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We study percolation and the random cluster model on the triangular lattice with 3-body
interactions. Starting with percolation, we generalize the star–triangle transformation:
We introduce a new parameter (the 3-body term) and identify configurations on the tri-
angles solely by their connectivity. In this new setup, necessary and sufficient conditions
are found for positive correlations and this is used to establish regions of percolation
and non-percolation. Next we apply this set of ideas to the q > 1 random cluster model:
We derive duality relations for the suitable random cluster measures, prove necessary
and sufficient conditions for them to have positive correlations, and finally prove some
rigorous theorems concerning phase transitions.

KEY WORDS: percolation, random cluster models, Potts models, star–triangle rela-
tions, FKG inequalities.

1. INTRODUCTION

The study of duality relations for 2D-Potts systems is not a new topic. Indeed,
it is older than the model itself in the sense that(21) and(2) provided special cases
long before the general Potts spin–systems were formulated. While we will not
dwell on the historical aspects of this subject, it is worth remarking that this line of
study has had immeasurable impact on the entirety of two–dimensional statistical
mechanics. Notwithstanding, the usual derivations of duality for Potts models
(see(36) and references therein) suffer in three respects which we will describe in
increasing order of importance:

(I) There are informal aspects to many of the derivations and thus some
effort – presumably small – would be needed to elevate these derivations
to the status of mathematical theorems.

(II) The various standard techniques, which include mapping to vertex models
or the introduction of dual–spin variables in the form of constraints, do
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not include all relevant values of parameters. In particular, the dual–
constraints approach only makes sense for integer q ≥ 2. It is only as an
afterthought that duality relations for continuous q’s are inferred from the
analytic structure of the formulas produced for the integer q’s.

While we do not necessarily regard these two issues as being of great
urgency, the third issue is considered to be pertinent both by mathemati-
cians and physicists.

(III) The result of a typical duality relation is the identification of the free
energies at dual parameter values. Hence, as concerns the subject of phase
transitions one is always left with an unsatisfactory provisional statement:
If there is but a single non–analyticity, then this must occur at the self–dual
point.

It should be remarked that this third issue is certainly not “academic.” In
particular, in the so called rs–models (12), which are generalizations of the Ashkin–
Teller and/or the q–state Potts models (with q = r × s) there is a self–dual line
through an intermediate phase where, apparently, nothing of interest transpires;
c.f. (32,26) and (9).

As an alternative to the “usual methods,” it is possible to establish duality
via graphical representations, in particular the FK–representation (15), whereby
the duality shows up on the level of the representation itself. Duality in this
context is akin to (and a generalization of) the elementary sort of duality found
in Bernoulli percolation. Hence, using percolation based techniques, genuine ir-
refutable statements can be made concerning the presence of phase transitions at
points of self–duality. For example, on the square lattice, duality of the random
cluster models has been used to establish rather sharp theorems concerning their
phase structures (3,11).

In this work we will study the q–state Potts models – and their associated
random cluster representations – on the triangular lattice. For these problems, the
derivation is considerably more intricate than the square lattice; one must first
go through the intermediate honeycomb lattice. The inevitable consequence of
this contortion is the production of extra correlations in the dual model. In the
language of spin-systems, these correlations translate into the phrase “three body
interactions” but we iterate that the phenomenon is quite general and occurs even
for percolation (q = 1). Well known exceptions to this rule are (i) The Ising spin–
system at all couplings and (ii) A special point, called the star–triangle point,
where by a miracle, the correlations in the dual model vanish. Since the star–
triangle point is also a point of self–duality, it is readily identified as the transition
point as was done in (20). However, to the authors’ knowledge, it is only for the case
of percolation(33,34) that a rigorous theorem along these lines has been established.

The perspective of this work is that since we are generically stuck with the
additional correlations after duality, then they should be in the model from the
outset. We find that with the additional freedom of “three body interactions,”
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duality becomes a straightforward map in a two–dimensional space that has a
self–dual curve of fixed points. One of the points on this curve–and of no partic-
ular significance–is the star–triangle point. This general picture has been known
(and under appreciated) for quite some time: Duality relations on the level of free
energies are derived in (36) using the methods of (5)– here for integer q ≥ 2. Addi-
tional results along these lines are obtained in references (35,37) and (4) via relations
to vertex models. A cornerstone of the former work is a graphical expansion akin
to what is developed here. However, in these works the representation was only
employed as an auxiliary device. The full potential for relating percolation phe-
nomena in the graphical representations to phase transitions (as defined by other
means) and the use of the interplay between direct and dual representations to
elucidate this phenomena was not exploited.

