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We study equilibrium droplets in two-phase systems at parameter values corre-
sponding to phase coexistence. Specifically, we give a self-contained microscopic
derivation of the Gibbs–Thomson formula for the deviation of the pressure and
the density away from their equilibrium values which, according to the inter-
pretation of the classical thermodynamics, appears due to the presence of a
curved interface. The general—albeit heuristic—reasoning is corroborated by
a rigorous proof in the case of the two-dimensional Ising lattice gas.
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1. INTRODUCTION

1.1. The Problem

The description of equilibrium droplets for systems with coexisting phases
is one of the outstanding achievements of classical thermodynamics. Stan-
dard treatments of the subject highlight various formulæ relating the linear
size of the droplet to a specific pressure difference. One of these, called the
Gibbs–Thomson formula, concerns the difference between the actual pres-
sure outside the droplet and the ambient pressure of the system without
any droplets. (Or, in the terminology used in classical textbooks, ‘‘above a
curved interface’’ and ‘‘above a planar interface,’’ respectively.) The stan-
dard reasoning behind these formulæ is based primarily on macroscopic



concepts of pressure, surface tension, etc. But, notwithstanding their
elegance and simplicity, these derivations do not offer much insight into the
microscopic aspects of droplet equilibrium. The goal of the present paper is
to give a self-contained derivation of the Gibbs–Thomson formula starting
from the first principles of equilibrium statistical mechanics.

While straightforward on the level of macroscopic thermodynamics,
an attempt for a microscopic theory of droplet equilibrium immediately
reveals several technical problems. First of all, there is no obvious way—in
equilibrium—to discuss finite-sized droplets that are immersed in an
a priori infinite system. Indeed, the correct setting is the asymptotic behavior
of finite systems that are scaling to infinity and that contain droplets whose
size also scales to infinity (albeit, perhaps, at a different rate). Second, a
statistical ensemble has to be produced whose typical configurations will
feature an equilibrium droplet of a given linear size. A natural choice is the
canonical ensemble with a tiny fraction of extra particles tuned so that a
droplet of a given size is induced in the system. A difficulty here concerns
the existence of a minimal droplet size as will be detailed below. Finally,
for the specific problem at hand, the notions of pressure ‘‘above a curved
interface’’ and ‘‘above a planar interface’’ have to be reformulated in terms
of microscopic quantities which allow for a comparison of the difference
between these pressures and the droplet size.

Some of these issues have previously been addressed by the present
authors. Specifically, in refs. 4 and 5, we studied the droplet formation/
dissolution phenomena in the context of the canonical ensemble at param-
eters corresponding to phase coexistence and the particle density slightly
exceeding the ambient limiting rarefied density. It was found that, if V is
the volume of the system and dN is the particle excess, droplets form when
the ratio (dN) (d+1)/d/V is of the order of unity. In particular, there exists a
dimensionless parameter D, proportional to the thermodynamic limit of
this ratio, and a non-trivial critical value Dc, such that, for D < Dc, all of the
excess will be absorbed into the (Gaussian) fluctuations of the ambient gas,
while if D > Dc, a mesoscopic droplet will form. Moreover, the droplet will
only subsume a fraction lD < 1 of the excess particles. This fraction gets
smaller as D decreases to Dc, yet the minimum fraction lDc does not vanish.
It is emphasized that these minimum sized droplets are a mesoscopic phe-
nomenon: The linear size of the droplet will be proportional to
V1/(d+1)° V1/d and the droplet thus occupies a vanishing fraction of the
system. Note that the total volume cannot be taken arbitrary large if there
is to be a fixed-size droplet at all.

The droplet formation/dissolution phenomena have been the subject
of intensive study in last few years. The fact that d/(d+1) is the correct
exponent for the scale on which droplets first appear was shown rigorously
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in ref. 15 (see also ref. 21); a heuristic derivation may go back at least to
ref. 3. The existence of a sharp minimal droplet size on the scale V1/(d+1)

was described in ref. 22, more recently in refs. 4 and 25 and yet again in
ref. 2. In the context of the 2D Ising system, a rigorous justification of the
theory outlined in ref. 4 was provided in ref. 5. We note that the existence
of a minimal droplet size seems to be ultimately related to the pressure
difference ‘‘due’’ to the presence of a droplet as expressed by the
Gibbs–Thomson formula. Indeed, from another perspective (which is more
or less that of refs. 22 and 25), the formation/dissolution phenomena can
be understood on the basis of arguments in which the Gibbs–Thomson
formula serves as a foundation. Finally, we remark that although the
generation of droplets is an inherently dynamical phenomenon (beyond the
reach of current methods) it is possible that, on limited temporal and
spatial scales, the equilibrium asymptotics is of direct relevance.

The remainder of this paper is organized as follows. In the next sub-
section (Section 1.2) we will present an autonomous derivation of the
Gibbs–Thomson formula based on first principles of statistical mechanics.
Aside from our own (modest) appreciation of this approach, Section 1.2 is
worthwhile in the present context because the rigorous analysis develops
precisely along these lines. In Section 2, we will restrict our attention to the
2D Ising lattice gas, define explicitly the relevant quantities and present our
rigorous claims in the form of mathematical theorems. The proofs will
come in Section 3.

1.2. Heuristic Derivation

Let us consider a two-phase system at parameter values corresponding
to phase coexistence. We will assume that the two phases are distinguished
by their densities and, although the forthcoming derivation is completely
general, we will refer to the dense phase as liquid and to the rarefied phase
as gas. Confining the system to a (d \ 2)-dimensional volume V, we will
consider a canonical ensemble at inverse temperature b and the number of
particles fixed to the value

N=rgV+(ra−rg) dV. (1.1)

Here, ra and rg are the bulk densities of the liquid and gas, respectively,
and the particle excess is dN=(ra−rg) dV with dV° V. Let w1 denote
the dimensionless interfacial free energy (expressed in multiples of b−1),
which represents the cost of an optimally-shaped droplet of unit volume,
and let x denote the response function, x=1

V O(N−ONP)2P, which is
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essentially the isothermal compressibility. Then, as has been argued in
ref. 4, if the parameter

D=
(ra−rg)2

2xw1

(dV)
d+1
d

V
, (1.2)

is less than a critical value Dc=
1
d (
d+1
2 )

d+1
d , all of the particle excess will be

absorbed by the background fluctuations, while, for D > Dc, a fraction of
the excess particles will condense into a droplet. Moreover, the volume of
this droplet will be (in the leading order) lD dV, where lD ¥ [0, 1] is the
maximal solution to the equation

d−1
d
l−1/d=2D(1−l). (1.3)

Note that lDc=2/(d+1) as advertised; that is to say, the droplet does not
appear gradually. Furthermore, as is of interest in certain anisotropic
situations where the droplet plays a role of an equilibrium crystal, the
droplet has a particular shape, known as the Wulff shape, which optimizes
the overall interfacial free energy for a given volume.

