights that the derivative of the (finite volume) free 
energy with respect to 2 is proportional to the blue bond density. 
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a contour surrounding i and i / (or the box in which /7~ occurs) and hence may be 

estimated by 

~C3,9,,'~1' ' I (4.8) I B : )  ' ' " ' 

where the c3's are further constants o f  order unity. Clearly, the exponential decay of  the 
cluster connectivity function implies the exponential decay of  the two point function. 

Finally, using a similar sort of  conditioning at the back of  the torus and, in the spin 
system further conditioning on the spin-state of  the largest cluster, it is straightforward 

to show that the spin-marginals of  PN.I~,;./ converge to magnetized states of  which 
there are a total of  q. [] 

In [18], it was established that for large q, the q-state Potts models did, after all 

have a phase transition at the self-dual point. The above provides a simpler argument: 

Corollary. Consider the usual q-state Potts models on Z 2. Let fi denote the inverse 
temperature and, as usual, p =  I - e  -l:. Then for all q sufficiently large, there is a 

single ordering transition at [t. given by p . - p ( f i . ) =  x/q/J1 -+- xflq]. In particular, at 
[],, there are (at least) q +  1 phases coexisting. For all [] < fl,,. there is a unique phase 

characterized by exponential decay of  correlations. For all fl 7 ~ ft., the energy density 
is continuous and for all fl > ft., the magnetization is continuous. 

Proofi Suppose that q is large enough that all the preceding applies. Let fi, denote 
"any" point where there are co-existing phases with bond densities above 1 - ` 5  and 

below `5. By convexity and monotonicity, it follows that fit is unique: if fi > fl:, then in 

any state, the bond density is greater than 1-`5 and if fi < fir it is less than ,5. Similarly, 
it follows that if  for some value of  [L the bond density in any regular sequence of  

volumes is bounded away from 6 and 1 - `5 ,  then [1 = [t:. But when p = p , ,  the bond 
density equals the vacant bond density on the toms because here, not only do the 

parameters transform into one another, so do the boundary conditions. Thus a phase 
transition occurs at p, .  

We claim that for fl < [J,, the correlation length is positive, the magnetization is 

zero and the state is unique. Indeed, at fl = tic, by the arguments used in Theorem 4.6, 
there is a state that has exponential decay of  the cluster connectivity function. Here, 
by the FKG property, it is not hard to see that this may be identified with the state 
arising from free boundary conditions. Now in general the bond density (or the energy 

density, cf. [8] Eq. (2.6)) as defined via a thermodynamic derivative is monotone and 
hence can have discontinuous at only a countable number of  points. Furthermore, the 
range of  allowed values that the bond density can take on at any particular value of  fi, 
is precisely the left and right limits o f  the ( thermodynamic) density. Thus, at a point 
of  continuity, only one value of  the density is possible. Now, ostensibly at any p(fi), 
we h a v e  [I~IK,;'*'(--)>/FKGIIFKt,:/(). However (cf. [33, Corollary 2.8]) if the densities 
coincide, so do the measures. Thus let fl < fi<. be a point of  continuity of  the bond 
density. Obviously the free measure at ft, dominates the free measure at fl and hence 
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• t F K ; f i  x has exponential decay of the cluster connectivity. However, it was agreed 
q,p( f l )~I  J 

• FK; f z x FK;w that/~q, p t ~ ) t - / =  Pq, p([~)~-) and hence there is also exponential decay in the wired state. 
This precludes percolation; hence the magnetization vanishes and there is uniqueness of 
the Gibbs state. Once this is established at fl, it is automatically valid for any fl' < fl, 
and we can find points of continuity right up to tic. Finally, suppose that fl > fie and 
recall the construction of the magnetization order parameter in Theorem 3.3. In the 
present circumstances, once fl > tic, we have exponential decay of the dual connectivity 
function - long chains of dual bonds are exponentially improbable in their length. 
It follows that the magnetization can be uniformly approximated by finite events in 
finite boxes, e.g. the probability in a wired box of scale LI that the origin is connected 
to a cluster of scale at least as large as L2 with Lt >> L2 and L2 large compared to the 
correlation length at fl,.. Continuity of the magnetization is immediate. [] 

For particular models (in addition to the Potts models) the results of Theorem 4.6 
may be improved by exploiting specialized features. Combining the large q arguments 
with the graphical representations for the generalized AT models, we have 

Theorem 4.7a. Consider the generalized r,s-valued AT (cubic) models in the region 
A ~< 1 parameterized by U and V as in Eq. (3.6b) or Eq. (3.10). Suppose that q=rs is 
sufficiently large and let us move along a curve of constant V with Vs -1/2 sufficiently 
large. Then there is a first-order transition at a value Ut given, approximately by 
Ut~ x/-~/V. At U = Ut, there are (at least) q + l  coexisting phases one of which is 
high-temperature, e.g. has no magnetization and exponential decay of correlations and 
the others of which are low-temperature magnetized states. For U > Ut, there is a 
low-temperature magnetized phase and for U < Ut there is a unique Gibbs state. 

Proof The estimates involving black and vacant bonds are identical to the blue and 
vacant estimates from Theorem 4.6 with R0 replaced by UV. A black-vacant contour 
element is therefore uniformly small if qU4 is sufficiently large. Let bw denote the 
event of a particular white bond. Then 

AT;.~, F U2N sN ]I/2N 
pQ, p (bw)~ [(UV~5-~TrNsN <~ sl/2/V (4.9) 

where the left-hand side refers to the measure on the torus J-N. By hypothesis, this 
is small and hence all the conditions of Lemma 4.5 are satisfied which implies the 
transition point conclusions, at some value Ut, of Theorem 4.6. If U > Ut, by FKG 
domination, we have "percolation" implying the existence of the low temperature phase. 
For U < Ut, we may assume, without loss of generality that U is a point of continuity 
of the grey bond density by an argument similar to that used in the corollary to 
Theorem 4.6. Then, as far as the grey measure is concerned, the state is unique and 
FKG dominated by the high-temperature state at the transition point. Uniqueness of 
the Gibbs state and exponential decay of correlations now follow easily. [] 
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Theorem 4.7b. Consider the generalized r,s-valued AT (cubic) models in the region 

2>~A/> 1 parameterized by L,D and G as in Eq. (B.5). Consider a curve o f  fixed G and 
D with 0~<L~<~. Suppose that q=rs  is sufficiently large while Gs -I/2 and Dr -1~2 
are sufficiently small. Then there is an Lt at which there is phase coexistence of  q 

ordered and one disordered states (among possible others). For L > Lt there is a low 

temperature magnetized phase and for L < Lt there is a unique high-temperature state. 