From the perspective of rigorous analysis, a significant problem emerges at
the outset. In particular, the sorts of additional correlations introduced are not
necessarily positive correlations. E.g. for the spin–systems, the extra interactions
are, as often as not, antiferromagnetic. While this may or may not alter the nature
of the transition, it is an enormous technical obstacle since nearly all probabilistic
arguments concerning systems of this sort are based on the positivity of correla-
tions. To overcome these difficulties, we must introduce a reduced state space for
the graphical models wherein positive correlations can be re-established. Notwith-
standing, our techniques do not cover the entirety of the self–dual curve but this
could in principle be accomplished by an extension of our scheme. Further, to
avoid technical complications we deal exclusively with the isotropic case when-
ever possible: A priori, all three edges of the triangle have the same probability of
being occupied. One might also, with some effort, extend various results proved
here to the anisotropic cases.

The remainder of this paper is organized as follows: In section two, we exam-
ine the case of percolation where the necessity of introducing local correlations is
underscored. Here the star-triangle duality is generalized and relatively complete
results for the phase diagram are derived. In section three, we study this prob-
lem for the q > 1 random cluster models. The duality of (35) and (4) are derived
by graphical methods and we characterize the conditions for positive correla-
tions. Finally, in section four, we show that in the region where correlations are
positive, there is a phase transition (or at least critical behavior) at all points of
self-duality.

2. GENERALIZED STAR–TRIANGLE RELATIONS–PERCOLATION

2.1. The Classical Star-Triangle Situation

In order to motivate our work, we first briefly describe the classical star-
triangle relation. As mentioned above, we will treat the isotropic case, so let
p be the probability that a bond is occupied. Now on any given triangle there
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are eight possible configurations; we denote their respective probabilities by
e (empty), s (single), d (double) and a (full). Thus, for example, s = p(1 − p)2.
Under the usual sort of planar duality, the triangular lattice problem becomes a
problem on the honeycomb lattice where we could also associate a bond proba-
bility e.g. p∗ = 1 − p. Considering only connectivity properties and integrating
out the central vertex returns us to a problem on the triangular lattice (but with
the triangles inverted). Using e∗, s∗, d∗ and a∗ to denote probabilities of the
corresponding configurations, we easily arrive at

e∗ = p3 + 3p2(1 − p), (2.1)

s∗ = p(1 − p)2, (2.2)

3d∗ + a∗ = (1 − p)3. (2.3)

Ostensibly, one would like to define a p∗ such that the right hand sides of (2.1),
(2.2), and (2.3) are, respectively, (1 − p∗)3, p∗(1 − p∗)2 and (p∗)3 + 3(p∗)2(1 −
p∗). However, for general p ∈ (0, 1), this cannot be done – there are just too
many equations. Explicitly, if we try to force this sort of duality, this in turn
forces p to a particular value which, in fact, is the one for which p = p∗. To see
this, if we substitute (2.1) into (2.2) we get, in the variables R = p/(1 − p) and
R∗ = p∗/(1 − p∗), the equation R R∗(R∗ + 3) = 1. But the similar procedure on
(2.3) and (2.2) gets us R R∗(R + 3) = 1 thence any non-trivial solution requires
R = R∗. At p∗ = p, we see that p must satisfy:

p3 − 3p + 1 = 0, (2.4)

which is of course the self-dual point of the classic star-triangle relation.

2.2. Introduction of Correlations

Overall, the above situation is clearly not suitable for the development of a
general theory of duality. Clearly, if we wish to salvage this situation, the next
step would be to put in some sort of correlations. A manageable way to implement
correlations – which has its analogs in physical systems, c.f. subsection 3.1 – is to
introduce correlations within triangles but to keep separate triangles independent.
(Here, of course, we refer only to “up-pointing” triangles; configurations on the
“down-pointing” triangles will be determined from the former.)

A secondary consequence of the above duality experiment (on a single trian-
gle) is the observation that, when the rinse cycle is finished, the dual model does
not really distinguish between the double and full configurations. This is due to
the fact that all we track are connectivities between sites and, in both situations,
the triangle is fully connected.

In this spirit, we might as well confine all of our attention to the three types
of configurations listed in (2.1), (2.2), and (2.3); e.g., we define our model to
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have only five configurations on each triangle, namely empty, three singles and
a full. So (in the fully isotropic case) we have five parameters: e, s and a with
e + 3s + a = 1. We state without proof the following proposition concerning this
model on the triangular lattice:

Proposition 2.1. Consider the model on the triangular lattice in which con-
figurations on the up-pointing triangles are independent and confined to empty,
singles and full with respective probabilities e, s and a. Then this model is dual to
the model with parameters e∗, s∗ and a∗ which are given by

e∗ = a (2.5)

s∗ = s (2.6)

a∗ = e (2.7)

In particular, the condition for self-duality is just a = e.

We make a simple observation which will be useful in the next
subsection:

Corollary 2.2. For the parameters a, e as above and for r ∈ [0, 1], the curve
a + e = r is invariant under the ∗–map.

In order to translate all of this into a statement about percolation proper-
ties of the model we will need to establish some FKG-type properties of the
system. Since separate up-pointing triangles are independent this amounts to
a problem on a single triangle. Here, unfortunately, we must prove the result
for the anisotropic case as it will be needed later. First we need some basic
definitions.