Gibbs–Thomson I: The Density. On the basis of the aforemen-
tioned claims, we can already state a version of the Gibbs–Thomson
formula for the difference of densities ‘‘due to the presence of a curved
interface.’’ Indeed, since the droplet only accounts for a fraction, lD, of the
excess particles, the remainder (1−lD)(ra−rg) dV, of these particles reside
in the bulk. Supposing that the droplet subsumes only a negligible fraction
of the entire volume, i.e., dV° V, the gas surrounding the droplet will
thus have the density

r̄g=rg+(1−lD)(ra−rg)
dV
V

(1+o(1)). (1.4)

Here o(1) is a quantity tending to zero as V tends to infinity while keeping
D finite (and D > Dc). Invoking (1.2) and (1.3), this is easily converted into

r̄g=rg+
d−1
d

xw1
ra−rg

1
(lD dV)1/d

(1+o(1)). (1.5)

Thus, the density of the gas surrounding the droplet will exceed the density
of the ambient gas by a factor inversely-proportional to the linear size of
the droplet. This is (qualitatively) what is stated by the Gibbs–Thomson
formula.
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In order to make correspondence with physics literature, let us assume
that the droplet is spherical—which is the case for an isotropic surface
tension. Then we have

w1=bs Sd 1
Sd
d
2−

d−1
d

and lD dV=
Sd
d

rd (1.6)

where s is the surface tension, Sd is the surface area of a unit sphere in Rd

and r is the radius of the droplet. Substituting these relations into (1.5), we
will get

r̄g=rg+(d−1)
bsx

ra−rg

1
r
(1+o(1)). (1.7)

Of course, all three formulas (1.4), (1.5), and (1.7) represent the leading
order asymptotic in 1/r. Higher-order corrections go beyond the validity of
the presented argument.

Remark 1.1. We note that equation (1.7) differs from the usual
corresponding version of the Gibbs–Thomson formula in which the x
appearing above is replaced by rg. This is due to the approximation x % rg
which is justified only in the ideal-gas limit of the rarefied phase.

Pressures above Curved/Planar Interfaces. Next we turn our
attention to the Gibbs–Thomson formula for the pressure. Here we imme-
diately run into a complication; while the density is a well-defined object in
finite volume, the pressure, by its nature, is a macroscopic commodity.
Thus, strictly speaking, the pressure should be discussed in the context of
thermodynamic limits.

In the present context we need to define the ‘‘pressure of the gas
surrounding a droplet.’’ In order to do so, we will consider two canonical
ensembles with the same number of particles given by (1.1), in volumes V
and V+gV, where gV° V. From the perspective of equilibrium thermo-
dynamics, these two situations describe the initial and terminal states of the
gas undergoing isothermal expansion. Standard statistical-mechanical
formulas tell us that the change of the relevant thermodynamic potential
(the Helmholtz free energy) during this expansion is given as the pressure
times the difference of the volumes gV. Using ZC(N, V) to denote the
canonical partition function of N particles in volume V, we thus define the
relevant pressure pV by

pV=
1
b

1
gV

log
ZC(rgV+(ra−rg) dV, V+gV)

ZC(rgV+(ra−rg) dV, V)
. (1.8)
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For finite V, gV, etc., the quantity pV still depends on gV. As it turns out,
this dependence (which we will refrain from making notationally explicit)
will annul in any limit V, gVQ. with gV/“VQ 0, where “V denotes the
boundary of V. However, we must consider a limiting procedure for which
gV also does not ‘‘disturb’’ the droplet. This is a slightly delicate subject
matter to which we will return shortly.

Our next goal is to give a mathematical interpretation of the pressure
‘‘above a planar interface.’’ As it turns out (and as is the standard in all
derivations), here the correct choice is to take simply the pressure of the
ambient gas phase. (See Remark 1.3 for further discussions.) Using
ZG(m, V) to denote the grand canonical partition function, with m denoting
the chemical potential, this quantity is defined by the (thermodynamic)
limit

p.=
1
b
lim
VQ.

1
V
log ZG(mt, V), (1.9)

Here we have prepositioned the chemical potential to the transitional value,
i.e., m=mt. By well-known arguments, this limit is independent of how V
tends to infinity provided “V/V tends to zero as VQ..

Since we are ultimately looking for an expression for the difference
pV−p., instead of (1.9) we would rather have an expression that takes a
form similar to (1.8). We might try to use the fact that log ZG(mt, V)=
bp.V+O(“V), but then the boundary term will be much larger than the
actual Gibbs–Thomson correction. We thus have to develop a more precise
representation of the grand canonical partition function. For simplicity, we
will restrict ourselves to the cases when V is a rectangular box, in which
case we expect to have

log ZG(mt, V)=bp.V+ywall “V+O(V
d−2
d ). (1.10)

Here ywall denotes a wall surface tension which depends on the boundary
conditions. The error term represents the contribution from lower-dimen-
sional facets of V, e.g., edges and corners of V in d=3. Such a representa-
tion can be justified using low-temperature expansions, see ref. 8, and/or
by invoking rapid decay of correlations. Of course, this will be discussed in
excruciating detail in Section 3 of the present paper.

Using the representation (1.10), we can now write

bp.=
1
gV

log
ZG(mt, V+gV)

ZG(mt, V)
+O 1“(V+gV)−“V+V

d−2
d

gV
2 , (1.11)

which supposes that both V and V+gV are rectangular volumes.
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Our goal is to limit gV to the values for which the error term is
negligible compared with the anticipated Gibbs–Thomson correction. First,
supposing that gV° V, we find that the difference “(V+gV)−“V is of
the order gV/V1/d. Second, assuming that D from (1.2) is finite and
exceeding Dc (which is necessary to have any droplet at all), we have
dV ’ Vd/(d+1). These two observations show that the contribution of
“(V+gV)−“V to the error term in (1.11) is indeed negligible compared
with (dV)−1/d. A similar calculation shows that the the second part of the
error term, V (d−2)/d/gV, on the right-hand side of (1.11) is negligible
compared with (dV)−1/d provided that

gV± V
d−2
d +

1
d+1. (1.12)

It is easy to check—see formula (1.23)—that (1.12) can be satisfied while
maintaining gV° dV. This observation will be essential in the forthcom-
ing developments.

The formulas (1.8–1.11) can be conveniently subtracted in terms of the
probability PV(N) that, in the grand canonical ensemble, there are exactly
N particles in volume V. Explicitly, denoting

PV(N)=
ebmtNZC(N, V)
ZG(mt, V)

, (1.13)

we get

b(pV−p.)=
1
gV

log
PV+gV(rgV+(ra−rg) dV)
PV(rgV+(ra−rg) dV)

+o((dV)−1/d). (1.14)

Here we have applied (1.12) to simplify the error term.

Gibbs–Thomson II: The Pressure. Now we are in a position to
derive the desired Gibbs–Thomson formula for the pressure. A principal
tool for estimating the ratio of the probabilities in (1.14) will be another
result of ref. 4 which tells us that, in the limit VQ.,

− log PV(rgV+(ra−rg) dV)=w1(dV)
d−1
d (Fa

D+o(1)), (1.15)

where Fa
D is the absolute minimum of the function

FD(l)=l
d−1
d +D(1−l)2 (1.16)

on [0, 1]. Since rgV+(ra−rg) dV=rg(V+gV)+(ra−rg)(a dV), where

a=1−
rg

ra−rg

gV
dV

(1.17)
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we also have, again in the limit VQ.,

− log PV+gV(rgV+(ra−rg) dV)=w1(a dV)
d−1
d (Fa

D(a)+o(1)), (1.18)

where we have introduced the shorthand D(a)=a
d+1
d D.