Proof The disordered bonds are as before and will be estimated using the empty 

partition function ZO = qN. Here we define ordered as the presence of  a double bond or 

the presence of  a bond in both the top and bottom layers. The relevant partition function 

is Zo = [L(1 + G)(1 + D ) +  GD] 2N. The basic contour element, a site with at least one 

bond of  each type, leads to the same estimate as the Ports model: [Zoo/Z] l/'v <~q -1~4 
The new ingredients are a bond in the top layer and a vacancy in the bottom layer 
and vice versa. The relevant estimates for these probabilities are [G2iVrX/Z] ~<Gs -I 2 

and [D2NsN/Z]  <<.Dr 1/2. If  all these quantities are sufficiently small, the stated result 

follows from arguments similar to the previous ones. [] 

Corollary. For the AT models described in Theorem 4.7a, on 7/2 with r - s  x/q 

and all quantities sufficiently large or small as stated, the ordering transition occurs at 

UV - x/q (i.e. on the self-dual line found in Proposition B. 1 ). For the models described 

in Theorem 4.7b, with G/x/~= D/x/r, and all quantities sufficiently large or small as 

stated, the ordering transition occurs at L = [ r s -  rGe]/[(1 + G) (x /~  + rG)]. 

Proof In the reformed region, under the stated hypotheses, the white (and hence 

*white) bond densities are uniformly small as U is varied. The black and vacant 

densities are always small or close to one and hence never equal except as a conse- 

quence of  phase coexistence at the transition point. But on the torus, these densities 

are equal when UV--x /q  which identifies the critical point in this case. 

In the orthodox region, under the stated hypotheses, the probability of  only a t,-layer 

bond or only a r-layer bond is uniformly small. Similarly, the probability o f  both, with- 

out the presence o f  a double bond, is estimated by GD/x/~ which is (doubly) small. 

Hence, the transition is signaled by an abrupt change in the density of  double bonds 

(which is monotone in L) from small to large. Now the absence o f  a double bond on 

the dual lattice implies the presence of  the corresponding ordinary double bond or the 

separate occurrence of  single bonds in the top and bottom layer. Thus the double bond 

density and the dual bond density add up to nearly one. If they are equal -- which 
occurs on the torus when L crosses the self-dual line, we have identified the transition 

point. ~, 

Finally, we turn attention to the existence of  intermediate phases. Starting with the 

usual sort of  discrete spin system, we will show, under suitable hypotheses, that there 
is a discontinuous percolation transition in which the blue bonds play no essential role. 
We do not at present have a general proof that the magnetization vanishes in this phase 
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but we consider this to be highly plausible. Notwithstanding, we also suspect (again, 
by and large, without any rigorous proofs) that anything else is possible including 
phases characterized by a partial breakdown of symmetry, phases with a unique state 
characterized by exponential decay of correlations, and, in two dimensions, Berezinski- 
Kosterlitz-Thouless phases. In the former case, we will provide several examples, some 
of which include a proof that the magnetization actually vanishes. In all cases, there 
is a genuine low-temperature phase. One does not expect that the phase transition into 
this state will always be first order. However, under some added assumptions, we will 

show that this is sometimes the case. 
The ingredient that is necessary for all of  these arguments is a lower estimate on 

the graphically constrained partition function that is characteristic of the intermediate 
phase. The following, although far from optimal, will suffice for present purposes: 

Proposition 4.8. Consider a discrete spin system of the type described and let Z1 denote 
the partition function on J/'--N corresponding to the graphical configurations in which all 
bonds of the toms are occupied by a non-blue bond. Then 

[ ] N/2 

k k > 0  J 

Proof Let us consider only the configurations where all the spins on the even sublattice 
take on one fixed value. Now allow the spins on the odd sublattice to take on any of 
the s choices that are different from this fixed value and have negative pairing energy 
relative to this state. Connecting all spins with the appropriate colored bonds we get a 
covering of the toms by red crosses (reminiscent of Fig. 2(b)) each of which represents 
2s independent choices with weights R 4 . . . . .  R 4. The number of these crosses is N/2 
and the stated estimate follows. 

The following provides sufficient conditions for the existence of a "red" phase: 

Theorem 4.9. Consider a discrete spin system of the type described and let/~, denote 
the temperature at which 

2 R2 = q. 
k = l  

Define ~c(q) by 

~ ( q ) = ~  R 0 + 2  Rk 

k=l l~=l~. 

Suppose that there is a temperature /~ < ~.  at which 

R0 
[2 v"~ R 411/4 

.£-~k=l kJ  ' 
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that 

qli2 

[2 ~k=, R4] /4 

and that t ,-(q)< ~: for ~: sufficiently small. Then there is a [J, at which two phases 

coexist exist. One of  these is a identifiable as a high-temperature phase but the second 

is of  indeterminate character. However, if (i,.j) is a nearest-neighbor pair then for some 

k's, the probability that a / =  c~i + :~t- is larger in the second state. 

Remarks. If  s is fixed and q ~ oc, the condition on ~,-(q) will be satisfied for q large 
enough. The worst case is when all the R's are equal and here, tt '(q)~s3'4/q t'4 When 

the degeneracy is this large, our estimates are rather inefficient and it is worthwhile 

to pay attention to the specifics o f  the model at hand. On the other hand, if there are 

just a few dominant energies, we get estimates similar to the Potts case even if s is 

comparable to q. Next, it is noted that if the low-energy states correspond to a sub- 

group of  the spin-space, there is a genuine order parameter for the intermediate phase. 

The (r ,s)  models in the reformed region are a degenerate example of  this situation. 

