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Abstract: We consider systems with continuous spins and annealed dilution. We show
that, as in the discrete case, such systems often undergo a phase transition, which is
manifested in the appearance of a staggered intermediate phase. In particular, these
phases appear in systems such as the massive Gaussian model where there is no phase
transition in the undiluted system.

1. Introduction

In this paper we continue the study, initiated in [CKS], of intermediate phases and first
order transitions in annealed dilute spin systems. While in [CKS] we dealt with discrete
spin systems, in the present paper we focus on systems with continuous spins.

It is normally the case that continuous spin systems are much harder to study than
their discrete counterparts. The celebrated papers of Fröhlich, Simon, Spencer [FSS]
and Fr̈ohlich, Spencer [FS] were milestones in the rigorous understanding of the phase
diagrams of these systems. It therefore came as a surprise to the authors that the problem
of the intermediate phases for continuous annealed systems is not significantly harder
than the discrete version. On the other hand, we have much less control over the phase
diagrams of the continuous spin systems (in particular, systems with continuous sym-
metry) and of the properties of their different phases. This is reflected in the fact that our
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kotecky@cucc.ruk.cuni.cz; partly supported by the grants GAČR 202/96/0731 and GAUK 96/272.
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statements about phase diagrams of the dilute annealed systems with continuous spins
are less complete than in the discrete spin case of [CKS].

The principal results of this work are all exhibited in the simplest (and best known)
example of a continuous spin system: theXY model. Indeed, for brevity, all of the
explicit proofs will concern the two-dimensional versions of this problem; we will be
content with just stating general conditions under which analogous results can be estab-
lished in other systems.

Thus consider the Hamiltonian

H = −
∑

i,j∈Z2

(cos(ϕi − ϕj) − 1). (1.1)

Here the sum is over the nearest neighbors, and theϕ variables take values in the unit
circle, which is identified with the segment [0, 2π). The HamiltonianHs of the site
diluted version of this model is given by

Hs = −
∑

i,j∈Z2

ninj(cos(ϕi − ϕj) − 1) − µ
∑
i∈Z2

ni − κ
∑

i,j∈Z2

ninj . (1.2)

In the last equation the variablesni take on the values 0 or 1, indicating the presence or
absence of a particle at the sitei. In the formula (1.1) the constant (−1) is for convenience
only – it can be omitted without loss of generality – this is not the case in (1.2); hence
the introduction of the term with the parameterκ.

Our claim for the site dilutedXY model concerns the existence of an intermedi-
ate phase within which there are two states that are characterized by the preferential
occupation of the even/odd sublattices. This phase intercalates between the low temper-
ature/high density regime and the high temperature/low density regime.

As in the discrete case, the existence of such a phase is due toentropic repulsion.
While in the “largeq-models” this is not difficult to understand, in the continuous case
the origin of the effect is slightly more subtle. In the case, e.g. of theXY model, the
explanation goes roughly as follows. If, at low temperatures, two particles are nearest
neighbors, their spins have to be nearly aligned. In this case the available phase volume
is o(1) asβ → ∞. On the other hand if the sites are isolated, they may enjoy the full
freedom of the circle; hence an effective repulsion is provided by the relative restrictions
due to low temperature.

Our main result is that if the temperature is low (but not very low) the staggered phase
indeed exists. Namely, in a region of intermediate temperature and chemical potential,
there are (at least) the two staggered states. Moving out of the staggered phase towards
the lineµ = ∞ (the uniform undiluted system), a portion of the phase boundary is
a line of first order transitions. Here, the two staggered states coexist with the dense
phase which may or may not be magnetically ordered depending on the details of the
model. The rest of the phase boundary – the line between the staggered phases and the
uniqueness regime – is, possibly, a line of higher order transitions. We will not not make
any claims about these transitions.

The second sort of dilute systems we consider are the so called bond-dilute models.
For theXY model, the relevant Hamiltonian is given by

Hb = −
∑
〈i,j〉

ni,j

(
cos(ϕi − ϕj) − 1

)
− λ

∑
〈i,j〉

ni,j , (1.3)

where theni,j are bond occupation variables that take on the values zero or one andλ
is the bond fugacity.
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Here the results are also similar to the analogous problem for the discrete cases but,
perhaps, more surprising for continuous spins. In particular, it will be established that
extending from the pointβ = ∞, λ = 0, there is a line of first order transitions across
which the bond density – and the energy density – are discontinuous. In particular,
note that for any configuration with a fixed number of bonds, asT → 0 the energy is
independent of the arrangement of bonds. Our results indicate that nevertheless, there is
phase separation even at zero temperature.