Supposing that gV° dV, we can write

Fa
D(a)=F

a
D −

rg

ra−rg

gV
dV

(1−lD)2+o(gV/dV) (1.19)

and thus, to the leading order in gV/dV,

b(pV−p.)

=w1
rg

ra−rg

1
(dV)1/d
5d−1

d
Fa
D+

d+1
d
D(1−lD)2+o(1)6 . (1.20)

After some manipulations involving (1.16) and (1.3), the square bracket on
the right-hand side turns out to equal d−1d l

−1/d
D +o(1). Thus we finally

derive

b(pV−p.)=
d−1
d

w1rg
ra−rg

1
(lD dV)1/d

(1+o(1)). (1.21)

In the case of an isotropic surface tension, formula (1.21) again reduces to

pV−p.=(d−1)
srg

ra−rg

1
r
(1+o(1)). (1.22)

This is the (leading order) Gibbs–Thomson correction; the one which is
usually derived (24, 29) by invoking thermodynamic considerations. We note
that here the gas-density rg in the numerator is fully justified,
cf. Remark 1.1.

Remark 1.2. We note that higher orders in 1/r—as predicted by the
‘‘exponential’’ Gibbs–Thomson formula in classical thermodynamics—go
beyond the validity of the formulas (1.15) and (1.18). In fact, as a closer
look at the V-dependence of dV and “V suggests, these corrections may
depend on the choice of the volumes V and V+gV and on the boundary
condition. We further remark that both formulas (1.5) and (1.21) have been
derived for the situation when a droplet of the dense phase forms inside the
low-density phase. However, a completely analogous derivation works for
a droplet of a low-density phase immersed in a high-density environment
(e.g., vapor bubbles in water).
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Remark 1.3. Once we have derived the Gibbs–Thomson formula
(1.21), we can also justify our choice of p. for the pressure ‘‘above a
planar interface.’’ First let us note that, in (1.21), p. can be viewed as a
convenient normalization constant—subtracting (1.21) for two different
volumes, say V1 and V2, the quantity p. completely factors out. Moreover,
if V1 ° V2, the contribution of the droplet in V2 to such a difference will be
negligible. Thus, in the limit when V2 Q. and V1 stays fixed, pV1 −pV2 tends
to pV1 −p. as expressed in (1.21). Since also the droplet in V2 becomes more
and more flat in this limit, p. indeed represents the pressure ‘‘above
a planar interface.’’

This concludes our heuristic derivation of the Gibbs–Thomson
formula. We reiterate that all of the above only makes good sense when gV
has been chosen such that

V1−
2
d+

1
d+1° gV° dV ’ V1−

1
d+1. (1.23)

As is easily checked, these inequalities represent a non-trivial interval of
values of gV. In the next sections, where we will rigorously treat the case of
the two-dimensional Ising lattice gas, the inequality on the right-hand side
will be guaranteed by taking gV=g dV and then performing the limits
VQ. followed by gQ 0.

2. RIGOROUS RESULTS

2.1. The Model

Throughout the remainder of this paper, we will focus our attention
on the two-dimensional Ising lattice gas. The latter refers to a system where
each site of the square lattice Z2 can be either vacant or occupied by one
particle. The state of each site is characterized by means of an occupation
number nx which is zero for a vacant site and one for an occupied site. The
formal Hamiltonian of the system can be written as

H=− C
Ox, yP

nxny−m C
x
nx. (2.1)

Here Ox, yP denotes a nearest-neighbor pair on Z2 and m plays the role of a
chemical potential. Note that the Hamiltonian describes particles with a
hard-core repulsion and short-range attraction (with coupling constant set
to unity).

The Gibbs measure (or Gibbs state) on particle configurations in a
finite volume L … Z2 is defined using the finite-volume version of (2.1) and
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a boundary condition on the boundary of L. Explicitly, let “L be the set of
sites in Z20L that have a bond into L and let HL be the restriction of H
obtained by considering only pairs {x, y} 5 L ]” in the first sum in (2.1)
and sites x ¥ L in the second sum. If nL ¥ {0, 1}L is a configuration in L
and n“L is a boundary condition (i.e., a configuration on the boundary “L
of L), and if HL(nL | n“L) is the Hamiltonian for these two configurations,
then the probability of nL in the corresponding Gibbs measure is given by

P n“L, b, m
L (nL)=

e−bHL(nL | n“L)

Z n“L, b
G (m, L)

. (2.2)

Here, as usual, b \ 0 is the inverse temperature and the normalization
constant, Z n“L, b

G (m, L), is the grand canonical partition function in L cor-
responding to the boundary condition n“L. We recall that, according to the
standard DLR-scheme, (16) the system is at phase coexistence if (depending
on the boundary conditions and/or the sequence of volumes) there is more
than one infinite-volume limit of the measures in (2.2). Of particular inter-
est in this work will be the measure in L×L rectangular volumes LL … Z2

with vacant (i.e., n“LL — 0) boundary condition. In this case we will denote
the object from (2.2) by Pp , b, mL .

As is well known, the lattice gas model (2.1) is equivalent to the Ising
magnet with the (formal) Hamiltonian

H=−J C
Ox, yP
sxsy−h C

x
sx, (2.3)

coupling constant J=1/4, external field h=m−2 and the Ising spins (sx)
related to the occupation variables (nx) via sx=2nx−1. The ± -symmetry
of the Ising model also allows us to identify the regions of phase coexis-
tence of the lattice gas model defined by (2.1): There is a value
bc=2 log(1+`2) of the inverse temperature such that for b > bc and
m=mt=2, there exist two distinct translation-invariant, extremal, ergodic,
infinite-volume Gibbs states for the Hamiltonian (2.1)—a ‘‘liquid’’ state
characterized by an abundance of particles over vacancies and a ‘‘gaseous’’
state, characterized by an abundance of vacancies over occupied sites.
In the Ising-spin language, these states correspond to the plus and minus
states which in the lattice gas language translate to the states generated by
the fully occupied or vacant boundary conditions. We will use O−Ppb and
O−P•b to denote the expectation with respect to the (infinite-volume)
‘‘gaseous’’ and ‘‘liquid’’ state, respectively.
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In order to discuss the Gibbs–Thomson formula in this model, we
need to introduce the relevant quantities. Assuming m=mt and b > bc, we
will begin by defining the gas and liquid densities:

rg=rg(b)=On0P
p
b and ra=ra(b)=On0P

•
b, (2.4)

where n0 refers to the occupation variable at the origin. Note that, by the
plus-minus Ising symmetry, On0P

p
b=O1−n0P

•
b and thus ra+rg=1. Next

we will introduce the quantity x which is related to isothermal compress-
ibility:

x= C
x ¥ Z

2
(On0nxP

p
b −r

2
g). (2.5)

The sum converges for all b > bc by the exponential decay of truncated
particle-particle correlations, |OnxnyP

p
b −r

2
g | [ e−|x−y|/t, where t=t(b) <.

denotes the correlation length. The latter was proved in refs. 12 and 28 in
the context of the 2D Ising model.

