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I. INTRODUCTION

The two-dimensional versions of the Potts and Ashkin-Teller (AT)
models enjoy the property of duality which transforms a model at high
temperature into one at low temperature. This allows for an educated guess
as to the location of points where there are phase transitions: points that
are self-dual. Here, for the Potts model, we establish that when there is a
discontinuous transition, this transition is unique and is located precisely at
the self-dual point. For the AT model, a similar statement is proved under
the proviso that all interactions are ferromagnetic.

For the 2d Potts model and its random cluster generalization, it is
universally accepted that for q < 4, the transition is continuous and is dis-
continuous for q > 4. Only part of this picture has been actually proved:
The cases q=1,2 are known to be continuous and for integer q » 1 the
transition was proved to be discontinuous [KS] by the method of reflec-
tion positivity. The preceding is dimension independent; specific to d = 2, is
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We investigate the uniqueness of the discontinuous phase transition of the
(q-state Potts model and the symmetric q = ( s x s ) cubic model (generalized
Ashkin-Teller model) on the integer square lattice with q > 1. For the ferro-
magnetic cases, when there is a discontinuous phase transition we show that the
discontinuity can only occur at a point of self-duality.

On the Unicity of Discontinuous Transitions in the
Two-Dimensional Potts and Ashkin-Teller Models

T. Baker1 and L. Chayes1

Received January 9, 1998



the result of [LMMsRS] where for all q» 1 it was shown that the transi-
tion occurs at the self-dual point (and that the free energy is analytic else-
where). Subsequently this has been improved to less extreme values of q,
see, e.g., [A]. The same general trend presumably holds for the (rxs)-AT
models although the situation is more complicated since more parameters
are involved. In any case, not much has been proved; here, at least for
integer r = s » 1 we will show there is a first order transition.

However, in the core of this paper, we will use a track that is different
from all of the above mentioned: we restrict attention to the cases q ̂  1
and r = s ^ 1 and simply acknowledge that either a discontinuous transition
occurs or it does not. In case it does occur, we prove that the transition
point is unique and located at the self-dual point.

We will actually study the graphical representation of the q-state Potts
models and the (s x s)-state AT-models. These representations, which make
sense even for non-integer values of q or s, have been shown to faithfully
describe the models in the sense that the Gibbs distributions in finite
volume with fixed boundary conditions are completely determined by the
distributions of the graphical representation ([ACCN] and [CM]). In the
regions of interest, the phase structure of these models are characterized by
the percolation properties of the graphical representation. In particular,
there are multiple Gibbs states in the spin-system if and only if there is per-
colation in the graphical representation. Furthermore, even for non-integer
values of q and s, the absence of percolation implies there is a unique state
of the random cluster model.

For ease of exposition, we will first do an explicit proof for the Potts
cases and then generalize to the AT-cases. (Notwithstanding that the latter
contains the former as a special case.) In both cases we show that if there
is a discontinuous transition—in the sense of phase coexistence of states
with differing bond density (i.e., energy density) then such a point must be
a self-dual point. Furthermore, in the high bond density phase, there is per-
colation (positive spontaneous magnetization) and in the low density phase
there is none. Thus, this is the transition point.

Our argument go along the following lines: The transition point for
the onset of percolation must have a value greater than or equal to that of
the self-dual parameter by well known arguments—namely that the place-
ment of the critical parameter at a point less than the self-dual parameter
would, through duality, violate the argument of Gandolfi, Keane, and
Russo [GKR] on the uniqueness of the infinite cluster in two-dimensions.
However, the (assumed) point of discontinuity in the bond density must be
located at a value greater than or equal to that of the critical parameter.
This is because a discontinuity in the bond density implies non-uniqueness
of the random cluster measure, which then in turn implies the existence of
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percolation. However, if a discontinuity in the bond density were to occur
at a parameter value strictly greater than that of the self-dual parameter,
duality would place a discontinuity of the vacant bond density at a value
less than the self-dual parameter. Since this would imply percolation below
the self-dual point (which is impossible) it follows that the discontinuity
occurred at the self dual point which must also be the transition point for
the onset of percolation.