2. Site diluted models

2.1. The two-dimensionalXY model. As in [CKS], our analysis here relies heavily on
the fact that all the systems we consider are reflection positive (RP). For two-dimensional
systems with nearest neighbor interactions, we may use reflections in the lines

{x ± y = k}, k = . . . , −1, 0, 1, . . . . (2.1)

The corresponding finite volume boxes that are invariant under such reflections are the
two-dimensional tori

TN = {i = (x, y) ∈ Z2 : |x ± y| ≤ N}, (2.2)

(or more precisely, the graphs thereof) where the standard identification of the boundary
sites is assumed. Use of the toriTN cuts down considerably on the amount of calculations
that have to be performed. However, the above described advantages occur only for the
two-dimensional case. In higher dimensions one has to consider reflections with respect
to planes perpendicular to coordinate axes as was done in [CKS].

We denote byHN the restriction of the HamiltonianHs, given by (1.2), to the box
TN . The partition functionZN,β is given by

ZN,β =
∑
ni=0,1
i∈TN

∫
exp{−βHN (nN , ϕN )}

∏
i∈TN ;ni=1

dϕi. (2.3)

This partition function serves as the normalization constant for the finite volume Gibbs
state with periodic boundary conditions,〈−〉N,κ,β,µ, which assigns to the configuration
(nN , ϕN ) a weight proportional to exp{−βHN (nN , ϕN )}.

Let us now introduce the different possible infinite volume phases of the model, the
existence of which are the crux of Theorem 2.1. They are denoted by〈−〉o

κ,β,µ, 〈−〉A
κ,β,µ

and 〈−〉B
κ,β,µ. The state〈−〉o

κ,β,µ is a small perturbation of the high density state of
theXY model. In our context it is characterized by the high probability〈χ1

i 〉o
κ,β,µ for

any site to be occupied by a particle. (Here we have usedχ1
i to denote the indicator of

the event{nN , ϕN ni = 1}.) Moreover, if we introduce the indicatorχ1,1
b of the event

that both sites of a bondb, (e.g.b = [(0, 0), (1, 0)]) are occupied by a particle, then its
expected value〈χ1,1

b 〉o
κ,β,µ is also close to one. The state〈−〉A

κ,β,µ describes the phase
where the even sublattice is preferentially occupied and similarly〈−〉B

κ,β,µ for the odd
sublattice. To characterize the state〈−〉A

κ,β,µ we introduce the indicatorχA
b which is one

when the even endpoint of the bondb is occupied and the odd endpoint is vacant and
vanishes otherwise. The indicatorχB

b is described similarly with the roles of even and
odd exchanged. The state〈−〉A

κ,β,µ is characterized by a value of〈χA
b 〉A

κ,β,µ close to one
and similarly for the state〈−〉B

κ,β,µ. We can now state:
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Theorem 2.1. Consider the two-dimensional site dilutedXY model as described by
the Hamiltonian in Eq. (1.2) withκ > 0. There exist small numbersε andκ0 and, for
everyκ < κ0, a regionF (κ) ⊂ R so that for anyµ ∈ F there exist inverse temperatures
β1(κ, µ), β2(κ, µ), andβc(κ, µ) ∈ [β1, β2] such that:

i) For anyβ ∈ [βc, β2] there exists a state〈 〉(o)
κ,β,µ, for which

〈χ1
i 〉

(o)
κ,β,µ ≥ 1 − ε

for every sitei.

ii) For any β ∈ [β1, βc] there exist two states〈 〉(A)
κ,β,µ and〈 〉(B)

κ,β,µ for which

〈χA
b 〉(A)

κ,β,µ ≥ 1 − ε

and
〈χB

b 〉(B)
κ,β,µ ≥ 1 − ε,

respectively, for every bondb.