Finally, in all cases, it is a near certainty that under the conditions in the statement of  

Theorem 4.9, the energy itself is discontinuous at the transition temperature. However, 

the energy corresponds to a weighted sum of  the described probabilities which might 

(miraculously) match in the two states. Needless to say, if the smallest energy gap 

times the bond density in the "red" state is large compared to the bond density in the 

high-temperature state, it is trivial to demonstrate that there is a jump in the energy. 

Prog/; The stated conditions easily allow us to verify what is required for Lemma 4.2 

from which all the conclusions follow. The probability of  a blue bond is estimated: 

lP(bo) ~< R2 (4.10) 
[2 ~ 'k  R2] 1:2 

which, we claim, is an increasing function of  [J. Indeed, taking logarithmic derivatives, 

it is sufficient to show 

However, where the overbar denotes averaging with respect to the weights R~. 

Eq. (4.11) holds for all k without averaging. This allows us to evaluate the right- 
hand side of  Eq. (4.10) at [~=/~, where we get c and the estimate holds for all [~ 

in [/~,oc). There are no other possibilities for bonds except for red and vacant. The 
probability of  a red bond and a vacant bond sharing a site is estimated by 

• .~ ql/42 
P((i , j )  is red and ( l , j )  is vacant)~< }-~k>°Rk ~<~,'(q) [qX+ [2ZkR4]I~,,N (4.12) 
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by evaluating at fl =/~. .  Thus, reds dominate at fl =/~, the vacants as fl ~ c~, the blue 
bonds and the other contour elements are uniformly small for all fl ~</~. The conclusions 
follow if e is sufficiently small. [] 

As discussed earlier, additional assumptions are required to demonstrate a discontinu- 
ous transition into the low-temperature phase. Although this is obvious from a physical 
perspective, it is interesting to see how these considerations enter into our analysis. 
Here we see that the estimate on the constrained partition function for a red/blue 

contour element is the square root of  the product of the separate partition functions. 

Hence, at the approximate transition temperature, the ratio is of order unity. Needless 
to say, if  pertinent specifics are brought into play, better estimates may be obtained. 

For example, if there are 9 spin states with g >> 1 such that the energy between any pair 

of  these states is always lower than some g, > - 1  ( = g 0 ) ,  there will be a first-order 
transition into the blue phase. (The proof of  this follows almost identically the proof 

for the Potts model and will be omitted.) For present purposes, we will be content 
with some results along these lines for the (r,s)-generalized AT models. 

Theorem 4.10. Consider the (r,s)-generalized AT models in the region A < 1 param- 
eterized by U and V as in Theorem 4.7a first moving along a trajectory of constant V. 
Then for V/s 1/2 sufficiently small and r sufficiently large, there is a first-order transition 

into the intermediate phase at some Ut = Ut(V). At U = Ut, at least r +  1 phases coex- 
ist. Next, consider a trajectory of constant U with U/r I/2 large. Then if s is sufficiently 
large, there is a first-order transition into the low-temperature phase at some Vt(U) 

where at least r + q phases coexist. As a consequence, if both r and s are sufficiently 
large, the upper and lower phase boundaries of the intermediate phase are lines of 
first-order transitions for all A sufficiently small. 

Proof  For the first case, the probability of a black bond is estimated by UV/[q N ÷ 
U2NsN]. This never exceeds Vs -1/2 which is assumed to be small. The estimate for 

the vacant-white contour element is of  the standard Ports-type yielding an upper bound 
of r -1/4. The conclusions concerning the entrance into this phase are now readily 
established. 

Next, suppose we allow V to vary with U fixed so that U/r 1/2 is large. The 
probability of  a vacant bond is estimated: P(b~)~[[qN]/[U2NsN]] I/2N =rl/2/U and 

is therefore uniformly small. The transition from the nearly all white (intermediate) 
phase to the nearly all black (magnetized) phase is essentially that of the s-state Potts 
model. In particular, the probability of  the black-white contour element is bounded by 
S--1/4. Thus, under the stated conditions, the entrance into the low-temperature phase is 
discontinuous. 

As for the last claim, let us first consider the lines of constant U. These correspond 
to straight lines emanating from the zero temperature point on the Potts line (A = 0 )  
hitting the degenerate line (A = 1) at a temperature that lowers with increasing U. 
Now Vt(U) is decreasing with increasing U but the U - +  oo limit of  Vt(U) is finite. 
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It then follows that the larger U transitions correspond to decreasingly smaller values 

of  A and thus, if  s is large enough, our results concerning the low-temperature phase 
transition hold for all A sufficiently small. Similarly, if V is held fixed and, e.g. satisfies 

V ~< 1, the value Ut(V) is uniformly bounded away from zero and infinity. Hence, as 
is easily discerned, so is the transition temperature. However, as V-+  0, the lines of  

constant V are, asymptotically, of  the form A ~ Vfi[1 e //]. Hence, the smaller V 
transitions correspond to decreasingly smaller values of  A. Hence, under the stated 
hypotheses, our results concerning the upper phase boundary hold for all A sufficiently 

small. Evidently, if both r and s are large enough, both phase transitions are first-order 
for all A sufficiently small. [] 

Appendix A 

A. 1. L i -Sokal  bounds" 

The Li-Sokal  bound, in the case of  the SW algorithm, is a direct consequence of  a 

few facts about the algorithm all o f  which have been preserved in the above-described 
generalizations. What follows may appear to be "overly formal" however we would 

like to cover all the cases discussed in the remark preceding Lemma 2.1 as well 
as some further developments in the subsequent section. The specialized cases (pair 
interactions and no internal constraints on the allowed bonds within a single cluster) 

can be reduced from the derivation below or generalized from the original derivation 
in [5] with roughly the same amount of  effort. 