II. THE POTTS MODEL

Let A denote a finite connected subset of Z2: A € Z2. Let SA denote
the sites and BA the bonds of A. The q-state Potts model is defined by the
Hamiltonian

where (a, | ie§>A) are the "spins" taking values ai e {1, 2,..., q}, 6a.a. is the
usual Kronecker-delta and aA is a spin configuration: aA e {1, 2,..., q}&A.
The partition function, at inverse temperature ft is given by

where so far (and in future as much as possible) we have neglected a dis-
cussion of the boundary conditions. Via the FK random cluster representa-
tion [FK] the partition function is given by the expression

where cue {0, l}B A is a configuration of occupied (co<ltj> = 1) and vacant
(«<i,j> = 1) bonds. The quantity V(w] is given by

with R = ef —1, |a|> the number of occupied bonds and c ( w ) the number
of connected components. Since for each at, the quantity V(co) is positive,
these weights define a probability measure which we will denote by
H9p£iA( — }• Here q need not be an integer.

A great deal is known about these measures, their finite-volume
properties, and the infinite volume limits thereof. Much of this was derived
in [ACCN], see also [CM] and the (invited!) review article [G]. Of



relevance here are the FKG properties and the connection between per-
colation and phase transitions.

We must discuss, a bit, the question of boundary conditions. In finite
volume, for all formulas as written, we have the free boundary condition
measures which, in fact, correspond to free boundary conditions in the spin
system. Alternatively, we may consider all sites that are connected to the
boundary as part of the same cluster and this interpretation of the symbol
c ( w ) defines the wired measures. (This, back in the spin-system, amounts to
setting all the boundary spins to the same value). We will denote the
influence of boundary conditions on our measures by a superscript on the A.
E.g., f tq£R

A>( — ) is the wired measure.
For q ̂  1 (which henceforth will always be assumed) both the free and

wired measures enjoy the FKG property, that is to say there are positive
correlations between events that are increasing with respect to the natural
partial order on bond configurations. A measure //1( —) is said to FKG
dominate another measure, u2( —) (defined on the same space) if, for every
increasing event stf we have ^ l ( j / ) ^ / j . 2 ( s / ) . Such a relation will be
denoted by ^( —) > F K G M 2 ( —)• For our purposes, it should be noted that
if R1>R2 , then /*£&*(-)>Fxo/f &&•(-) with #= /° r w. Further-
more, f J . q p R

A « ( —) ^ FKG PqFR A'( -)' indeed the finite volume wired measure
dominates any other random cluster measure that is defined with the same
parameters but other choice of boundary conditions.2 In particular, if
A 1 c A 2 , then the restriction of f * p r

A » ( — ) to A1 is dominated by
f*<FJc,A""( -) which facilitates passage to the infinite volume limit.

Percolation, in this model, is defined by the limit, as A /• I2 of the
probability that a fixed site is connected to the boundary of A in the wired
measure on A. If this limit (which is easily shown to exist) is positive, we
say there is percolation. When there is no percolation, there is a unique
infinite volume limit of fi9

F£A( —) independent of the finite volume bound-
ary conditions and consequently, for integer q, a unique limiting Gibbs
state for the corresponding spin-system.

For A € Z2, the dual lattice is defined as follows: For each bond in B^
consider the traversal bond that connects two points of (z + \)2. The graph
consisting of the resulting bonds and their endpoints will be denoted by A*.