The last object we need to bring into play is the surface tension or the
interfacial free energy. In the 2D Ising model, one can use several equiva-
lent definitions. Since we will not need any of them explicitly, it suffices if
we just summarize the major concepts as formulated, more or less, in
refs. 14 and 26: First, for each b > bc, there is a continuous function
yb:{n ¥ R2 : |n|=1}Q (0,.), called the microscopic surface tension.
Roughly speaking, yb(n) is the cost per length of an interface with normal
vector n that separates a ‘‘gaseous’’ and ‘‘liquid’’ region.

This allows to introduce the so called Wulff functional Wb that assigns
to each rectifiable curve j=(jt) in R2 the value

Wb(j)=F
j

yb(nt) dnt. (2.6)

Here nt is the normal vector to j at the point jt.
The quantity Wb(“D) expresses the macroscopic cost of a droplet D

with boundary “D. Indeed, as has been established in the course of last few
years, (14, 19–21, 26, 27) the probability in the measure Pp , b, mtL that a droplet of
‘‘liquid’’ phase occurs whose shape is ‘‘near’’ that of the set D is given, to
leading order, by exp{−Wb(“D)}. Thus the ‘‘most favorable’’ droplet
shape is obtained by minimizing Wb(“D) over all D with a given volume.
Using W to denote the minimizing set with a unit volume (which can be
explicitly constructed (13, 17, 30)), we define

w1(b)=Wb(“W). (2.7)
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By well-known properties of the surface tension, we have w1(b) > 0 once
b > bc. We note that, as in the heuristic section, the customary factor 1/b
is incorporated into yb in our definition of the surface tension.

Remark 2.1. For those more familiar with the magnetic terminol-
ogy, let us pause to identify the various quantities in Ising language: First,
if ma(b) is the spontaneous magnetization, then we have rg(b)=
1
2(1−ma(b/4)) and ra(b)=

1
2(1+ma(b/4)). Similarly, if q(b) denotes the

magnetic susceptibility in the Ising spin system, then x(b)=x(b/4)/4.
Finally, the quantity w1(b) corresponds exactly to the similar quantity for
the spin system at a quarter of the inverse temperature.

2.2. Known Facts

Here we will review some of the rigorous results concerning the
2D Ising lattice gas in a finite volume and a fixed number of particles. In
the language of statistical mechanics, this corresponds to the canonical
ensemble. The stated theorems are transcribes of the corresponding results
from ref. 5.

Recall our notation Pp , b, mL for the Gibbs measure in L×L rectangular
box LL and vacant boundary conditions on “LL. Let (vL) be a sequence of
positive numbers tending to infinity in such a way that v3/2L /|LL | tends
to a finite non-zero limit. In addition, suppose that (vL) is such that
rg |LL |+(ra−rg) vL is a number from {0, 1,..., |LL |} for all L. For any
configuration (nx) in LL, let NL denote the total number of particles in
LL, i.e.,

NL= C
x ¥ LL

nx. (2.8)

Our first theorem concerns the large-deviation asymptotic for the random
variable NL. The following is a rigorous version of the claim (1.15), which,
more or less, is Theorem 1.1 from ref. 5.

Theorem A. Let b > bc and let the sequence (vL) and the quantities
rg=rg(b), ra=ra(b), x=x(b), and w1=w1(b) be as defined previously.
Suppose that the limit

D=
(ra−rg)2

2xw1
lim
LQ.

v3/2L
|LL |

(2.9)
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exists with D ¥ (0,.). Then

lim
LQ.

1

`vL
log Pp , b, mtL (NL=rg |LL |+(ra−rg) vL)

=−w1 inf
0 [ l [ 1

FD(l),
(2.10)

where FD(l)=`l+D(1−l)2.
We proceed by a description of the typical configurations in the con-

ditional measure

Pp , b, mtL ( · | NL=rg |LL |+(ra−rg) vL), (2.11)

which, we note, actually does not depend on the choice of the chemical
potential. Our characterization will be based on the notion of Peierls’ con-
tours: Given a particle configuration, let us place a dual bond in the middle
of each direct bond connecting an occupied and a vacant site. These dual
bonds can be connected into self-avoiding polygons by applying an
appropriate ‘‘rounding rule,’’ as discussed in ref. 14 and illustrated in,
e.g., Fig. 1 of ref. 5. Given a contour c, let V(c) denote the set of sites
enclosed by c. In accord with ref. 5, we also let diam c denote the diameter
of the set V(c) in the a2 metric on Z2. If C is a collection of contours, we
say that c ¥ C is an external contour if it is not surrounded by any other
contour from C.

While ‘‘small’’ contours are just natural fluctuations within a given
phase, ‘‘large’’ contours should somehow be interpreted as droplets. It
turns out that the corresponding scales are clearly separated with no
intermediate contours present in typical configurations. The following is
essentially the content of Theorem 1.2 and Corollary 1.3 from ref. 5.

Theorem B. Let b > bc and let the sequence (vL) and the quantities
rg=rg(b), ra=ra(b), x=x(b), and w1=w1(b) be as defined previously.
Suppose that the limit in (2.9) exists with D ¥ (0,.) and let Dc=

1
2 (3/2)

3/2.
There exists a number K=K(b, D) <. such that, for each E > 0 and
LQ., the following holds with probability tending to one in the distribu-
tion (2.11):

(1) If D < Dc, then all contours c satisfy diam c [K log L.

(2) If D > Dc, then there exists a unique contour c0 with

lDvL(1− E) [ |V(c0)| [ lDvL(1+E) (2.12)
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and

ralDvL(1− E) [ C
x ¥ V(c0)

nx [ ralDvL(1+E), (2.13)

where lD is the largest solution to the equation

4D`l(1−l)=1 (2.14)

in [0, 1]. Moreover, all the other external contours c ] c0 satisfy
diam c [K log L.

Remark 2.2. We note that, in the case D=Dc, there is at most one
large external contour satisfying the bounds (2.12)–(2.13), or no contour
beyond K log L at all. The details of what exactly happens when D=Dc
have not, at present, been quantified—presumably, these will depend on
the precise asymptotic of the sequence vL.

Remark 2.3. One additional piece of information we could add
about the contour c0 is that its macroscopic shape asymptotically optimizes
the Wulff functional, see (2.6–2.7). While the shape of the unique large
contour plays no essential role in this paper (it appears implicitly in the
value w1) we note that statements of this sort were the basis of the
(microscopic) Wulff construction, initiated in refs. 1 and 14 for the case of
2D Ising model and percolation. These 2D results were later extended in
ref. 15, 19–21, 26, 27. The techniques developed in these papers have been
instrumental for the results of ref. 5, which addresses the regime that is
‘‘critical’’ for droplet formation. Recently, extensions going beyond two
spatial dimensions have also been accomplished. (6, 10, 11) We refer to refs. 5
and 7 for more information on the subject.