The proof of the above theorem via the RP technology requires certain estimates of
the partition functions taken over subsets of configurations, which exhibit given pattern
behavior. In our case of the two-dimensionalXY model there are five such patterns.
The first three of them are obtained by repeated reflections of the three characteristic
patterns on the bondb, specified before Theorem 1. One has to use the reflections in
lines (2.1), until the pattern is disseminated to the wholeTN . In this way we obtain the
events:

IA
N = {nN , ϕN : ni = 1;i = (x, y) ∈ TN , x + y even,ni = 0;i ∈ TN , x + y odd},

– that the even sublattice is full, the analogous eventIB
N – that the odd sublattice is full,

and
Io
N = {nN , ϕN : ni = 1 for all i = (x, y) ∈ TN},

– that the whole box is filled by the particles. In addition we need the empty event – that
all sites inTN are vacant,

I∅
N = {nN , ϕN : ni = 0 for all i = (x, y) ∈ TN},

and the event

Ic
N = {nN , ϕN :ni = 0 iff i = (x, y) ∈ TN , x − y = 4k + 1, }. (2.4)

This last event is obtained from the elementary configurationn(0,0) = 1, n(0,1) = 1,
n(1,0) = 0 on the union of two bonds,b = [(0, 0), (1, 0)] and b′ = [(0, 0), (0, 1)], by
repeated reflections with respect to the lines (2.1), from which we exclude all lines of
the form{x − y = 2k, k = . . . , −1, 0, 1, . . .}. Elementary configurations of this type
should appear whenever the two phases – ordered and staggered – touch each other; they
form then the separating contour between the phases, which explains the superscriptc

in our notation. We denote the indicator of the above elementary configuration byχ1,1,0
b,b′ .

We denote byχA
N , χB

N , χo
N , χ∅

N , andχc
N the indicators of the corresponding events

IA
N , IB

N , Io
N , I∅

N , andIc
N . Finally, we define the partition functions, restricted to the above

five events, by
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Z∗
N,β = 〈χ∗

N 〉N,κ,β,µZN,β , (2.5)

where∗ takes five values:A, B, o, ∅ andc.
The main step in proving Theorem 1 above consists of the following estimates:

Lemma 2.2. The partition functions (2.5) for the patterns∅, A, B, o andc satisfy the
following estimates:

Z∅
N,β = 1, (2.6)

(ZA
N,β)1/|TN | = (ZB

N,β)1/|TN | = e
1
2 βµ(2π)

1
2 , (2.7)

eβµe2βκ e−1

√
β

≤ (Zo
N,β)1/|TN | ≤ eβµe2βκ 4√

β
, (2.8)

(Zc
N,β)1/|TN | ≤ e

3
4 βµeβκ(

4√
β

)
3
4 , (2.9)

where|TN | denotes the number of sites inTN and various terms in (2.6)-(2.9) may be
modified by multiplicative factors that tend to one asN → ∞.

Proof. The identity (2.6) is obvious, and (2.7) is straightforward. To get the lower bound
in (2.8) we restrict the range of integration to the product of arcs of length1√

β
, each

centered at the origin, i.e. to the set

{|ϕi| <
1

2
√

β
, i ∈ TN}.

We then replace the integrand by its minimal value and use the inequality cosϕ − 1 ≥
−ϕ2

2 . To get the upper bound, we estimate the sum
∑

i,j∈TN ,|i−j|=1(cos(ϕi − ϕj) − 1)
from above by restricting the range of summation from the set of all bonds to its subset,
which forms a maximal tree. After that the integration can be done site by site, each
contributing the factor of

∫
exp{β(cosϕ − 1)} dϕ, which can be estimated from above

with the help of the inequality:

cosϕ − 1 ≤ −
(√

2
π

ϕ
)2

, |ϕ| ≤ π.

The upper estimate (2.9) is obtained in the same way.�
Proof of Theorem 2.1.The proof of this theorem goes in the manner that is customary for
RP systems. We establish below that at very highβ and reasonableµ the ordered phase
prevails, that for the sameµ and lowerβ’s the staggered phase prevails, and finally that
their coexistence in space is ruled out in the whole interval ofβ’s (contour estimate).
We will also show that there are two different staggered phases by showing that their
spatial coexistence is suppressed.