The "key inequality" leading to a Li Sokal bound, (Eq. (1.1)) is that for some 

function O, the normalized autocorrelation function at unit time lag, p~,o(l), satisfies 

const. 
p ~ o ( 1 ) > ~ l - - -  (A.1) 

CH 

We will derive this on the basis of  a few general features of  the algorithms following 

closely the original derivation. 
Starting (and staying) in some finite lattice A, a configuration, so of  the graphical 

representation is an assignment of  zero or one: tO=(U~A ff {0, 1} I A ff ~ / )  to each set A 
belonging to some distinguished collection ~/  of  ordered subsets of  the lattice A e.g. 

ordered pairs of  sites (bonds with possible repeats "colors"). The sentence ~rJl = 1 
or coA = 0  signifies the presence or absence of  the graphical element in a realization of  
the representation. A spin configuration _a is, as usual an assignment of  a spin-value 
in { 1 . . . . .  q} to each site o f  the lattice. To each tOA, there is a number P,4 C (0, 1 ) that 
may be identified with the a priori probability of  04. 

The presence of  a graphical element on A implies that the spin configuration on 
A, denoted by ~rA must be in a restricted class of  spin configurations, denoted by Z~. 
We will abuse notation and let ZA also denote the full class of  configurations (on 
{1 . . . . .  q},t) with this configuration on A. It may be the case that for various BE.c / ,  
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that have sites in common with A, the presence of  09A forces the absence of  ~o8, 
i.e. (exploiting the abusive notation) ZB N ZA =13. Any two such elements are called 
inconsistent. A configuration 09 is said to be consistent if  the totality of  all of  its 

elements are consistent in this sense: 
For P = ( p A [ A  E ~4) let Bp(09) denote the product: 

Be(09)= H PA H (1-Ps). (A.3) 
A:t)) 4 = 1 B:o)# = 0 

It is clear that the algorithm defined by (a) and (b) simulates the Edwards-Sokal  joint 
measure with weights 

WEs = A( a, 09 )Bp( 09 ) (A.4) 

where A(a, 09) is one if a and 09 are compatible and zero otherwise. An application of  

(a) and (b) in succession is considered to be a single Monte Carlo step. Note that the 
algorithm is "ergodic" in the sense that any bond-spin configuration can be reached 

from any other, in one step, because each PA is strictly less than one. (Constrained 

systems, with some of  the pA'S equal to one can be treated in the same fashion but 
there is no guarantee of  ergodicity and will not be discussed further.) Further, it is 
noted that the spin-moves themselves may require considerable computational effort, 
none of  which has been factored into the forthcoming bounds. 

The connection with an actual spin system follows the usual course: 

Proposition A. 1. Consider the Hamiltonian, defined for spin configurations on A, given 
by 

A E.~'/ 

(with each gA < 0) where )~(-)  is one if the condition in the parentheses is satisfied and 
zero otherwise. Then the generalized SW algorithm defined by (a) and (b) simulates 
the Gibbs distribution of  this Hamiltonian at inverse temperature fl provided that 

PA = 1 -- e l~1~,'~1 

Proof  For a spin configuration a,  on A, let ~'~ C ~¢ denote the set o f  all A 's  such 
that 09A = 1 is consistent with _a. Explicitly, A E ~'~ implies that a E Z(09A). The energy 
of  _a is then just 

(A.5) 
A E,~J. 

and the Gibbsian weight for a_ is given by 

1 (A.6) exp{-/J.,~(_~)}= I-[ e#ld'l= H (1- PA) 
A E , ~  A E .~/. 
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On the other hand, when we calculate the spin-marginal for the weights in Eq. (A.4), 

each disallowed element, B ~ .,~1'~ causes a factor o f  1 - P8 whereas each A E ,~/~, may 
be present or absent with probability PA and (1 - P.4) adding to one. Thus, the spin 
marginal assigns to _a the weight 

1 
WL,s(~)= H (1 - pB)=cons t .  H (1 - PA) 

B¢:/~ 4C ~/: 

[] (A.7) 

We are ready for 

Theorem A.2. Consider a generalized SW algorithm as defined by (a) and (b) above 

and let ( - )  denote the equilibrium measure for the process. Let tA] denote the number 
of  spins let Cn=fl2[(~¢ '2) - (.:~,()2]/IA ] be the heat capacity and let r denote the 

integrated or exponential correlation time. Then r obeys a Li Sokal bound 

>~ [const.]Cn 

where [const.] depends only on fl and { ~ ) / ] A  I and hence, e.g. for systems with 
bounded and finite-ranged interactions, is uniformly bounded in the volume. 

Remark. This result obviously covers all of  the algorithms discussed in this section 

and in addition it covers all of  the further developments in the subsequent section. 

Proof We will only derive the bound in Eq. (A.1). The connection between this and 

the stated bound, given the fact that in these algorithms we might as well have been 
applying a superfluous spin move on each Monte Carlo step, is made clear in [5]. 

For conceptual ease, let us assume that the bond moves take place at integer times: 
I 3 t =0 ,  ± 1, etc. and the spin moves at half-odd integer times: t = ± 3, ± ~" etc. Our first 

claim is that 

')E~:A)]. ('o,(t) I_~(t ± ½))=p~[z(~_(t i ~ (A.8) 

Indeed, for _a(t ½ ) this follows directly from the algorithm. For _a(t + ½ ), the argument 
is apparently more difficult but the answer has to come out same as the one for ~ ( t -  ½ ) 

1 1 because the joint distributions of  (o)(t),~_(t 2)) and ((o(t),a(t + 3)) are given by 
the same weights, namely those in Eq. (A.4). ( I f  the reader is dissatisfied with this 
overly smooth derivation, a calculation involving the ES weights, detailed balance and 
the connection with the graphical and Gibbsian weights may be performed directly. 
After a near miraculous cancellation, the stated result emerges.) Next, it is noted that 
given the spin configuration at time t + ½, the graphical configurations at times t and 

t + 1 are independent so 

{e)A(t)¢on(t+ 1 ) l e t ( t + ½ ) )  p~pB[z(f f ( t+½)~XAAXB)].  (A.9) 
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At equal times, if A 7t B, we get the same formula for (COA(t)coB(t) I a_(t + ½)) as in 
the right-hand side Eq. (A.9) however, if A = B  we reduce to the case calculated in 

Eq. (A.8). We define 

• ( t ) =  Z ~AcoA(t) (A.10) 
AE.~J PA 

SO that 

(¢b(t + 1)@(t)) = Z gA°~" (Z(--a E ZA 7/X,)) = ( ~ 2 ) .  (A.11) 
A,B 

Meanwhile, 

(1) 
( ~ 2 ( t ) ) = ( O f 2 ) + Z ~ A 2  ~AA --1 (Z(O'CZ'A)). (A. 12) 