2.3. Gibbs–Thomson Formula(s) for 2D Ising Lattice Gas

Now we are finally in a position to state our rigorous version of the
Gibbs–Thomson formula for the 2D Ising lattice gas. We will begin with
the formula for the difference of the densities, which is, more or less, an
immediate corollary of Theorem B.

Theorem 2.4. Let b > bc and let the sequence (vL) and the quanti-
ties rg=rg(b), ra=ra(b), x=x(b), and w1=w1(b) be as defined pre-
viously. Let D ¥ (0,.) be as in (2.9). Suppose that D > Dc=

1
2 (3/2)

3/2 and
let lD be the largest solution of the equation (2.14) in the interval [0, 1].
Let AE, L be the set of configurations (nx)x ¥ LL that contain a unique large
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external contour c0—as described in Theorem B—obeying (2.12–2.13), and
whose particle density in the exterior of c0,

rext(c0)=
1

|LL 0V(c0)|
C

x ¥ LL 0V(c0)
nx, (2.15)

satisfies the bounds

1
2
xw1
ra−rg

1
|V(c0)|1/2

(1− E) [ rext(c0)−rg

[
1
2
xw1
ra−rg

1
|V(c0)|1/2

(1+E). (2.16)

Then, for each E > 0, we have

lim
LQ.

Pp , b, mtL (AE, L | NL=rg |LL |+(ra−rg) vL)=1. (2.17)

Remark 2.5. We note that, up to the E corrections, (2.16) is exactly
(1.5) for d=2. Indeed, by Theorem B we know that |V(c0)|=
lDvL(1+o(1)) and the two formulas are identified by noting that dV corre-
sponds to vL in our setting. Due to the underlying lattice, the Wulff droplet
is undoubtedly not circular for any b > bc and the better-known form (1.7)
of the (density) Gibbs–Thomson formula does not apply.

In order to state our version of the Gibbs–Thomson formula for
the pressure, we will first need to define the pressure ‘‘above a curved
interface’’—not to mention the planar interface. We will closely follow the
heuristic definitions (1.8–1.11). Let us consider a sequence (L −L) of squares
in Z2 satisfying

L −L ‡ LL but L −L ] LL (2.18)

for all L. Let Zp , bC (N, L) denote the canonical partition function in L with
N particles, inverse temperature b and the vacant boundary condition. This
quantity is computed by summing the Boltzmann factor,

exp 3b C
Ox, yP
x, y ¥ L

nxny 4 , (2.19)
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over all configurations (nx) with ;x ¥ L nx=N. Then we let

pL=
1
b

1
|L −L 0LL |

log
Zp , bC (rg |LL |+(ra−rg) vL, L

−

L)
Zp , bC (rg |LL |+(ra−rg) vL, LL)

. (2.20)

As in the heuristic section, the quantity pL depends on the sequences
(L −L), (vL), inverse temperature b, and also the boundary condition—all of
which is notationally suppressed.

For the pressure ‘‘above a planar interface,’’ again we will simply use
the pressure of the pure (gaseous) phase. If L … Z2 is a finite set, we let
Zp , bG (m, L) denote the grand canonical partition function in L correspond-
ing to the chemical potential m and vacant boundary condition. Recalling
that mt=2, we define

p.=
1
b
lim
LQ.

1
|LL |

log Zp , bG (mt, LL), (2.21)

where the limit exists by standard subadditivity arguments.
Suppose that D > Dc and let us consider the event BE, L collecting all

configurations in LL that have a unique ‘‘large’’ contour c0, as described in
Theorem B, such that, in addition to (2.12)–(2.13), the volume V(c0)
satisfies the inequalities

1
2
rgw1
ra−rg

1
|V(c0)|1/2

(1− E) [ b(pL−p.)

[
1
2
rgw1
ra−rg

1
|V(c0)|1/2

(1+E). (2.22)

Somewhat informally, the event BE, L represents the configurations for
which the Gibbs–Thomson formula for pressure holds up to an E error.
The next theorem shows that, as LQ., these configurations exhaust all of
the conditional measure (2.11):

Theorem 2.6. Let b > bc and let the sequence (vL) and the quanti-
ties rg=rg(b), ra=ra(b), x=x(b), and w1=w1(b) be as defined pre-
viously. Let D ¥ (0,.) be as in (2.9). Suppose that D > Dc=

1
2 (3/2)

3/2 and
let lD be the largest solution to (2.14) in [0, 1]. For each E > 0, there exists
a number g0 > 0 such that if (L −L) is a sequence of squares in Z2 satisfying
(2.18) and

lim
LQ.

|“L −L |− |“LL |
|L −L 0LL |

`vL=0 and lim
LQ.

|L −L 0LL |
vL

=g, (2.23)
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with g ¥ (0, g0], then

lim
LQ.

Pp , b, mtL (BE, L | NL=rg |LL |+(ra−rg) vL)=1. (2.24)

Remark 2.7. As before, since |V(c0)|=lDvL(1+o(1)), the equality
(2.24) is a rigorous version of (1.21) for the case at hand. The rate at which
the limit in (2.24) is achieved depends—among other things—on the rate of
the convergence in (2.23). We note that the constraints (2.23) correspond to
the bounds in (1.23). In particular, there is a non-trivial set of sequences
(L −L) for which both limits in (2.23) are exactly as prescribed. Finally, the
restriction that g > 0 in (2.23) is due to the fact that from ref. 5 we have
essentially no control on the rate of convergence in (2.10). Thus, to allow
the second limit in (2.23) to be zero, we would have to do a little extra
work in order to clarify the rate at which the limits in (2.23) and (2.10) are
achieved.

3. PROOFS OF MAIN RESULTS

3.1. Proofs of Theorems 2.4 and 2.6

In this section we provide the proofs of our main results. We will
commence with Theorem 2.4:

Proof of Theorem 2.4. The proof closely follows the heuristic cal-
culation from Section 1.2. Fix an E > 0 and let us restrict our attention to
particle configurations containing a unique external contour c0 and satisfy-
ing the bounds (2.12–2.13). Recall the definition (2.8) of the quantity NL.
We will show that, under the condition

NL=rg |LL |+(ra−rg) vL, (3.1)

any such configuration is, for a suitable EŒ > 0, contained in AEŒ, L for all L.
Introduce the quantity

Next(c0)= C
x ¥ LL 0V(c0)

nx. (3.2)

The inequalities in (2.13) then directly imply

|Next(c0)−(NL−ralDvL)| [ EralDvL. (3.3)

Since we work with a measure conditioned on the event (3.1), we can write

NL−ralDvL=rg(|LL |−lDvL)+(ra−rg)(1−lD) vL. (3.4)
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But |LL |−lDvL=|LL 0V(c0)|+(|V(c0)|−lDvL) and by (2.12), the second
term is no larger than ElDvL. Combining the previous estimates, we derive
the bound

|Next(c0)−rg |LL 0V(c0)|−(ra−rg)(1−lD) vL | [ ElDvL, (3.5)

where we also used (inessentially) that ra+rg=1.
The first two terms in the absolute value on the left-hand side repre-

sent the difference between rext(c0) and rg while the third term is exactly
the Gibbs–Thomson correction. Indeed, dividing (3.5) by |LL 0V(c0)| and
noting that, by definition, Next(c0)=rext(c0) |LL 0V(c0)|, we get