To implement this program we start with estimates of the expectations
〈χA

b 〉N,κ,β,µ and〈χ0,0
b 〉N,κ,β,µ. By the chessboard estimate we have

〈χA
b 〉N,κ,β,µ ≤ 〈χA

N 〉
1

2|TN |
N,κ,β,µ ≤

(
ZA

N,β

Zo
N,β

) 1
2|TN |

≤
√

e e− 1
4βµe−βκ(2πβ)

1
4 , (2.10)

and
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〈χ0,0
b 〉N,κ,β,µ ≤ 〈χ∅

N 〉
1

2|TN |
N,κ,β,µ ≤ (Zo

N,β)−
1

2|TN | ≤
√

e e− 1
2 βµe−βκβ

1
4 , (2.11)

which is small for very largeβ and positiveµ. Taking into account the identity

χ0,0
b + χA

b + χB
b + χ1,1

b = 1, (2.12)

these bounds show that at low temperatures almost all sites are occupied. Hence, one
can chooseβ2 = ∞.

In the “staggered” region we estimate similarly〈χ1,1
b 〉N,κ,β,µ and 〈χ0,0

b 〉N,κ,β,µ.
Again by the chessboard estimate

〈χ1,1
b 〉N,κ,β,µ ≤ 〈χo

N 〉
1

2|TN |
N,κ,β,µ ≤

(
Zo

N,β

ZA
N,β

) 1
2|TN |

≤ 2eβ( 1
4µ+κ)(2πβ)−

1
4 , (2.13)

and

〈χ0,0
b 〉N,κ,β,µ ≤ 〈χ∅

N 〉
1

2|TN |
N,κ,β,µ ≤ (ZA

N,β)−
1

2|TN | ≤ e− 1
4βµ(2π)−

1
4 . (2.14)

It is clear, forκ small enough, that we can find aµ & 0 and aβ1 = β1(µ, κ) with
β1 � 1 such that forβ equal to (or slightly larger than)β1, the right hand sides of Eqs.
(2.13) and (2.14) are both small. To show that under these circumstances two staggered
states coexist, we need a contour estimate. A site that belongs to more than one of the
A-, B- or o- type bonds (a contour site) will be the center of aχ1,1,0

b,b′ -type event or be
part of an empty bond. The latter are uniformly unlikely in the entire specified region,
let us show that the same holds for the principal “contour term”〈χ1,1,0

b,b′ 〉N,κ,β,µ. This is
readily accomplished:

〈χ1,1,0
b,b′ 〉N,κ,β,µ ≤ 〈χc

N 〉
1

|TN |
N,κ,β,µ ≤ 1

β1/8
43/4e1/2

(2π)1/4 ×

×
e−1/2

(2π)1/4 e
1
4 βµeβκ 1

β1/4[
1+

[
e−1

(2π)1/2 e
1
2 βµe2βκ 1

β1/2

]|TN |
] 1

|TN |
≤ 1

β1/8
43/4e1/2

(2π)1/4 . (2.15)

We used here the upper bound (2.9) as well as lower bounds (2.7) and (2.8) estimating
first ZN,β ≥ ZA

N,β + Zo
N,β .

All the required ingredients have now been assembled. It is clear that a finite region
of any of the three competing phases is surrounded by contour sites. (In this case, the
relevant notion of connectivity for the contours is∗-connectedness.) It follows that for
all β in [β1, ∞), the contours are damped exponentially with their length. In the region
where the ordered indicator has small expectation, i.e.β & β1 this implies the existence
of the two staggered states. Forβ large we of course have the ordered state. Applying
Lemma (2.4) from [CKS], we may conclude that there is aβc ∈ (β1, ∞), where the two
staggered states coexist with an ordered state.�

Remark .The fact that Theorem 2.1 was proved forκ > 0 allowed us to easily demon-
strate that the staggered phase doesnot survive down to zero temperature. In fact, for
β � 1,κ fixed andµ allowed to vary, the system undergoes a first order phase transition
nearµ = −dκ, where the (almost fully) occupied state coexists with a state in which
nearly every site is vacant. Such results were established in [CKS] in the discrete cases;
here the proof is nearly identical.
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2.2. The general case.The results from the preceding section can be extended to a general
class of nearest neighbor site diluted models onZd, d ≥ 2. Namely, we consider a model
with spinsϕ taking values in a Riemannian manifoldS equipped with ana priori Borel
measureµ(dϕ). The metric onS will be denoted byρ(·, ·), the corresponding Riemann
measure isdϕ, andµ(dϕ) is supposed to be absolutely continuous with respect todϕ,
with a continuous density, such that