2 For integer q, all "other boundary conditions" are those that can be obtained via a specifica-
tion of the spin-state at the boundary. In the random cluster representation, this divides the
boundary into components each of which is treated as a single item in the counting of c(co)
and between which connections are forbidden. For general q, these boundary conditions may
be directly implemented (with no restriction on the number of separate boundary com-
ponents) which is more than sufficient for present purposes. As is not hard to see, the restric-
tion of a finite volume measure of this type to a subvolume is a combination of measures
of this type for the subvolume.
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The measures [*'/;£A#( —) induce a measure on the bond configurations of
the dual lattice by declaring a dual bond to be occupied/vacant if the
corresponding "direct" bond is vacant/occupied. As is well known, these
dual measures are also random cluster measures with the same q and bond
parameter R* = q/R. However, the boundary conditions also transform
under duality; in particular, w<-»/ Ignoring such fine distinctions the self-
dual point is therefore just when R = R*, i.e., R = ^fq.

In order to investigate a first order transition characterized by a dis-
continuity in the bond density we must give a precise definition of this
object. What is to follow are standard thermodynamic arguments borrowed
from the theory of spin systems. We begin with a definition of the free
energy:

where the finite lattices, A € Z2, tends to infinity e.g. in the sense of Van
Hove, Z% is the partition function with boundary conditions #, and \A\
is the number of sites in A. As is well known, this limit exists independent
of the sequence and boundary conditions and —(if is convex as a function
of p or log R. Hence f is differentiable for a.e. R, has left and right
derivatives for all R and the derivative (with respect to log R) is monotone
increasing (i.e., non-decreasing).

In finite volume, consider the overall bond density in the #-state:

Then we claim that at points of continuity of f', the limit of n% exists and
is in fact equal to —R(d/dR}(fif(R})—and this defines the bond density.
Indeed, writing R = er, then for boundary conditions # we see that

(by Jenson's inequality) where < — >^q
/1

R denotes the expectation with
respect to (J.l>p£A#( —). Taking A /"Z2 along any (thermodynamic) sequence
for which n* tend to a definitive limit, we get

Thence
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where f'+ denotes the right and left derivatives (which exist by convexity)
respectively. Thus, whenever the derivative of f exists, the overall bond den-
sity: limA/:Z2(l/\A\)^N(co)^^A=n(R) exists independent of the limiting
state.

Next we demonstrate that at points of continuity of f ' ( R ) , there is a
unique state among the translation invariant states and that this state has
the appropriate local bond density equal to n(R}. (The factor of two is
just the bond/site ratio in d=2.) Finally, at points of discontinuity, we
show that there are (translation invariant) states that achieve the upper
and lower density.

First suppose that R is a point of continuity of n(R). Let nqp£a( —)
denote any limiting translation invariant state which we suppose has been
constructed from finite volume states (i%£A°( —). Let pa denote the bond
density in this state; we claim that 2p"(R) = n(R). Indeed, let Sm denote
any thermodynamic sequence of volumes and let t| denote the boundary
conditions constructed on Sm so as to minimize <^V>p^sn. Now despite
these boundary conditions, by the previous argument this quantity when
divided by |Sm| will converge to n(R). Thus, for m large, let us write
(l/\Sm\XNy^sta = 2n(R) + em with em -> 0. On the other hand, for
Ak-=>Sm, the restriction of /*%£A<>( —) to Sm is a candidate for the mini-
mizer. For a bond b, let Db,(co) denote the indicator that b is occupied.
Then we have ( 1 / A m ) ZbeBAM <DbM>f^ =2p" + 8k>n(R) + em. Thus,
ultimately, 2 p a > n ( R ) . Running the same argument where we maximize the
bond density in finite volume (here using the wired boundary conditions)
we may conclude that 2 p a ^ n ( R ) . Evidently, the bond density is the same
in all translation invariant states—in particular equal to the density of the
wired state. Now a priori, nqp£w( —) ^FK.G/*$£<,( -) since this is satisfied in
the finite volume Ak and Aa

k states. But if the individual bond probabilities
are the same, it follows by the corollary to Strassen's theorem (see [L],
p. 75) that /*%£„(-) = HFKa( -) Evidently at points of continuity off'(R)
there is but a single translation invariant state.