:rext(c0)−rg−(ra−rg)
(1−lD) vL
|LL 0V(c0)|

: [ ElDvL
|LL 0V(c0)|

. (3.6)

Since both the Gibbs–Thomson correction—which arises from the last term
in the above absolute value—and the error term on the right-hand side are
proportional to vL/|LL 0V(c0)|, the desired bound (2.16) will follow with
some E > 0 once we show that

(ra−rg)
(1−lD) vL
|LL 0V(c0)|

=
1
2
xw1
ra−rg

1

`lDvL
(1+o(1)), LQ.. (3.7)

To prove (3.7), we note that |LL 0V(c0)|/|LL |=1+o(1), which using (2.9)
allows us to write

vL
|LL 0V(c0)|

=
2xw1

(ra−rg)2
D

`vL
(1+o(1)), LQ.. (3.8)

Using (2.14) in the form D(1−lD)=1/(4`lD), we get rid of the factor
of D, whereby (3.7) follows. Since the o(1) term in (3.7) is uniformly small
for all configurations satisfying (2.12–2.13), the bounds (2.16) hold once L
is sufficiently large. L

In order to prove our Gibbs–Thomson formula for the pressure, we
will need the following representation of the grand canonical partition
function:

Theorem 3.1. Let b > bc and let p. be as in (2.21). There exists a
number ypwall ¥ R and, for each h ¥ (1,.), also a constant C(b, h) <.
such that

|log Zp , bG (mt, L)−bp. |L|−ypwall |“L|| [ C(b, h) (3.9)
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holds for all rectangular volumes L … Z2 whose aspect ratio lies in the
interval (h−1, h).

Clearly, Theorem 3.1 is a rigorous version of the formula (1.10). Such
things are well known in the context of low-temperature expansions, see,
e.g., ref. 8. Here we are using expansion techniques in conjunction with
correlation inequalities to get the claim ‘‘down to bc.’’ However, the full
argument would detract from the main line of thought, so the proof is
postponed to Section 3.2.

Proof of Theorem 2.6. We will again closely follow the heuristic
derivation from Section 1.2. First we note that, using Theorem 3.1, we have

:bp.−
1

|L −L 0LL |
log

Zp , bG (mt, L
−

L)
Zp , bG (mt, LL)

: [ |ypwall |
|“L −L |− |“LL |
|L −L 0LL |

+
2C(b, h)
|L −L 0LL |

. (3.10)

Introducing the shorthand

PL(N)=Pp , b, mtL
1 C
x ¥ L

nx=N2 , (3.11)

invoking the assumption on the left of (2.23) and applying (2.20), this
allows us to write

b(pL−p.)=
1

|L −L 0LL |
log

PLLŒ(rg |LL |+(ra−rg) vL)
PLL (rg |LL |+(ra−rg) vL)

+o(v−1/2L ), (3.12)

as LQ.. Now, by Theorem A we have

log PLL (rg |LL |+(ra−rg) vL)=−w1(F
a
D+o(1))`vL, LQ., (3.13)

where Fa
D is the absolute minimum of FD(l) for l ¥ [0, 1]. As to the

corresponding probability for L −L, we first note that

rg |LL |+(ra−rg) vL=rg |L
−

L |+(ra−rg) aLvL, (3.14)

where

aL=1−
rg

ra−rg

|L −L 0LL |
vL

. (3.15)

By our assumption on the right-hand side of (2.23), aL converges to a
number a given by a=1−

rg

ra−rg
g. Again using Theorem A, we can write

log PLL (rg |LL |+(ra−rg) vL)=−w1(F
a
a
3/2
D
+o(1))`a`vL , (3.16)
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as LQ.. A simple calculation—of the kind leading to (1.20)—now
shows that

`a F
a
a
3/2
D
−Fa

D=
g

2
rg

ra−rg

1

`lD
+O(g2), g a 0, (3.17)

while (2.23) implies that

`vL
|L −L 0LL |

=
1

`vL

1
g
(1+o(1)), LQ.. (3.18)

Plugging these equations, along with (3.13) and (3.16), into (3.12), we have

b(pL−p.)=
1
2
rgw1
ra−rg

1

`lDvL
11+o(1)

g
+O(g)2 , (3.19)

where o(1) denotes a quantity tending to zero as LQ. while O(g) is a
quantity independent of L and tending to zero at least as fast as g in the
limit g a 0. Equation (3.19) shows that, once L is sufficiently large, a par-
ticle configuration satisfying the bounds (2.12) from Theorem B will also
satisfy the bounds (2.22). The limit (2.24) is then a simple conclusion of
Theorem B. L

3.2. Representation of the Partition Function

The goal of this section is to prove Theorem 3.1. As already men-
tioned, we will employ two basic techniques: cluster expansion and corre-
lation inequalities. The basic strategy of the proof is as follows. First we
pick a large negative number m0 < mt and use cluster expansion to establish
a corresponding representation for the partition function Zp , bG (m0, LL).
Then, as a second step, we invoke correlation inequalities to prove a similar
representation for the ratio of the partition functions Zp , bG (m0, LL) and
Zp , bG (mt, LL). Essential for the second step will be the GHS inequality and
the exponential decay of correlations for all b > bc. Combining these two
steps, the desired representation will be proved.

Let p.(m) denote the pressure corresponding to the chemical potential
m, which is defined by the limit as in (2.21) where mt is replaced by m.
(Throughout this derivation, we will keep b fixed and suppress it notatio-
nally whenever possible.) The first step in the above strategy can then be
formulated as follows:
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Lemma 3.2. Let b > bc and let p.(m) be as defined above. For each
h ¥ (1,.) and each sufficiently large negative m0, there exists a number
yp1 (m0) ¥ R and a constant C1(b, m0, h) <. such that

|log Zp , bG (m0, L)−bp.(m0) |L|−y
p
1 (m0) |“L|| [ C1(b, m0, h) (3.20)

holds for each rectangular volume L … Z2 whose aspect ratio lies in the
interval (h−1, h).

To implement the second step of the proof, we need to study the ratio
of the partition functions with chemical potentials mt and m0. Let L be a
finite rectangular volume in Z2 and let O−Pp , b, mL denote the expectation
with respect to the measure in (2.2) with vacant boundary condition. Let
NL=;x ¥ L nx. For any m0 < mt we then have

log
Zp , bG (mt, LL)
Zp , bG (m0, LL)

=F
mt

m0

ONLP
p , b, m
L dm (3.21)

and

b(p.(mt)−p.(m0))=F
mt

m0

On0Pp , b, m dm (3.22)

where O−Pp , b, m denotes the infinite-volume limit (which we are assured
exists) of the state O−Pp , b, mL . (Note that (3.22) is true with any infinite-
volume Gibbs state substituted.) Combining (3.21)–(3.22), we thus get

log
Zp , bG (mt, LL) e−bp.(mt) |L|

Zp , bG (m0, LL) e−bp.(m0) |L|
=F

mt

m0

(ONLP
p , b, m
L −|L| On0Pp , b, m) dm. (3.23)

To derive the desired representation, we need to show that the integrand is
proportional to |“L|, up to an error which does not depend on L. This
estimate is provided in the following lemma:

Lemma 3.3. Let b > bc and h ¥ (1,.). There exists a constant
C2(b, h) <. and a bounded function yp2 : (−., mt]Q R such that

|ONLP
p , b, m
L −|L| On0Pp , b, m−|“L| yp2 (m)| [ C2(b, h), (3.24)

holds for each m ¥ (−., mt] and each rectangular volume L … Z2 whose
aspect ratio lies in the interval (h−1, h).