∫
dµ < ∞. The Hamiltonian on the torusTN has

the form

HN (nN , ϕN ) =
∑
〈i,j〉

ninjU (ϕi, ϕj) − µ
∑

i

ni − κ
∑
〈i,j〉

ninj . (2.16)

Hereµ,κ, and the occupation variablesni ∈ {0, 1} play the same role as in the particular
case (1.2) ofXY model. Forϕ, ψ ∈ S, it is supposed that the interactionU (ϕ, ψ) satisfies
the following conditions:

– U (·, ·) is measurable andU (ϕ, ψ) ≥ 0 for eachϕ, ψ ∈ S.
– There existϕ0 ∈ S such thatU (ϕ0, ϕ0) = 0.
– The minimum ofU (·, ·) at the pointϕ0 is essential: Namely, usingOr(ϕ), for any

ϕ ∈ S, to denote the neighborhoodOr(ϕ) = {ψ ∈ S ρ(ϕ, ψ) ≤ r}, we suppose that
for somek > 0 we have

max
ϕ,ψ∈Or(ϕ0)

U (ϕ, ψ) ≤ C1r
k

for r small enough.
– Attractiveness: for anyϕ, ψ ∈ S we have

U (ϕ, ψ) ≥ C2ρ(ϕ, ψ)k.

Introducing the indicatorsχ1
i , χA

b , andχB
b in the same way as in the case ofXY

model, we get the anticipated generalization. Its proof is a rather straightforward exten-
sion of the proof of Theorem 2.1 above applying the version of RP used in the proof of
Theorem 3.1 in [CKS].

Theorem 2.3. Consider the site diluted model as described by the HamiltonianHN in
Eq. (2.16) withκ > 0 and with interactionU satisfying the conditions above. There
exist small numbersε andκ0 and, for everyκ < κ0, a regionF (κ) ⊂ R so that for any
µ ∈ F there exist inverse temperaturesβ1(κ, µ), β2(κ, µ), andβc(κ, µ) ∈ (β1, β2) such
that:

i) For anyβ ∈ [βc, β2] there exists a state〈 〉(o)
κ,β,µ, for which

〈χ1
i 〉

(o)
κ,β,µ ≥ 1 − ε

for every sitei.

ii) For any β ∈ [β1, βc] there exist two states〈 〉(A)
κ,β,µ and〈 〉(B)

κ,β,µ for which

〈χA
b 〉(A)

κ,β,µ ≥ 1 − ε

and
〈χB

b 〉(B)
κ,β,µ ≥ 1 − ε,

respectively, for every bondb.
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Proof (sketch).The basic ideas have been spelled out in the above mentioned resources;
the major distinctions are technical. We consider elementary hypercubes of side 2 and
assign patternsA, B, ∅, etc. to these cubes. Any cube that does not fall into such a
pattern is part of a contour. Estimates for the partition functions associated with these
cubes are straightforward given the stated conditions. For example, the ordered partition
function per site has upper and lower bounds of the formeβµedβκβ−w with w > 0
depending on the details of the internal spin-space. Contour cubes are then listed (or
classified) and controlled with a chessboard estimate. In general, eachconstrainedsite
in the contour pattern costs a factor ofβ−w and there are not enough favorable bonds
to compensate; the details are straightforward but tedious. The upshot is that all these
objects are uniformly suppressed by inverse powers ofβ. Forκ sufficiently small and
µ > 0 we find a largeβ1, where staggered order dominates and forβ � 1, any state is a
perturbation of the fully occupied state. The claimed results follows,mutatis mutandis,
from previous derivations. �

Remark .It is evident that this theorem applies even in cases where the undiluted models
does not undergo a phase transition. Thus, for example, one can consider Gaussian lattice
field ϕi ∈ Zν with the Hamiltonian

HN (nN , ϕN ) =
∑
〈i,j〉

ninj

[
(ϕi − ϕj)2 + m2((ϕi)

2 + (ϕj)2)
]
− µ

∑
i

ni − κ
∑
〈i,j〉

ninj ,

and use Theorem 2.2 to show the existence of staggered phase.