A 

For aesthetic purposes, we may bound the second term above by /~-1 i (~) l .  Thus, 

(~(t + 1)qb(t)) - (~)2 CH 
p ~ ( 1 )  >~ (A. 13) 

which implies the stated claim. [] 

Appendix B 

B.1. Duality on the square lattice 

Duality on 7/2 for the graphical representations of the cubic models is straightforward 
however different derivations are required for the two regions. Let us start with: 

B. 1.1. Duality in the reformed region 
Consider the AT-random cluster models on the square lattice with parameters P = 

(g,a) and Q=(r ,s ) .  We may write the weights as in Eq. (3.6b): 

WQ, pAT ( (D, ti) = uN(~J)r c(°)) vN(q) sC(q ) Zq c ,,9 (B .  1 ) 

or, in "loop form" 

AT F((~°) S/(q)Z~I C ~o WQ, p (co, n) oc (B.2) 

(as discussed in the proof of Proposition 3.5). Dual configurations are bond configu- 
1 2 rations on the dual lattice, (7/4- ~) , the dual of a direct bond is the edge traversal 

I 2 to it on (7 /+  3) " If { is a collection of direct bonds, let ~(~)  denote the following 
set of dual bonds the elements of which be denoted by *'s: (1) black* bonds are dual 
to the vacant bonds (2) vacant bonds of the dual configuration are those dual to the 
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blacks of  the direct configuration. (3) white and white* bonds are the duals of  each 

other. This may be summarized by 

~* = ~((,¢), o~* = ~(~") .  (B.3) 

From Eq. (B.3) we have N ( r / * ) =  [cons t . ] -  N((~)) and N ( ( o * ) =  [cons t . ] -  N(q). Now, 

in general, each loop of  direct bonds encircles a component of  the dual configuration. 

Thus, save, perhaps for a constant, we get c ( q * ) = / ( c o )  and c (o )* )= / ( r / ) .  Evidently, 

where, in the general case, the above nmst be properly interpreted in accord with the 

boundary conditions• It is amusing, as noted above, that for r ¢ s, these models have 

been turned "inside out" under duality. In any case, Eq. (B.4) provides us with the 

simple duality relation s* = r, r* = s, U* = s/V V* = r/U. A full statement and some 

consequences is as follows. 

Proposition B.1. The generalized AT-models and/or the AT-random cluster models 

with parameters (Q,P)=((r,s),(g,a)) are equivalent (i.e. dual to) the models with 

parameters (Q*,P*) given by 

Q* = (s, r ) ,  

.q, sr(1 - y ) + s g ( 1  - a )  
a q + s r ( 1  - , q )  + s q ( 1  - a) ' 

and 

, r(1 - g) 
a 

r(1 -- g) + g (1 - -  a)  ' 

In case r = s = x/q, these models are self-dual along the curve given by 

g - -  
a + v ~  

Thus, if there is a single non-analyticity of  the free energy as [3 is varied, it happens 

on this curve. 

Pro(~; The formulas follow from the duality relations U*V =s and V*U = r .  Since, 

for r = s ,  the free energies at dual points are analytically related, if, as fi is varied, 
there is a single phase transition (in the classic sense) it must occur along the self-dual 

line. [] 

Remark. Although the sentence concerning the single transition is surely vacuous for 

the usual AT model, if q is sufficiently large, we have shown that a phase transition 

indeed occurs along the A < 1 portion o f  the self-dual line. It is tempting to conjec- 

ture that in general, the high- and low-temperature phase boundaries are images of  one 
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another under the above duality. For q = 1, this is easily verified: the high/low tem- 

perature phase boundaries are given by 9 = Pc and a9 = Pe respectively with Pc = ½. 

Here, the dual image of  (a, 9) is (9*,a*)= (1 -a .q ,  [1 - .q]/[1 - a 9 ] )  so if y =  p,. then 
1 a*,q* 1 - Pc =~ = Pc. For large q, some additional results on this matter can be 

derived. However, observe that for any q, the result follows asymptotically as A ~ 0 

provided that one is prepared to accept that the transition temperature in the q-state 

Potts model is given by its self-dual point p*(q )=(v~) / (1  + x/~). 6 Indeed, in our 

limit fl-+ oo, flA---+ ~ (which is controlled by the domination arguments) we have 

(j ~ 1 and a---+ 1 - e '~ = a~. The dual of  these quantities satisfy a* ---+ 0 and 9" --~ 

[v/~(1 - a~)]/[a~ + v/~(1 - a~)], which, identifying a = p and 9* = P* (as we should) 

is the usual duality for the v~-State Potts model. 

B. 1.2. Duality in the orthodox re.qion 
The duality relations in the orthodox region are slightly more involved. Let us start 

by writing the configurational weights in fugacity form: 

y AQTp O( G N(+u" )D N(+'~ }L N( ...... )rC+l')s c" (+'~) (B .5)  

with G=p~/[1 - p ~ ] ,  etc. Now define f2~ =co~-V co~-~ and f2~ =co+ V co~-~ to be con- 

figurations for the ~c and r layers that count the presence o f  either a single or double 

bond. Note that c~-(o))=c(f2~) and similarly for c+(co). We claim that the weights can 

now be resummed into the form 

x ~ T p  (X AN{O'~vO)BN(~2"AQ~)ctN{fL'" )-N(O.)lrc(f2~)~c(~2,,, I . (B.6) 

Indeed, the r and s factors are already in this form and the rest may be done bond 

by bond. For a given bond b, it is clear that cow-(b)= o&(b)= co~.+(b)= 0 if and only 

if £2~-(b) = f2+(b) = 0 (and hence O~(b) V O+(b) = f2~(b) A O~(b) = O~(b) - £2+(b) = 0) 

which serves to normalize the weights. Next, if co~.(b)= 1 while co~(b)=co~-~(b)=0 

we have the unique contribution to the configuration where f2~(b)= 1 and f2~(b)= 0 