Lemma 3.2 will be proved in Section 3.3 and Lemma 3.3 in Sec-
tion 3.4. With the two lemmas in the hand, the proof of Theorem 3.1 is
easily concluded:
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Proof of Theorem 3.1. Let h ¥ (1,.) and let L be a rectangular
volume whose aspect ratio lies in the interval (h−1, h). Fix m0 to be so large
(and negative) that Lemma 3.2 holds and let Q1(m0) denote the quantity in
the absolute value in (3.20). For each m ¥ [m0, mt], let Q2(m) denote the
quantity inside the absolute value in (3.24). Let us define

ypwall=y
p
1 (m0)+F

mt

m0

yp2 (m) dm. (3.25)

A simple calculation combining (3.20), (3.24), with (3.23) then shows that

log Zp , bG (m, L)−bp.(mt) |L|−y
p
wall |“L|=Q1(m0)+F

mt

m0

Q2(m) dm. (3.26)

Using (3.20) and (3.24), we easily establish that the absolute value of
the quantity on right-hand side is no larger than C(b, h)=C1(b, m0, h)+
(mt−m0) C2(b, h). L

3.3. Cluster Expansion

Here we will rewrite the grand canonical partition function in terms of
a polymer model, then we will collect a few facts from the theory of cluster
expansions and assemble them into the proof of Lemma 3.2. The substance
of this section is very standard—mostly siphoned from ref. 23—so the
uninterested reader may wish to consider skipping the entire section on a
first reading.

We begin by defining the polymer model. Given a configuration nL in
L, let us call two distinct sites of Z2 connected if they are nearest-neighbors
and are both occupied in the configuration nL. A polymer is then defined as
a connected component of occupied sites. Two polymers are called com-
patible if their union is not connected. A collection of polymers is called
compatible if each distinct pair of polymers within the collection is com-
patible. Clearly, the compatible collections of polymers are in one-to-one
correspondence with the particle configurations. Finally, let us introduce
some notation: We write P ¾ PŒ if the polymers P and PŒ are not compat-
ible and say that the polymer P is in L if P … L.

Let P be a polymer containing N(P) sites and occupying both end-
points of E(P) edges in Z2. We define the Boltzmann weight of P by the
formula

zb, m(P)=ebE(P)+mN(P). (3.27)
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As is straightforward to verify, the partition function Zp , bG (m, L) can be
written as

Zp , bG (m, L)=C
P

D
P ¥P

zb, m(P), (3.28)

where the sum runs over all compatible collections P of polymers in L.
This reformulation of the partition function in the language of com-

patible polymer configurations allows us to bring to bear the machinery of
cluster expansion. Following, (23) the next key step is a definition of a
cluster, generically denoted by C, by which we will mean a finite non-empty
collection of polymers that is connected when viewed as a graph with ver-
tices labeled by polymers P ¥ C and edges connecting pairs of incompatible
polymers. (Thus, if C contains but a single polymer it is automatically a
cluster. If C contains more than one polymer, then any non-trivial division
of C into two disjoint subsets has some incompatibility between some pair
chosen one from each of the subsets.) In accord with ref. 23, a cluster C is
incompatible with a polymer P, expressed by C ¾ P, if C 2 {P} is a cluster.

In order to use this expansion, we need to verify the convergence cri-
terion from ref. 23. In present context this reads as follows: For some o \ 0
and any polymer P,

C
PŒ:PŒ ¾ P

zb, m(PŒ) e (1+o) N(PŒ) [N(P). (3.29)

Since zb, m(P) [ e (m+2b) N(P) is true, this obviously holds if m is sufficiently
large and negative. The main result of ref. 23 then says that each cluster C
can be given a weight zb, m(C) (which is defined less implicitly in ref. 23),
such that for all finite volumes L … Z2 we have

log Zp , bG (m, L)= C
C ¥ CL

zb, m(C), (3.30)

where CL denotes the set of all clusters arising from polymers in L. More-
over, this expansion is accompanied by the bound

C
C: C ¾ P

|zb, m(C)| eoN(C) [N(P), (3.31)

where N(C) denotes the sum of N(PŒ) over all PŒ constituting C. With
(3.30)–(3.31) in hand, we are now ready to prove the first part of the
representation of Zp , bG (m, L):

Gibbs–Thomson Formula in Droplet Formation Regime 197



Proof of Lemma 3.2. First, we will introduce a convenient resum-
mation of (3.30). For each polymer P, let N(P) be the set of sites consti-
tuting P. Similarly, for each cluster C, letN(C) be the union ofN(P) over
all P constituting C. For each finite A … Z2, we let

Jb, m(A)= C
C:N(C)=A

zb, m(C). (3.32)

Clearly, the weights Jb, m are invariant with respect to lattice translations
and rotations, having inherited this property from zb, m. Moreover, as is
easily checked, Jb, m(A)=0 unless A is a connected set. The new weights
allow us to rewrite (3.30) and (3.31) in the following form:

log Zp , bG (m, L)= C
A: A … L

Jb, m(A), (3.33)

with

C
A: 0 ¥ A
|A| \ n

|Jb, m(A)| [ e−on (3.34)

for each n \ 0. Here |A| denotes the number of sites in A.
Now we are in a position to identify the relevant quantities. First, the

limiting version of the expression (3.33) suggests that the pressure should
be given by the formula

bp.(m)= C
A: 0 ¥ A

1
|A|
Jb, m(A). (3.35)

To define the constant yp1 (m) representing the wall surface tension, let H
denote the upper half-plane in Z2, i.e., H={(x1, x2) ¥ Z2:x2 > 0}, and let L
be the ‘‘line’’ in Z2 corresponding to the boundary of H, i.e., L=
{(x1, x2) ¥ Z2 : x2=0}. Then we define

yp1 (m)=− C
A: 0 ¥ A
A 5 L ]”

|A 5H|
|A|

Jb, m(A)
|A 5 L|

. (3.36)

Clearly, in order to contribute to yp1 (m), the set A would have to have both
A 5H and A0H nonempty. On the basis of (3.34) it can be shown that the
sums in (3.35) and (3.36) converge once (3.29) holds with a o > 0.
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Combining (3.33) with (3.35), we can now write that

log Zp , bG (m, L)=C
x ¥ L

C
A: x ¥ A
A … L

1
|A|
Jb, m(A)

=bp.(m) |L|− C
x ¥ L

C
A: x ¥ A
A ¼ L

1
|A|
Jb, m(A). (3.37)

Using the fact that A is a connected set and thus A 5 L ]” and A0L ]”

imply that A 5 “L ]”, the second term on the right-hand side can further
be written as

− C
A: A ¼ L

|A 5 L|
|A|

Jb, m(A)

=− C
x ¥ “L

C
A: x ¥ A

|A 5 L|
|A|

Jb, m(A)
|A 5 “L|

=yp1 (m) |“L|+ C
x ¥ “L

C
A: x ¥ A

1
|A|
1 |A 5Hx |
|A 5 Lx |

−
|A 5 L|
|A 5 “L|
2 Jb, m(A). (3.38)

Here Hx denotes the half-plane in Z2 that contains L and whose boundary
Lx=“Hx includes the portion of the boundary “L that contains x.
(Remember that L is a rectangular set and thus its boundary “L splits into
four disjoint subsets—the sides of L.)