Finally, if R0 is a point of discontinuity we will produce translation
invariant states for which the bond densities are exactly 1 /2n ± (R 0 ) . In par-
ticular let Ak / Z2 and r\k so small that for any boundary condition # on
Ak, the measures H'F£°A*'"'( — ) and n9p$>A*( — ) differ by less than Sk/\Ak\
(in, say, the variational norm) where 9k -» 0. Let Ek •=> Ak be so large that
(say) the wired measure at R = R0 — n]k on Sk restricted to Ak differs from
the limiting measure by at most another 9k/\Ak\. Using these restricted
measures to provide boundary conditions on Ak but using R = R0 we get
an approximately translation invariant measure with approximate bond
density of2n_(R0). Letting Ak /Z2 (along a subsequence if necessary) half
the desired result follows. Similar arguments apply to the upper density.
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Thus a discontinuity in the bond density is reflected by the exist-
ence of these multiple states with different bond density. Since the absence
of percolation in the graphical representation would imply uniqueness of
the limiting state, a discontinuity in the bond density is therefore marked
by the occurrence of percolation (but not necessarily the onset of percola-
tion).

We have assembled all the necessary ingredients:

Theorem 2.1. The random cluster model on the square lattice has
a unique discontinuity in the bond density—unless no discontinuity exists
at all. If this discontinuity of the bond density n(R) indeed exists, it occurs
precisely at the self-dual point R = RSD = ̂ fq and coincides with the
magnetic ordering transition/percolation threshold.

Proof. We begin by defining the three relevant bond density
parameters: Rd, Rc, and RSD. The parameter Rd is the bond density
parameter at which the purported discontinuity in the bond density occurs,
Rc is the percolation threshold for the FK representation of the model, and
RSD is the self-dual parameter as defined above.

Since, for q > 1, these models with free or wired boundary conditions
satisfy all of the necessary conditions, we are able to apply the result of
[GKR] concerning the uniqueness of the infinite cluster in two-dimen-
sions. (Although their proof was technically for site models on Z2, the
result holds for bond problems as well.) This result excludes the possibility
that RC<RSD, for the following reason: By the monotonicity of the
measure (fiR( — XFKO/"(- ) f°r ^ i<^2) there is percolation for all
R > Rc. Thus, from the perspective of the dual model, there is percolation
(of dual bonds) for all R* > Rc i.e. for all R <q/Rc = R*. If Rc were below
the self-dual point, this would imply an interval, namely (Rc, Rc) at which
there would be simultaneous percolation in the direct and dual model. We
are thus left with the relation, RC^RSD.

Now by definition, in the region R<RC, there is no percolation and
hence the (limiting) random cluster measure is unique. A discontinuity
in the bond density, however, implies non-uniqueness of the random
cluster measure and hence must occur at or above Rc. Thence, so far,
Rd>Rc>RSD.

However, it is also not possible to have a discontinuity in the bond
density at any Rd above Rc or RSD because then, by duality, there would
be another discontinuity at Rd* = q/Rd—a discontinuity in the density of
bonds implies a discontinuity in the density of vacant bonds. We are left
with Rd=Rc = RSD. |
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III. THE ASHKIN-TELLER MODEL

The Ashkin-Teller model [AT] can be described as a four state spin
system. At each site i of the lattice A there is a spin si that may be written
in "double Ising form:" si = (Ki, Ti), with Ki= +1 and Ti= +1. In the sym-
metric case, the Hamiltonian is of the form:

The above Hamiltonian can be generalized to the case where the r- are
r-state and the T, are estate Potts variables. This is the (r, 5)-cubic model.
We will be working in the "orthodox ferromagnetic region" were K^0 and
L # 0 and restrict attention to the case r = s. Observe, then that if L = 0 we
have two decoupled s-state Potts models while at k = 0, we have an
s2-state Potts model.

In the standard FK-type expansion for this model [CM] a bond con-
figuration, w is made up of three components: co = (COK, wf, coKr). The bond
configuration COK is the configuration of occupied bonds occurring between
neighboring sites on the K-spin lattice, similarly for a>T while ct>KT is the con-
figuration of occupied double bonds each of which have the same effect as
two occupied single bonds. Here we will use a slight refinement.

