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Abstract: We consider systems with continuous spins and annealed dilution. We show
that, as in the discrete case, such systems often undergo a phase transition, which is
manifested in the appearance of a staggered intermediate phase. In particular, these
phases appear in systems such as the massive Gaussian model where there is no phase
transition in the undiluted system.

1. Introduction

In this paper we continue the study, initiated in [CKS], of intermediate phases and first
order transitions in annealed dilute spin systems. While in [CKS] we dealt with discrete
spin systems, in the present paper we focus on systems with continuous spins.

It is normally the case that continuous spin systems are much harder to study than
their discrete counterparts. The celebrated papersdailieh, Simon, Spencer [FSS]
and Fbhlich, Spencer [FS] were milestones in the rigorous understanding of the phase
diagrams of these systems. It therefore came as a surprise to the authors that the problem
of the intermediate phases for continuous annealed systems is not significantly harder
than the discrete version. On the other hand, we have much less control over the phase
diagrams of the continuous spin systems (in particular, systems with continuous sym-
metry) and of the properties of their different phases. This is reflected in the fact that our
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statements about phase diagrams of the dilute annealed systems with continuous spins
are less complete than in the discrete spin case of [CKS].

The principal results of this work are all exhibited in the simplest (and best known)
example of a continuous spin system: ti& model. Indeed, for brevity, all of the
explicit proofs will concern the two-dimensional versions of this problem; we will be
content with just stating general conditions under which analogous results can be estab-
lished in other systems.

Thus consider the Hamiltonian

H=- % (cosfi—¢;)~ 1) (1.1)

i,jEZ2

Here the sum is over the nearest neighbors, angthariables take values in the unit
circle, which is identified with the segment,[fr). The HamiltonianH; of the site
diluted version of this model is given by

Hy=— ) mnjcosti —¢) —D—p Yy ni—r y mny  (1.2)

1,jEZ2 =/ i,jEZ2

In the last equation the variablegtake on the values 0 or 1, indicating the presence or
absence of a particle at the sitén the formula (1.1) the constant() is for convenience
only — it can be omitted without loss of generality — this is not the case in (1.2); hence
the introduction of the term with the parameter

Our claim for the site diluted{'Y model concerns the existence of an intermedi-
ate phase within which there are two states that are characterized by the preferential
occupation of the even/odd sublattices. This phase intercalates between the low temper-
ature/high density regime and the high temperature/low density regime.

As in the discrete case, the existence of such a phase is dundrtgpic repulsion.

While in the “largeg-models” this is not difficult to understand, in the continuous case
the origin of the effect is slightly more subtle. In the case, e.g. ofXhe model, the
explanation goes roughly as follows. If, at low temperatures, two particles are nearest
neighbors, their spins have to be nearly aligned. In this case the available phase volume
is 0o(1) as@ — oo. On the other hand if the sites are isolated, they may enjoy the full
freedom of the circle; hence an effective repulsion is provided by the relative restrictions
due to low temperature.

Our mainresultis thatif the temperature is low (but not very low) the staggered phase
indeed exists. Namely, in a region of intermediate temperature and chemical potential,
there are (at least) the two staggered states. Moving out of the staggered phase towards
the line . = oo (the uniform undiluted system), a portion of the phase boundary is
a line of first order transitions. Here, the two staggered states coexist with the dense
phase which may or may not be magnetically ordered depending on the details of the
model. The rest of the phase boundary — the line between the staggered phases and the
uniqueness regime —is, possibly, a line of higher order transitions. We will not not make
any claims about these transitions.

The second sort of dilute systems we consider are the so called bond-dilute models.
For theX'Y model, the relevant Hamiltonian is given by

Hy == mij(cos; — ;) —1) =AY nij, (1.3)
(w4} {i.9)

where then; ; are bond occupation variables that take on the values zero or one and
is the bond fugacity.



Staggered phases in Diluted Systems 633

Here the results are also similar to the analogous problem for the discrete cases but,
perhaps, more surprising for continuous spins. In particular, it will be established that
extending from the poin® = co, A = 0, there is a line of first order transitions across
which the bond density — and the energy density — are discontinuous. In particular,
note that for any configuration with a fixed number of bonds]'as> 0 the energy is
independent of the arrangement of bonds. Our results indicate that nevertheless, there is
phase separation even at zero temperature.