(and hence f2~(b) V f2~(b) = 1, ~2~-(b) A ~2+(b) = 0 and O~-(b) - f2+(b) = 1 ). Thus, 

G =- A C .  (B.7a) 

Similarly, if we consider ~o~(b) = 1 while {o~(b) = co,-+(b) = 0, we arrive at 

D = A C  t .  (B.7b) 

All other configurations in the co-system lead to f2~(b) V O+(b) = O~(b) A f2~(b) = 1 and 

~2~(b)-  f2~(b)=0 which implies 

L(1 + a ) (1  + D ) +  G D = A B .  (B.7c) 

Next, let us write Eq. (B.6) in loop form. Modulo unimportant constants, we have 
c(£2~) = ((g2~) - N((2~) and similarly for c(O+). Now, we express N(~2~) = ½ [N(f2~) + 

6This is, of  course known, by rigorous standards, for q =  1 and 2. For q >  1, even in the non-integer cases, 
this has been established by contour methods in [18]. The methods of  Section 4 allow for a more direct 
proof. 
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N ( Q : ) ] +  ½[N(~2~- ) -N(~) ]  and do the same for N( (~) .  Noting that N(E2,,.)+N((2~)= 

N((2~. V Q~) + N((2~- A (2~), we arrive at 

[ B ] N ( O " A ' 2 ~ ) [ C ~ ] X ~ )  ) .~({2.)jr / ~2 ,s.i(~_~ , (B.8) A 

Now, consider the standard duality for the ~2-system, e.g. occupied (2~- bonds represent 
vacant ()* bonds on the dual lattice, etc. It is clear that Q~-(b) A E2~(b) = 0 ~ (2*(h*) V 

Q*(b* ) = 1 and similarly ~ ( b )  V ~2~(b) = 1 ~ ~2,~ ( b )  A ~2*(b* ) = 0 where b* denotes 

the bond transverse to b. Furthermore, loops transform into components as usual, i.e. 

/((2,~)-+ c(Q*)  and / ( ~ : ) ~  c(Q*)  and, finally, the N ( ( 2 , - ) -  N ( Q , )  changes sign. 
Writing the dual weights in the form o fEq .  (B.6), we get B* = ,/):~A ], A* = ~ / ~ B  1 

and C* - ~ C  I. We transform this back into a formula for the weights in an (,)-type 
system by inverting Eq. (3.7) and arrive at 

*y.4To.l, ~ [G*]'v("C)[D*]N('"~)[L*] '~(''''*'')r<l'''*)'¢''('''*) ( B . 9 )  

with 

and 

sD 
G* = (B.10a) 

L(1 + G)( I  + D ) +  G D '  

r G  
D* = (B.10b) 

L(I + D ) ( 1  + G) + D G  " 

L* = rsL(1 + G)(I  + D)  (B. 10c) 
[L(1 + G)( I  + D)  + G(r + D)][L(I + G)(I  + D) + D(s + G)] " 

The preceding derivation may be formalized: 

Proposition B.2. Consider a generalized Q = ( s , r )  AT-model with parameters P -  
(p~., p~, p~-~) so that the weight of  a graphical configuration (o = (~o~-,(o,, ~o~.~ ) is given 

by 

YJ,~( (o ) = G N(('~ ) D N('°: ) L N( ....... )s c''( ''~ ) r  c:(~'' ) 

with G = p~./(1 - p~.), etc. Then, on Z 2, this model is dual to the same model with 

parameters G*, D* and L* as given in Eq. (B.10). In particular, this model is sell-dual 
provided that rG 2 = s D  2 and, e.g. eliminating D, 

rs - rG 2 
L =  

(1 + G ) ( ~ / ~ + r G )  

Proo f  Follows from the above derivation. [] 

Remark.  For r and s o f  order unity, there is not much that can be done to prove that 
the self-dual line is "the" transition line. However,  for r = 1, the model is an effective 
s-state Potts model at inverse temperature [JeO given by Ue~= e <tf - I - L  + G + LG. 



596 L. Chayes, J. Machta/Physica A 239 (1997) 542 601 

Evaluating Ueff along the self-dual curve, we get U~g(L = L*, D ---- D*, L --- L* ) = x/s as 
expected. For various large values of  the parameters r and s, it will be shown in the 

next section that the transition occurs at least on a portion of  the self-dual curve. 

B.2. An FKG property 

Here we establish the result discussed after the statement of  Proposition 3.2. 

Lemma B.3. Consider a finite state space {A, B . . . .  , D} with the order A > B > • - • > 

D. Let F denote a finite set of  points and suppose there is a measure P r ( - )  on 
{A,B . . . .  ,D} r that assigns positive weight to each configuration and satisfies the lat- 

tice condition with respect to the associated partial order on the configurations. I f  
E {A,B . . . . .  D} r is a configuration, let ~E {0, 1} r be defined by ~ ( i ) = 0  if  ~ ( i ) = D  

and ~ ( i ) =  1 otherwise. (The configurations ( can therefore be thought of  as equivalence 
classes of  ~'s). Let Vr be the measure on {0, 1} r defined by 

Vr(()=~- '~pr(a) .  

Then v r ( - )  is strong FKG. Furthermore, i f  S C F and * E {A, B,. . . ,  D} z is a "boundary 

condition" let v ~ ( - )  denote the "reduction" of  this measure (which is itself FKG). Then 
if .~ E {A,B . . . . .  D} z satisfies *~ ~- * we have 

v~'(-) >/v.*-(-). 
FKG 

Proof The fact that Vr is FKG follows from the weaker statement that P r is FKG 
(as opposed to strong FKG).  Indeed, let q~ and 7 j denote increasing events and define, 
e.g. ~ E  {0, 1}r by 

kb = {c~ I ~(~) E 7J}. (B.11) 

It is obvious that ~ is increasing. Furthermore, 

Vr(~e) = ~ '  l~ r(~)n ÷(~) - ~ r(q') (B. 12) 

where ~ ÷ ( - )  is the indicator for qJ. Hence vr(~(3  ~)>~vr(7")vr(~). 
It also follows immediately that the various v * ( - )  are FKG because if # r ( - )  is 

strong FKG then i t * ( - )  is FKG and the above applies• Suppose that *~ ~ *. To 
establish that v* ' ( - )>~vr~v*(- )  it is sufficient to show that this is the case if  we 
raise the value of  * at a single site. In turn, if  C ~ > C and C(i) is notation for the 
event that the ith site is in the state C, this is equivalent to showing, in the case of  
arbitrary F that vr ( - [  Ct)~FKG Y F ( - - I C )  • However,  the weights defined by 