The configurations co can be used to define the configurations Q =
(QK, QT) by the rules QK = wK v cwKr and i2r = cor v WKT, Thus these con-
figurations for the K and T layers count the presence of either a single or
double bond. As derived in [CM] and [PfV], these ^-configurations are
given the graphical weight

where

Certain properties of the rxs cubic model in the orthodox region
(A ^B in this formulation) that are essential to our argument were proved
in [CM]. There, it was shown that the percolation properties of the
graphical representation characterize the phase structure of the spin-system
along the same lines as the case of the Potts model. Specifically, there are
multiple Gibbs states if there is percolation of the QK or the Qr bonds and
in the absence of either sort of percolation, there is a unique limiting state.
Thus, as with the Potts model, when there is a discontinuity in any of
the relevant bond densities (WK, WT, COK , T , QK or Qr] there must be i2-type
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percolation in at least one of the layers. In the symmetric case (but only
when A ^ B) it is not hard to show that percolation happens in both layers
simultaneously.

We now show that the random cluster measures of the Ashkin-Teller
model as defined by the weights in Eq. (9) have various relevant FKG
property in the region of interest.

Lemma 3.1. Let fj.sA B( —) denote the above described random
cluster measures associated with symmetric the AT-models. If s > 1 and
B> A then, with the natural partial order on configurations Q,

(1) The measures HS
A<B( — ) have the strong FKG property and

(2) If A' ^ A and B' = B then

Proof. We begin with part (1) . It is necessary to demonstrate the
FKG lattice condition, i.e.,

Let us rewrite the weights

where we used the fact that |QK v Qr |+ |QK A Q| = |QK| + |Qr|. We will
show that the lattice condition holds for each separate factor.

The factors sc(a^ and sc(a*] work exactly as in the usual random
cluster case, i.e., c(n1 v 12) +

 c(>1i A ^2) ̂ c(n\) + c(rj2) for any bond con-
figurations n. Further, for the factor Aia^ + *a^, the desired result is an
equality. Thus we are down to showing the lattice condition for the quan-
tity [B/A~\^"Af2''. To this end, it is sufficient to demonstrate the inequality
in the case where the configurations Ql v Q2 and ^i A i22 differ by two
bonds. Thus let a and b denote two separate bonds and Q a configuration
not containing a or b. Then we must show

or, since B^A, that the sums of the exponents satisfy this inequality.
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Now the bonds a and b can be in one of two situations: they can lie
on top of one another, one in each layer, or they can be in separate loca-
tions altogether. In the latter case, we have equality. Indeed, suppose that
a is in the K-layer. Then |(Q v a)K A Qr| increases by one over |QK A Qr|
if (and only if) Q has a matching bond for a in the r-layer. But in this case,
|(Q v a v b)K A (Q v b ) r | has also increased by one over |(Q v b)K A
(Q v b)r |. Furthermore, if there in no matching bond for b in Q then
|(Q v a v b)K A (Q v b ) T | = |(Q v b)K A (Q v b ) T | and if both a and b have
matching bonds then |(jQ v a v b)K A (Q v a v b)r = |i2K A i2r| +2. Thus,
we are down to the case where a and b are in the same location. But here,
|(Q v a v 6)K A (Q v a v b ) r | = |QK A i2T| + 1 while |(J2 v a)K A (Q v a)T |
and |(Q v 6)K A (£2 v b)r both equal |£2K A Qr|.

For the proof of part (2) we simply write the primed weight as the
unprimed weight augmented by a function:

Since this augmenting function is manifestly an increasing function the
result is apparent. |

The duality relations for these graphical representations were estab-
lished in [CM] and [PfV] generalizing the result of [DR]. In summary,
for a given configuration on the regular lattice, the dual configuration is
constructed by occupied bonds of QK and QT representing vacant Q* and
Q* bonds on the dual lattice. The dual parameters, A* and B* are found
to be given by the relations A* =sB - 1 , and B* =sA - 1 . By equating WAB

to W*tB<,, the self dual line is found to be AB = s.