2. Site diluted models

2.1. The two-dimension&'Y model. As in [CKS], our analysis here relies heavily on
the fact that all the systems we consider are reflection positive (RP). For two-dimensional
systems with nearest neighbor interactions, we may use reflections in the lines

{r+y=k}, k=...,-101,.... 2.1)

The corresponding finite volume boxes that are invariant under such reflections are the
two-dimensional tori

Ty ={i=(z,y) € Z?: |z £ y| < N}, (2.2)

(or more precisely, the graphs thereof) where the standard identification of the boundary
sitesis assumed. Use of the t@xi cuts down considerably on the amount of calculations
that have to be performed. However, the above described advantages occur only for the
two-dimensional case. In higher dimensions one has to consider reflections with respect
to planes perpendicular to coordinate axes as was done in [CKS].

We denote by y the restriction of the Hamiltonia¥, given by (1.2), to the box
Ty . The partition functionZ g is given by

Zng = Z /eXp{ BHN(nN, oN)} TH dep;. (2.3)
70,1 1€TN N =

This partition function serves as the normalization constant for the finite volume Gibbs
state with periodic boundary conditions;) v« 3,.» Which assigns to the configuration
(nn, ¢n) aweight proportional to eXp-GHy (ny, o)}

Let us now introduce the different possible infinite volume phases of the model, the
existence of which are the crux of Theorem 2.1. They are denoted gy, <7>é«ﬂ7u
and (—)2 5.+ The state(—)? ; is a small perturbation of the high density state of
the XY model. In our context it is characterized by the high probabilit})© g for
any site to be occupied by a particle. (Here we have wged denote the indicator of
the event{ny, pn n; = 1}.) Moreover, if we introduce the indicatar, ™ of the event
that both sites of a bont (e.g.b = [(0, 0), (1, 0)]) are occupied by a particle, then its
expected valuéxi’lﬂﬁ,u is also close to one. The sta(te>fﬁ’ﬂ describes the phase
where the even sublattice is preferentially occupied and similar fﬁ for the odd
sublattice. To characterize the state>A we introduce the indicatog;' which is one
when the even endpoint of the bohds occupied and the odd endpoint is vacant and
vanishes otherwise. The indicatf is described similarly with the roles of even and
odd exchanged. The state);! ; , is characterized by a value 6f;')/ ; , close to one

and similarly for the staté—)5 ..~ We can now state:
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Theorem 2.1. Consider the two-dimensional site dilutédy” model as described by
the Hamiltonian in Eq. (1.2) witk > 0. There exist small numbeesand ¢ and, for
everyk < ko, aregionF'(x) C R sothatfor any € F' there exist inverse temperatures
ﬂl(ﬂa /u')! 52(”3 ,LL), andﬁc(“a :U') € [ﬂla ﬁZ] such that:

i) Foranyg € [B., 3] there exists a state), , for which

O, =1

for every site.

i)y For any 3 € [$1, 8.] there exist two state@)f‘}g,“ and ( >f§}m for which

A
o) =1
and

B
<XbB>E§,[)37H 2 1_ €,

respectively, for every borid

The proof of the above theorem via the RP technology requires certain estimates of
the partition functions taken over subsets of configurations, which exhibit given pattern
behavior. In our case of the two-dimensiodal” model there are five such patterns.
The first three of them are obtained by repeated reflections of the three characteristic
patterns on the bontl specified before Theorem 1. One has to use the reflections in
lines (2.1), until the pattern is disseminated to the wi|e In this way we obtain the
events:

Ij?, ={nn,on n;=1;i=(z,y) € Ty, x +yevenn,; =0;i € Ty, z +yodd},

— that the even sublattice is full, the analogous evéht that the odd sublattice is full,
and
I ={nn,pn :n; =1foralli = (z,y) € Ty},
—that the whole box is filled by the particles. In addition we need the empty event — that
all sites in7x are vacant,

I](/i/v = {nN,goN n; = Oforallz = (ZC,y) S TN};
and the event
I ={nn,on n; =0iff i=(z,y) € Ty, c —y =4k + 1 }. (2.4)