3. Bond diluted models

3.1. The two-dimensionalXY model. We considerTN as defined in Eq. (2.2) and
the restrictionHN of the Hamiltonian in Eq. (1.3) toTN . The partition function, here
denoted byZN,β , is given by

ZN,β,λ =
∑

ni,j = 0, 1
〈i, j〉 ∈ TN

∫
exp{−βHN (nN , φN )}

∏
i∈TN

dφi,
(3.1)

wherenN denotes abondconfiguration onTN . Similarly,HN is used to define the finite
volume states〈−〉N,λ,β onTN .

Here, there are only two relevant infinite volume states:〈−〉(o)
λ,β and〈−〉(∅)

λ,β represent-
ing states with nearly all full and nearly all emptybondconfigurations. For this problem,
we consider the variableni,j itself: 〈−〉(o)

λ,β is distinguished by a value of〈ni,j〉(o)
λ,β that

is close to one, while〈ni,j〉(∅)
λ,β is close to zero.

Theorem 3.1. Consider the two-dimensional bond-dilutedXY -model as described by
the Hamiltonian in Eq. (1.3). Then for allβ sufficiently large, there is aλc(β) and a
small numberε such that at(β, λc(β)), there are two coexisting infinite volume states
〈−〉(o)

λc,β and〈−〉(∅)
λc,β with

〈ni,j〉(o)
λc,β ≥ 1 − ε

and
〈ni,j〉(∅)

λc,β ≤ ε.



Staggered phases in Diluted Systems 639

Proof. Denoting byχo
N andχ∅

N the indicators of the events that all bonds inTN are
occupied or, respectively, vacant, andZ∗

N,β,λ = ZN,β,λ〈χ∗〉N,λ,β with ∗ = o or ∅, we
start with the observation that

(Z∅
N,β,λ)1/|TN | = 2π

and

e2βλe−1 1√
β

≤ (Z∅
N,β,λ)1/|TN | ≤ e2βλ 4√

β
. (3.2)

Indeed, the first part of Eq. 3.2 is trivial and, after pulling out a factor ofeβλ for each
bond, the second part is just the estimates performed for Eq. (2.8) in the proof of Lemma
2.2. It is thus clear that asλ → ±∞, fully occupied/fully vacant states are predominant.

Next we consider the contour term. Here, the relevant contour piece occurs when
two bonds,b = 〈i, j〉 andb′ = 〈i, j′〉 on the corners of a square satisfyni,j = 1 and
ni,j′ = 0. Letχ1,0

b,b′ = nb(1 − nb′ ) denote the indicator for this event and letχc
N denote

the indicator for the event that the torus is covered by the bond pattern that is defined by
Eq. (2.4). Finally, letZc

N,β,λ denote the partition function associated with the indicator
χc

N . Then, by the chessboard estimate, we have

〈χ1,0
b,b′〉N,β ≤ [Zc

N,β,λ/ZN,β,λ]1/|Tn|. (3.3)

We claim (modulo terms that tend to one asN gets large) that (Zc
N,β,λ)1/|TN | ≤

[(2π)1/4eβλ[4/
√

β]3/4]. Indeed, this is the same sort of estimate as the bound (2.9)
and may be proved as in Lemma 2.2.

To finish this proof, it remains to show that this contour term is uniformly small if
β is large. We follow the reasoning that was used to derive the bound in Eq. (2.15) and
arrive at

〈χ1,0
b,b′〉N,β ≤ 1

β1/8

43/4e1/2

(2π)1/4
(3.4)

which is manifestly small ifβ is large. By the previously used arguments, this shows
that for some value ofλ, there is phase coexistence. �

3.2. The general case.Finally, we consider bond dilute problems with continuous spins
in a more general setting. Thus we write

HN (nN , ϕN ) =
∑
〈i,j〉

ni,jU (ϕi, ϕj) − λ
∑
〈i,j〉

ni,j (3.5)

for the Hamiltonian restricted to thed-dimensional torus of scaleN . It is supposed that
the spaceS and the potentialU satisfy the conditions spelled out just prior to Theorem
2.3; the quantitiesλ andni,j have the same meaning as in theXY -case. The following
can be established:

Theorem 3.2. Consider thed-dimensional bond-diluted models as described by the
Hamiltonian in Eq. (3.5) and satisfying the subsequently stated conditions. Then the
results stated in Theorem 3.1 hold in these cases.

Proof. The necessary modifications are similar to those required in the generalization
of the site-diluted cases; the relevant portion of [CKS] is Theorem 4.2.�
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