Theorem 3.2. For the symmetric Ashkin-Teller model in the
region A<B (orthodox ferromagnetic region) or the associated random
cluster measures (with s ^ 1 ) any discontinuity in the QK or Qr bond den-
sity must occur on the self-dual curve AB = s. Furthermore, should such a
discontinuity occur, both bond densities are discontinuous and this is
accompanied by the onset of spontaneous magnetization or percolation.

Proof. The argument follows closely the one for the case of the Potts
model. Since, for A < B and s ^ 1 the measures fi\s( —) (defined by limit-
ing processes with appropriate boundary conditions) are FKG, etc. so are
the QK and Qr marginal. We may apply the [GKR] theorem to these
objects. Suppose that at the point (A, B) with A = AB, A< 1 with there is
discontinuity. Explicitly, there are two states where (say) the QK bond den-
sities are different. Consider the trajectory A = KB, O^B<co that passes
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through this point. It is observed that the dual model follows the same tra-
jectory (in the opposite direction). It is also noted that as A and B increase
along the trajectory so do the measures (in the sense of FKG). Hence the
argument for the Potts model may be applied directly and we conclude
that this is the unique point on the trajectory where the QK bond density
is discontinuous and it is also the threshold for percolation in the K layer.
(And also that A=^/td and 5 = ^/^/1.) Finally, in the wired state (which
is symmetric between layers) if A < A and B < B there is no percolation in
either layer while if A > A and B > B there is percolation in both layers and
thus, by the FKG property simultaneous percolation in both layers. |

IV. DISCONTINUOUS TRANSITIONS IN THE AT MODEL

In this final section, we will demonstrate that for (integer) s sufficiently
large, there are always discontinuous ordering transitions in the AT models
we have studied. In particular, along every trajectory A = LB with A e (0, oo)
fixed and B: 0 -> oo there is a discontinuous phase transition. Hence, for
A < 1 the ordering transition is unique and occurs precisely on the self dual
line. However, the situation when B < A may be very different; for example
we will show that if B «A, there are (at least) two ordering transitions.

The method we use is the standard "large entropy" argument that was
introduced in [KS]. The proof will be simplified by the recent observation
[BCK], [CM] that graphical representations of the type used here are
themselves reflection positive. Our starting point is a Theorem from [KS].

Lemma 4.1. Let a and b denote two distinctive of a bond. Let H
be a Hamiltonian that depends on a control parameter, denoted by a, that
lies in the range [<xa, ctfe] and let < — >A r > ( X denote the Gibbs state on the
torus ~N of N sites induced by the Hamiltonian H at parameter value a.
Finally let c^e(\, 1] and c2e[0, 1] be such that c2^[\ + ^^-(cl/2)']2

and let e a ,£ A e(0 , 5). Suppose that for all <xe[<x a , a 6 ] , and for all bonds
c, ce^y, one has

and, meanwhile,

and
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where in the above, X b ( c ) denotes the event that the bond c is in the state a,
etc. Furthermore, suppose that the above holds for all N in some sequence
2T N s t Z d . Then there is a value < x ( e ( a 0 , < x 6 ) and two distinct (infinite
volume) states < — >£ and < — >* (characterized, e.g., by the fact that
(ja(c))a ^ 1 —^ and <#A(C)>* ~^\ —d, where (5 is a particular function of
c1 and c2 such that <S -> 0 as cl -» 1 and c2 -> 0).

Proof. See e.g. [KS] or [BCK]. |

As was discussed in the latter reference, it is not hard to show that the
above also applies to graphical representations for spin-systems that are of
the type used here. For present purposes, it is sufficient to note that the
bond variables may be incorporated into a genuine Gibbsian structure by
the construction of an equivalent annealed bond-diluted model.