This last event is obtained from the elementary configuratigry = 1, np1y = 1,

n@,0) = 0 on the union of two bonds, = [(0,0),(1,0)] andd’ = [(0,0), (0, 1)], by
repeated reflections with respect to the lines (2.1), from which we exclude all lines of
the form{z —y =2k, k=...,-10,1,...}. Elementary configurations of this type
should appear whenever the two phases — ordered and staggered —touch each other; they
form then the separating contour between the phases, which explains the superscript

in our notation. We denote the indicator of the above elementary configuratb@?gj})

We denote by 4, X%, X% X?\,, andx$; the indicators of the corresponding events

I, I8, I3, 1%, andI§;. Finally, we define the partition functions, restricted to the above
five events, by
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285 = (XNIN.k.BuEN B (2.5)

wherex takes five valuesd, B, o, () andc.
The main step in proving Theorem 1 above consists of the following estimates:

Lemma 2.2. The partition functions (2.5) for the patterfis A, B, o andc satisfy the
following estimates:

2 ,=1 (2.6)
(28 )17 = (28 )TN = 2P (2m)?, (27)
i 26n€ " o VYITn| < Buy28r 4

ete 73 < (2N ) <ee Zk (2.8)

(Z]C\/‘,ﬁ)l/lTN‘ < e%ﬁﬂeﬂ“( 4 )%7 (29)

VB

where|7y| denotes the number of sitesTy and various terms in (2.6)-(2.9) may be
modified by multiplicative factors that tend to oneléis— oc.

Proof. The identity (2.6) is obvious, and (2.7) is straightforward. To get the lower bound
in (2.8) we restrict the range of integration to the product of arcs of |EF\‘%h each

centered at the origin, i.e. to the set

1
{les| < 25 i€ In}.

We then replace the integrand by its minimal value and use the inequaligy-€ds>
2
—%.To get the upper bound, we estimate the. SE’J)jeTN7\i_j\=1(COS€0i — ;) - 1)
from above by restricting the range of summation from the set of all bonds to its subset,
which forms a maximal tree. After that the integration can be done site by site, each

contributing the factor of exp{3(cosy — 1)} d, which can be estimated from above
with the help of the inequality:

cosp —1< —(ggo)z, lo| < .

The upper estimate (2.9) is obtained in the same way.[]

Proof of Theorem 2.1 he proof of this theorem goes in the manner that is customary for
RP systems. We establish below that at very higind reasonable the ordered phase
prevails, that for the sameand lower3’s the staggered phase prevails, and finally that
their coexistence in space is ruled out in the whole intervat'sf(contour estimate).
We will also show that there are two different staggered phases by showing that their
spatial coexistence is suppressed.

To implement this program we start with estimates of the expectations
(XY Mm@ (X0°) N s.5..- By the chessboard estimate we have

1

1 ZA 2[Ty| . .

O N B < XN < ( Z]OV’B ) < ee #Pne=Brrp)i,  (2.10)
N,B

and
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1 18, Bk ot
OB N < <xN>§v"5,}3,,t <(2R,5) TN < Wee e Miga (2.11)
which is small for very larges and positiven. Taking into account the identity
X g gt =L (2.12)

these bounds show that at low temperatures almost all sites are occupied. Hence, one
can choosé, = co

In the “staggered” region we estimate similarly:") v ... and (xe°)n.x.5.-
Again by the chessboard estimate

1 zZo 2|TN | 1 1
06 N < X N < <z§’ﬁ> <2PGrN(Qrp) =, (2.19)
N,B

and

__1
O Nmsn < O jv‘fg‘w < (28 5) TN < emiPr(2m) (2.14)

It is clear, forx small enough, that we can findia=> 0 and a3; = f1(u, ) with
(1> 1 such that fors equal to (or slightly larger thanj,, the right hand sides of Egs.
(2.13) and (2.14) are both small. To show that under these circumstances two staggered
states coexist, we need a contour estimate. A site that belongs to more than one of the
A-, B- or o- type bonds (a contour site) will be the center thzi;o-type event or be
part of an empty bond. The latter are uniformly unlikely in the entire specified region,
let us show that the same holds for the principal “contour te(mj"l 0 )N k8,0 THIS IS
readily accomplished:

1,10 TZNT 1 44et/?
Xy IV < XN S 51 @oTe X

e=1/2 1ﬁu€ﬁn 1
(zﬂ)l 73 € /4

X T
Y TN | 17N
L 28k
1+[(2 y1/2 62 ¢ /2i|

We used here the upper bound (2.9) as well as lower bounds (2.7) and (2.8) estimating
first Zy g > Z Nt 2R