Let Q1(m) denote the (complicated) second term on the right-hand side
of (3.38). LetA be the collection of all finite connected sets A … Z2. Notice
that, whenever a set A ¥A intersects “L in only one of its sides and
A 5 “L=A 5 Lx, then also A 5 L=A 5Hx, and the corresponding term in
(3.38) vanishes. It follows that, in order for the set A to contribute to the
xth term of Q1(m), it must contain at least as many sites as is the
a
.-distance from x to the sides of “L not containing x. Thus, for a given

x ¥ “L, a set A … Z2 can only contribute to Q1(m) if A ¥A and |A| \
dist(x, “L0Lx).

Since |A 5 L|, |A 5Hx | [ |A| and |A 5 “L|, |A 5 Lx | \ 1 for any A con-
tributing to Q1(m), we can use (3.34) to get the bound

|Q1(m)| [ C
x ¥ “L

C
A ¥A, x ¥ A

|A| \ dist(x, “L0Lx)

|Jb, m(A)| [ C
x ¥ “L

e−o dist(x, “L0Lx). (3.39)
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Choosing o > 0, letting G(o)=;.

n=1 e
−on <., and using L1, L2 ¥

[h−1L, hL] to denote the lengths of the sides of “L, we can bound the right
hand side by 8G(o)+2L1e−oL2+2L2e−oL1, yielding |Q1(m)| [ 8G(o)+
4hLe−

o

h
L. This in turn can be bounded uniformly in L by a constant that

depends only on h and we thus get the claim of Lemma 3.2. L

3.4. Correlation Bounds

This section will be spent on proving Lemma 3.3. We begin by recall-
ing the relevant correlation bounds. Let us extend our notation O−Pp , b, mL

for the expectation with respect to the Gibbs measure in L also to the cases
when L is not necessarily finite. (It turns out that, by FKG monotonicity,
such a state is uniquely defined as a limit of finite-volume Gibbs states
along any sequence of finite volumes increasing to L.) We will use the
notation

Onx; nyP
p , b, m
L =OnxnyP

p , b, m
L −OnxP

p , b, m
L OnyP

p , b, m
L (3.40)

for the truncated correlation function. This correlation function has the
following properties:

(1) For each m < mŒ [ mt and L … LŒ, and all x, y ¥ Z2,

Onx; nyP
p , b, m
L [ Onx; nyP

p , b, m −
LŒ

. (3.41)

(2) For each b > bc there exists a t=t(b) <. such that

0 [ Onx; nyP
p , b, m
L [ e−|x−y|/t (3.42)

for all m [ mt, all L … Z2 and all x, y ¥ Z2. Here |x−y| denotes the a.
distance between x and y.

Both (1) and (2) are reformulations of well-known properties of the trun-
cated correlation functions for Ising spins. Namely, (1) is a simple conse-
quence of the GHS inequality, (18) while (2) is a consequence of (1) and the
fact that the infinite-volume truncated correlation function at m=mt decays
exponentially once b > bc. The latter was in turn proved in refs. 12 and 21.

A simple consequence of the above observations is the following
lemma:

Lemma 3.4. Let b > bc. Then there exist constants a1=a1(b) ¥
(0,.) and a2=a2(b) ¥ (0,.) such that

0 [ OnxP
p , b, m
LŒ −OnxP

p , b, m
L [ a1e−a2 dist(x, LŒ0L) (3.43)
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holds for all m [ mt, all (not necessarily finite) volumes L … LŒ … Z2 and all
x ¥ L.

Proof. See, e.g., formula (2.2.6) from ref. 21; the original derivation
goes back to ref. 9. L

Now we can start proving Lemma 3.3:

Proof of Lemma 3.3. We begin by a definition of the quantity
yp2 (m). Let H be the upper half-plane in Z2, see Section 3.3. Then we define

yp2 (m)=C
a \ 1

(On(0, a)P
p , b, m
H −On0P

p , b, m
Z
2 ), (3.44)

where (x1, x2) is a notation for a generic point in Z2. By Lemma 3.4, the
sum converges with a m-independent rate (of course, provided m [ mt).

Let L be a rectangular volume in Z2 with aspect ratio in the interval
(h−1, h). Let us cyclically label the sides of L by numbers 1,..., 4, and define
H1,...,H4 to be the half-planes in Z2 containing L and sharing the respec-
tive part of the boundary with L. Let us partition the sites of L into four
sets L1,..., L4 according to which Hj the site is closest to. We resolve the
cases of a tie by choosing the Hj with the lowest j. Now we can write

ONLP
p , b, m
L −|L| On0P

p , b, m
Z
2 =C

4

j=1
C
x ¥ Lj

(OnxP
p , b, m
L −OnxP

p , b, m
Hj

)

+C
4

j=1
C
x ¥ Lj

(OnxP
p , b, m
Hj

−On0P
p , b, m
Z
2 ). (3.45)

If it were not for the restriction x ¥ L, the second term on the right-hand
side would have the structure needed to apply (3.44). To fix this problem,
let Sj, with j=1,..., 4, denote the half-infinite slab obtained as the inter-
section Hj−1 5Hj 5Hj+1, where it is understood that H0=H4 and
H5=H1. Clearly, Lj … Sj for all j=1,..., 4. Then we have

C
4

j=1
C
x ¥ Lj

(OnxP
p , b, m
Hj

−On0P
p , b, m
Z
2 )

=yp2 (m) |“L|− C
4

j=1
C

x ¥ Sj(L)0Lj

(OnxP
p , b, m
Hj

−On0P
p , b, m
Z
2 ). (3.46)

It remains to show that both the first term on the right-hand side of (3.45)
and the second term on the right-hand side of (3.46) are bounded by
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a constant independent of m and L with the above properties. As to the
first term, we note that, by Lemma 3.4,

|OnxP
p , b, m
L

−OnxP
p , b, m
Hj

| [ a1e−a2 dist(x, Hj 0L), (3.47)

which after summing over x ¥ Lj gives a plain constant. Concerning the
second contribution to the error, we note that OnxP

p , b, m
Hj

−On0P
p , b, m
Z
2 is again

exponentially small in dist(x, Z20Hj). As a simple argument shows, this
makes the sum over x ¥ Sj 0Lj finite uniformly in L with a bounded aspect
ratio. This concludes the proof. L
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