In what is to follow, we will restrict attention to d = 1 which, in par-
ticular allows us to take advantage of the diagonal torus (SST). However,
the results that follow concerning discontinuous transitions and inter-
mediate phases can readily be extended to higher dimensions.

Our bond events will be: (a) that at least one of i2T(c) or QK(c) is
occupied and (b) that they are both vacant. It is clear that (0), (i) and (iii)
are satisfied. We now show:

Lemma 4.2. For the sxs AT models and their associated graphical
representations in the region of parameters where A ^ 0 and B ^ 0 if 5 is
sufficiently large then <^ f l(c)^6(c)>N ; A , B is uniformly small.

Proof. Using the standard chessboard arguments, it is sufficient to
show that a "contour element" has small probability. In our case, a con-
tour element is a site that is the endpoint of one bond of the a-type and
another of the b-type. However at any such site, one bond of each type
meet at right angles, thus it is sufficient to consider the case where c and
c meet at the origin and point down the coordinate axes. Let us write

where / is the event that both bonds are present, T is the event that the
r-bond is present but not the >c-bond, etc. We will separately estimate
<X/(c)Xb(c)>N;A,B, <Xr(c)Xb(c)>N;A,ji and <xK(c)Xb(c)>N;A,B- Applying
multiple reflections until the torus is covered, we arrive at

where ZN = ZN(A, B) is the partition function for the torus &N and ZN.f:b
is the constrained partition function given that the bonds of f and b-type
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form the alternating (diagonal) striped pattern which results from the mul-
tiple reflections: All the even sites are contour sites while the odd diagonal
stripes alternate between stripes of sites emanating f-bonds and stripes of
sites emanating vacant bonds. (See e.g., [S] or [CM] Section IV for a
more detailed version of an argument of this type.) Similar estimates are
obtained for <^T(c)^6(c)>Ar.^a and <,xK(^Xb(c]^N-,A,B with the relevant
constrained partition functions denoted by ZN. T. b and ZN. K. b respectively.

The constrained partition functions are easily calculated:

and

We may estimate

All of the required estimates work exactly as in the Potts model b
selecting the two appropriate terms from Eq. (17). Thus

Similarly,

These are indeed small if s is large. |

Theorem 4.3. Consider the sxs AT model with 5 large. Then, if
0 < A ^ B there is a discontinue phase transition at every point of the self-
dual line AB = s and everywhere else the (energy) density is continuous. If
A > B, there are also discontinuous transitions separating the high and low
temperature phases however, these need not take place on the self-dual
curve. In particular, along the trajectories B = sA if e is sufficiently small
there are two phase transitions and the immediate vicinity of the self-dual
curve is an intermediate phase.

Proof. The consequence of Lemma 4.2 is that (for large s) if we move
along the trajectory A = XB then at some point we will hit a discontinuity
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in some bond density. (For these systems, bond density and energy density
are easily related. Cf., [CM] footnote 4.) If L<1, then, according to
Theorem 3.2, this is the unique point of discontinuity along this trajectory.
Hence the entire self-dual curve is a curve of phase coexistence and is the
boundary between the ordered and disordered phases.

Now consider the case B = sA, S<K\ with 0 <A < oo. Obviously if A
is sufficiently large/small then both layers are nearly full/empty. However,
let us consider an intermediate value of the parameter namely the self-dual
point A = A*(E) = (sfe)1/2. We see

and

Thus at the self dual point (and, by continuity of these estimates in its
immediate vicinity) these objects are rare. However r- and /c-bonds do not
easily coexist for any value of A. Indeed

Thus, in the vicinity of the self-dual point there are at least two (or more
precisely, at least 2s) phases. In one of these, the K layer is nearly full at
the expense of a nearly vacant r-layer and vise versa for the other phase.
Evidently, in this region of the phase diagram there is an intermediate
phase and (at least) two phase transitions along trajectories of the type
described. |

Remark. Using the above techniques it is not difficult to show that
there are in fact two discontinuous transitions along these trajectories.
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