All the required |ngred|ents have now been assembled. Itis clear that a finite region
of any of the three competing phases is surrounded by contour sites. (In this case, the
relevant notion of connectivity for the contours«gonnectedness.) It follows that for
all 5in [, 00), the contours are damped exponentially with their length. In the region
where the ordered indicator has small expectationgi.g. 3; this implies the existence
of the two staggered states. Fotarge we of course have the ordered state. Applying
Lemma (2.4) from [CKS], we may conclude that there j$.a (01, o), where the two
staggered states coexist with an ordered state.[]

1 /412
< p1/8

L (2.15)

Remark . The fact that Theorem 2.1 was proved for- 0 allowed us to easily demon-
strate that the staggered phase doassurvive down to zero temperature. In fact, for
8> 1,k fixed andu allowed to vary, the system undergoes a first order phase transition
neary = —dk, where the (almost fully) occupied state coexists with a state in which
nearly every site is vacant. Such results were established in [CKS] in the discrete cases;
here the proof is nearly identical.
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2.2. The general cas@he results from the preceding section can be extended to ageneral
class of nearest neighbor site diluted model&6ni > 2. Namely, we consider a model
with spinsy taking values in a Riemannian manifafdequipped with am priori Borel
measureg:(dy). The metric onS will be denoted by(-, -), the corresponding Riemann
measure iglp, andu(dy) is supposed to be absolutely continuous with respeéito

with a continuous density, such thatly < oo. The Hamiltonian on the toru$y has

the form

Hy(n, on) = Y ninUlpi,05) — Y ni— £ Y nin;. (2.16)

(i.9) i (i.d)

Herey, x, and the occupation variables € {0, 1} play the same role as in the particular
case (1.2) oK'Y model. Fokp, ¢ € S, itis supposed that the interactibify, ) satisfies
the following conditions:

— U(:,-) is measurable and (y, v) > 0 for eachp, v € S.

— There existpy € S such thatl/(¢g, o) = 0.

— The minimum ofU (-, -) at the pointypg is essential: Namely, usin@,-(p), for any
v € S, to denote the neighborhod®l.(¢) = { € S p(p, ) < r}, we suppose that
for somek > 0 we have

max U(p,v) < CirF
©, €0 (o) (P <G

for » small enough.
— Attractiveness: for any, ¢ € S we have

Introducing the indicatorg?, x;', andx? in the same way as in the case ¥’
model, we get the anticipated generalization. Its proof is a rather straightforward exten-
sion of the proof of Theorem 2.1 above applying the version of RP used in the proof of
Theorem 3.1 in [CKS].

Theorem 2.3. Consider the site diluted model as described by the HamiltoRignn
Eq. (2.16) withx > 0 and with interactionUU satisfying the conditions above. There
exist small numbersand o and, for every < ko, a regionF'(x) C R so that for any

1 € F there exist inverse temperaturBg(x, i), B2(x, 1), andG.(x, 1) € (61, B2) such
that:

i) For any 3 € [3., 32 there exists a state)?), , for which

O, =1

for every sitei.

ii) For any 3 € [, 8.] there exist two states)®®

B .
@ . and()E)  for which

A
i), = 1—€

and

B
<XbB>Eq7[)37M Z 1- €,

respectively, for every bord
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Proof (sketch).The basic ideas have been spelled out in the above mentioned resources;
the major distinctions are technical. We consider elementary hypercubes of side 2 and
assign patternst, B, ), etc. to these cubes. Any cube that does not fall into such a
pattern is part of a contour. Estimates for the partition functions associated with these
cubes are straightforward given the stated conditions. For example, the ordered partition
function per site has upper and lower bounds of the feftre®?*3-% with w > 0
depending on the details of the internal spin-space. Contour cubes are then listed (or
classified) and controlled with a chessboard estimate. In generalceastrainedsite

in the contour pattern costs a factor@f* and there are not enough favorable bonds

to compensate; the details are straightforward but tedious. The upshot is that all these
objects are uniformly suppressed by inverse powers. &for « sufficiently small and

1 > 0 we find a larged;, where staggered order dominates and¥op 1, any state is a
perturbation of the fully occupied state. The claimed results follomgatis mutandis

from previous derivations. [

Remark .Itis evident that this theorem applies even in cases where the undiluted models
does not undergo a phase transition. Thus, for example, one can consider Gaussian lattice
field p; € Z" with the Hamiltonian

Hn(nn,pN) = Z ning [(pi — 0)> + m?((a)? + (9)3)] — 1 Z n; — kK Z niny;,
(4,5) i (i,9)

and use Theorem 2.2 to show the existence of staggered phase.