J" #(~) if  ~ ( i ) = C  or C ' ,  
w~,(~) = (B.13) 

• "~ ep(~) otherwise 
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still satisfy the lattice condition. The event ~ ( i ) ~  C is decreasing and the event ~(i)>~ C'  

is increasing. Calling the measure that result from the weights in Eq. (B.13) / ~ . ( - ) ,  

and letting q~ denote any positive event, we have 

l{i,(H l ~(i)>~C')>~l{k(H)>-p~(H l ~(i)<~ C ) . (B.14) 

and we get the dominance of  I ~ r ( - I C ' ( i ) )  over / ~ r ( - I C ( i ) )  by continuity. By "'in- 
tegrating down" (as in the first argument in this proof)  we get the desired dominance 
for the v's. The only unanswered claim is the strong FKG property for the measures 

v i - ( - ) ,  i.e. i f #  E {0, 1} -~ we need that V r ( -  i #) is still FKG. Without loss of  generality, 
we may consider the case where # consists only of  l ' s ,  i.e. by considering a smaller 
lattice. 

Let us prove the statement by the following inductive scheme: We claim that for 

all finite lattices F, for all ~ C F, for all boundary conditions * on F\--- and for all 
K C F, the measures v * ( - I ( ( K ) - ~  l)  are FKG and satisfy 

,,~(- I~(K)-  l) ~< v~'(- I~(K)-  l) 
FKG 

if  * -< *'. This statement has evidently been demonstrated if ]K] = 0. Assuming that this 
holds for [K[ = k, let us add an additional site, say the site i to the set K: /~ = K U {i}. 

Starting on the lattice Z \{ i}  consider the measures V * ' A ' ( [ ~ ( K )  =-- 1) . . . . .  v *'D~ 

( -  [ ~(K) _= 1 ) defined by fixing the value at the site i to be A . . . . .  D. By the inductive 

hypothesis, these measures are FKG and satisfy 

,,*.-.A'(- I~( / ( ) -  l ) >  ... > v.*-,/"(-I ~(/()~ 1). (B.15) 
FKG FKG 

Now the desired measure, v * ( - t  ~(/£) - 1), is seen to be a convex combination of  
these measures. However  (cf. [33, Proposition 2.22]) it is not difficult to show that the 
convex combination of  FKG measures that have a definitive FKG ordering is itself an 

FKG measure. Thus we have that v * ( - [  ~(/~) - 1) is FKG. We are not quite done 
because we still have to verify that if *' >- *, then v * ' ( -  [ {(/£) = 1) FKG dominates 

v * ( - [  {(/£) ~ 1). However,  we may establish this by raising the boundary values (of  
• ) one at a time. In this case, the result may be obtained by pretty much the same 
technique that was used in the [K I = 0 case: Run through the whole procedure with an 
"unconditioned" measure that is concentrated on two values for the targeted site of  • 

and the desired dominance follows from the newly acquired FKG property. 

B.3, Back to multicolors 

In this appendix, we reanalyze the orthodox region and beyond (A > 2) from the 
perspective of  the multicolored representation of  Section 2. The principal motivation is 
to provide support for the reasonable picture that under some conditions of  symmetry 
and ferromagnetic orthodoxy, (a) the grey reduction of  the multicolored measure is 
FKG and (b) Ferromagnetism occurs if  and only if there is percolation of  blues. Partial 
results for (a) and (b) can be found for the four-state model outside the reformed 
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region. However, as an algorithmic tool, what follows is of limited use in its present 

form; the paper is self-contained without this appendix and the appendix should be 
omitted on a first reading. 

Recalling that in the multicolored representations, some of the bonds are oriented, 
for simplicity, let us exploit the bi-partite nature of  the lattice and point all bonds from 

the even to the odd sublattice. Our working notation will be as follows: blue bonds, as 
always, force the neighboring values of the spins into the same state and red ~: signifies 

that the odd partner differs from the even partner by zkl. We still assume symmetry 

(g0,+1 = g0, I) so the two species of  red bonds have the same a priori weights. 
First, let us observe that in the orthodox region, there is a connection between the 

grey reduction of the multicolored measure and a different sort of  reduction of the 
duplicated Ising representation featured in Section 3.3. 

Proposition B.4. Consider the two layer measure v~2,r2),e(-) for the standard AT model 
with p K = p r =  1 - e It(A-l) and ph-~= 1 - e -1~(2-~) defined for the region 2~>A>~l 

on the configurations (~o~., co~,~o~-~). Let #~;/~(-) be the grey measure reduced from the 
multicolored representation of this model as defined in Eq. (2.10). Define ¢=~o,  V 

~o~ V ogK~, i.e. for each bond b, ¢ (b ) - -0  if ~o~(b)= o&(b)= ~o~-~(b)= 0 but is one if any 
bond is "visible". Then g~;l~(-) is equal to the "visually" projected measure: 

~; (C J= Z 
(t~(tJ~f VoJrVIot,'r 

Proof The easiest method is via Edwards-Sokal weights for the two measures. Let 

denote a grey configuration and let ~(f) denote a legitimate coloring of f by blue and 
red + bonds. Let Rb = e/}A - -  1 and Rr  = e [3(A- I )  _ 1 denote the fugacity factors for blue 
and red bonds. We may write the weights: 

RN¢ (~) i~ N - (~) R N, + (~) W(~)= Z l, . . . .  ' -D(_a,~) (B.16) 
o- 

where D(_a,~) is one if the bond and spin configuration are consistent and zero other- 

wise. (Note that if the old D(~) is zero then D(_a,~) will vanish for all _a.) It should 
be recalled that within each connected bond-cluster of  a multicolored configuration ~, 
the relative orientation of the spins is completely determined. In particular, if ~ and ~ 
have the same bonds but a different coloring then D(_a, ~) and D(_a, ~ )  cannot both be 
one for any spin configuration _a. 