3. Bond diluted models

3.1. The two-dimensionaXY” model. We considerZy as defined in Eq. (2.2) and
the restrictionH y of the Hamiltonian in Eq. (1.3) t@. The partition function, here
denoted byZ g, is given by

ZN7ﬁ7,\ = Zni,j = O,l
<Za]> € TNfeXp{_ﬁHN@Nv(bN)} HiETN d¢17

wheren 5 denotes dondconfiguration or¥ . Similarly, H y is used to define the finite
volume state$—) y .3 on7y.

Here, there are only two relevantinfinite volume state$?; and(—){’; represent-
ing states with nearly all full and nearly all emgtgndconfigurations. For this problem,
we consider the variable; ; itself: <—>("7)6 is distinguished by a value th)(f’)ﬁ that
is close to one, whiléni_j>&% is close to zero.

(3.1)

Theorem 3.1. Consider the two-dimensional bond-dilut&d”-model as described by
the Hamiltonian in Eq. (1.3). Then for alt sufficiently large, there is a.(5) and a
small numbek such that at(3, A.(5)), there are two coexisting infinite volume states
(- 5 and(—){ ; with

<ni,j>()\oc),5 Z 1 — €
and

i)V 5 <e



Staggered phases in Diluted Systems 639

Proof. Denoting byx§, and X?v the indicators of the events that all bondsZik are
occupied or, respectively, vacant, aii ; \ = Zn . (X")n.x,8 With + = 0 or §, we
start with the observation that

(Zzw\r,ﬁ,,\)l/lf[”‘ =2r

and . 4
ezﬁ’\e_lﬁ < (Z%ﬁ’)\)l/‘TNl < ezﬁ/\ﬁ. (3.2

Indeed, the first part of Eq. 3.2 is trivial and, after pulling out a factor®ffor each

bond, the second partis just the estimates performed for Eg. (2.8) in the proof of Lemma

2.2. Itis thus clear that as— +oo, fully occupied/fully vacant states are predominant.
Next we consider the contour term. Here, the relevant contour piece occurs when

two bondsb = (i, ) andd’ = (i, j’) on the corners of a square satisfy; = 1 and

n; ;0 = 0. Letxijg, = ny(1 — ny) denote the indicator for this event and J&¢ denote

the indicator for the event that the torus is covered by the bond pattern that is defined by

Eq. (2.4). Finally, leZ§; ; , denote the partition function associated with the indicator

X%- Then, by the chessboard estimate, we have

e Ing < (2% pa/Zns ] T, (3.3)

We claim (modulo terms that tend to one Asgets large) that£5 ;5 )"~ <

[(2m)Y4eBM4//B1%/4]. Indeed, this is the same sort of estimate as the bound (2.9)
and may be proved as in Lemma 2.2.
To finish this proof, it remains to show that this contour term is uniformly small if
g is large. We follow the reasoning that was used to derive the bound in Eq. (2.15) and
arrive at
1 43/4¢1/2
(/8 (2m)H/

which is manifestly small if3 is large. By the previously used arguments, this shows
that for some value of, there is phase coexistence. [J

Xty )Ng < (3.4)

3.2. The general casdinally, we consider bond dilute problems with continuous spins
in a more general setting. Thus we write

Hy(nw, on) = > ni Ui 05) =AY i (3.5)
(4,4) (4,4)

for the Hamiltonian restricted to thedimensional torus of scal¥. It is supposed that
the spaceS and the potential’ satisfy the conditions spelled out just prior to Theorem
2.3; the quantities andn; ; have the same meaning as in tkié¢"-case. The following
can be established:

Theorem 3.2. Consider thed-dimensional bond-diluted models as described by the
Hamiltonian in Eq. (3.5) and satisfying the subsequently stated conditions. Then the
results stated in Theorem 3.1 hold in these cases.

Proof. The necessary modifications are similar to those required in the generalization
of the site-diluted cases; the relevant portion of [CKS] is Theorem 4.2.0J
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