Let £2(~) denote the set of  all the configurations in the duplicated Ising representation 
that would contribute to ~: 

Q(()---- {~  I ~-  V ~  V @K~-- ~} (B.17) 

- G  and let us temporarily denote the visually projected measure as /~A;IJ: 

~ G  It~;f~ cx Z Ar Y(2,2),p(Og) . (B.lSa) 
~ o E f 2 G )  



L. Cttayes, J. Machta/Physica A 239 ( 1 9 9 7 )  542 601 599 

We now express the weights AT Y(2,2),P in Edwards-Sokal  form, using fugacities as op- 
posed to Bernoulli prefactors: 

~G ~" ~1+4;/](g) ')( ~ --rRX{(t)~)RN((tJ)l~X{--r - ...... )~-'z__., A(¢o, ff) (B.18b) 

where (as it happens) p~./(1 - p ~ ) = R r =  p+/(1 - p~), L =- p~/ (1  -p~-+) e/~t2 i ~  l 

and A((o,~_) was defined in Eq. (3.27). We exchange the order of  summations in 
Eq. (B.18b) and notice that each _a that has A((o,o-)= 1 for some co ~ f2(~) uniquely 
determines a legitimate coloring of  ~; i.e. a ~(~) such that D(~,_~)= I. We thus have 

~G R,. + R,+ L ' >AOo, a_). (B.19) 

~(~) g:o(~,+)= t ,,~cQ(C 

Now for fixed _a (with D ( ~ , o ) =  1 for some ~) we may calculate, bond by bond, the 
combined weight of  all the co E Q(~) for which A((o ,~ )=  1. E.g. if a bond in £ is red + , 

something on this bond is required from ~) since (o c (2(~); depending on the value of  _a 

at the even site, the required bond is a t,-bond with no >bond or the other way around. 

In any case, the result for every red + is a factor of  R,- and similarly for all the red- 
bonds. On the other hand, if a bond in ~ is blue then co is allowed to be anything except 
completely empty on that bond. This yields a factor of  (R,. + 1 )(Rr + 1 )(L + 1 ) - 1 = Rt,. 
Hence, we arrive at 

= Z W ( ~ )  (x i,~:#(~). [] (B.20) 

;(O 

An immediate and pleasing consequence is 

Corollary. In the orthodox region, the grey measures enjoy the FKG property. 

Proof  If A A([)  is an increasing function, it is clear that ,4"(03)= A(cu,, V ~u+ V ~,)~, ) is 
increasing. Now, in general, /tAc:#(A)= v(~r2),p(A~). Thus, if A and B are both increasing, 

• " ~  > .  , .4  r " ,4 r ~ - -  ( ;  A G It5~:[I(AB)=vi4y2),p(AB)~'~(2,2),p(A)vl2,2),p(B) ItA:[~( )/~,I:/~'(B) - [] 

For the general case, A ~> l, we have the following, incomplete result. 

Proposition B.5. Consider any infinite volume multicolored measure for the AT model 
in the region A >~ 1 that emerges as a limit of  blue-wired stated corresponding to O's at 
the boundary. Let P~( i )  denote the (possibly subsequential) limiting probability that 
the site at i is connected to the boundary by a path of  blue bonds and let P ~ ( i )  denote 
the limiting probability that i is connected to the boundary by all paths use at least 
one red bond. In the corresponding spin system, let po(i), p+t(i), p - l ( i )  and p2(i) 
denote the probability of  observing the spin-state 0, +1,  - 1  or 2 at the site i and 
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define the magnetization at i as ~(i)=(po(i)-  p2(i),p+l(i)- p-i(i)). Then, in this 
state, rfi(i) ¢ 0 iff P~(i) ~ O, i.e. there is positive magnetization in this state if and 

only if there is percolation of blue bonds. Furthermore, if there is no blue percolation 
in any limiting state, the spontaneous magnetization is zero. 

Proof We may consider the situation in finite volume and the desired conclusions 
will hold in the limiting state. I f  the site at i is disconnected from the boundary, the 

contribution to all four densities is equal and if the site is blue connected to the (blue 
wired) boundary, the contribution is exclusively to po(i). Let ~ denote a (legitimate) 

configuration in which each path from i to the boundary goes through at least one 
red bond. Let CB(i) denote the set of  sites that can be reached from i by a path 

that uses only blue bonds (which may consist of  the site i alone). Now consider the 
collection of red bonds that connect a site in Cs(i) to a site outside CB(i) and let 

~#(i) denote the configuration that is identical to ~ except that the above-mentioned 
red bonds have reversed signature: red + ~ red- .  It is clear that if ~ is a legitimate 

configuration then so is ~#(i). Indeed, any elementary loop either makes no use of 
these bonds or uses two of them as it passes in and out of  Cs(i). In the latter case, 
the oriented sum around the loop may change by four but this is equivalent to zero. It 

is also obvious by the red+/red - symmetry that the probability of ~#(i) is the same 
as the probability of ~. Now, with the identification of any fixed boundary condition 

in the spin system, it is not hard to see that if  a i ( ~ ) =  0 then ~Ti (~#( i ) ) z  2 and vice 

versa while if a i (~)  = ± 1 then ai(-J(i)) = ~ 1. Thus, in any boundary condition, the 
contribution of these configurations to rh(i) is zero. So, if there is no blue percolation 

in any state, the spontaneous magnetization vanishes and furthermore, in the wired 
state, rfi(i) is exactly (P~(i), 0). [~ 

Remark. For the region A > 2, we must be content with Proposition B.5 as it stands. 
When 1 ~< A ~<2, we know from the representation of Eq. (3.20) that blue-wired bound- 
ary conditions, which are equivalent to the usual wired boundary conditions in this 
representation, are exactly the ones that produce the spontaneous magnetization in the 

limiting state. Thus we have non-uniqueness if  and only if we have blue percolation in 
the blue wired state. Presumably, the same holds if A > 2 but a proof has eluded us. 
Furthermore, for any A, we cannot rule out the (absurd) possibility of  blue percolation 
in some state but no blue percolation in the blue wired state. 
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