Definition 2.3 Let � be a probability space with probability measure P . Let
A ⊂ � be an event and let ω ∈ �. Then the indicator function 1A is defined by

1A(ω) =
{

1 if ω ∈ A,

0 otherwise.

If f is a function on �, then E( f ), the expectation (or mean value) of f is defined
to be

E( f ) =
∫

�

f (ω) d P(ω).

Finally, we say the functions f and g have positive correlations if

E( f g) ≥ E( f )E(g).
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A measure on a partially ordered set is said to have positive correlations if any pair
of functions which are non-decreasing in the partial order are positively correlated.

Theorem 2.4. Consider the above described 5-state system realized as bond
configurations on a triangle: Let [S]1, [S]2 and [S]3 denote the events that the
three various sides of the triangle are the sole bonds occupied with [A] and [E]
denoting the full and empty configurations. The five states are partially ordered
according to the A above the S′s which in turn are above the E. Let ν denote
a measure on this system and let us denote the respective probabilities of the
above-mentioned by s1, s2, s3, a and e. It is assumed without loss of generality that
s1 ≥ s2 ≥ s3. Then the necessary and sufficient condition for ν to have positive
correlation is

ae ≥ s1(s2 + s3)

Proof: To prove the necessity of the condition ae ≥ s1(s2 + s3), note that if
f (s1) = 0, f (s2) = 1, f (s3) = 1, f (a) = 1 and f (e) = 0, and g(s1) = 1, g(s2) =
g(s3) = 0, g(a) = 1 and g(e) = 0, then E( f g) ≥ E( f )E(g) gives exactly that
ae ≥ s1(s2 + s3). For sufficiency, we aim to show that

E( f g) − E( f )E(g) ≥ 0 (2.8)

To simplify matters we first note that (2.8) is not changed by adding constants
to f and g. Thus we may assume that f and g are overall non-negative and
(by subtracting f (E) and g(E) respectively) vanish on the lowest configuration.
Similarly, the truth or falsehood of (2.8) is unaffected by the scaling of f and g so
we may as well assume that f ([A]) = g([A]) = 1.

Next let σ be a permutation on three letters such that f ([S]σ1 ) ≥
f ([S]σ2 ) ≥ f ([S]σ3 ). Then we are down to six parameters: for convenience let
x1, x2, x3 denote f ([S]σ1 ), f ([S]σ2 ), and f ([S]σ3 ), respectively. Similarly define
y1, y2, and y3 for g. We assume that some of these parameters are non-trivial, for
otherwise the theorem is already proved.

Next we observe that any increasing function is automatically positively
correlated with 1[A], the indicator of the top configuration. Indeed (with all of our
simplifications enforced), E(1[A]g) = a, whereas E(1A)E(g) = aE(g), which is
smaller. Thus, the quantity E( f g) − E( f )E(g) will decrease if we subtract from
f the function λ1A with λ > 0. However, in order to keep f increasing, the most
we can subtract is λ = 1 − max{x1, x2, x3} = 1 − x1, by assumption. Thus, after
this subtraction and more rescaling, we have that x1 = 1.

Similar considerations show that min{x1, x2, x3} = 0. To see this one
first observe that g is always positively correlated with the function 1 − 1[E].
Then subtracting from f the function x3(1 − 1[E]) (where by assumption x3 =
min{x1, x2, x3}) and rescaling again gives the desired conclusion.
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Given all these simplifications, we now have E( f g) = a + sσ1 y1 + sσ2 x2 y2

and E( f )E(g) = (a + sσ1 + sσ2 x2)(a + sσ1 y1 + sσ2 y2 + sσ3 y3). Since the goal is to
show that E( f g) ≥ E( f )E(g), we may assume that y1 = 0 and y3 = 1, since the
coefficient of y1 in E( f )E(g) is smaller than in E( f g) and y3 does not even occur
in E( f g).

Next one can check that f is positively correlated with 1[S]σ2
+ 1[S]σ3

+ 1[A]:
To see this observe that E((1[S]σ2

+ 1[S]σ3
+ 1[A]) f ) = (x2sσ2 + a)(sσ2 + sσ3 + a +

sσ1 + e) whereas E( f )E(1[S]σ2
+ 1[S]σ3

+ 1[A]) = (x2 sσ2 + a + sσ1 )(sσ2 + sσ3 +
a), so the difference is ae − sσ1 (sσ2 + sσ3 ), which is positive by hypothesis. It
is also easy to check that g − y2(1Sσ2

+ 1Sσ3
+ 1A) is still increasing. Also, note

that if y2 was equal to one before the subtraction, then after the subtraction g ≡ 0
and again the conclusion of the theorem holds trivially, so we may as well assume
y2 �= 1. As before, subtracting and renormalizing, we acquire y2 = 0, which im-
mediately implies that x2 = 1 since that maximizes E( f )E(g) without changing
E( f g).

To summarize we are down to f ([E]) = g([E]) = 0, f ([S]σ3 ) = g([S]σ1 ) =
g([S]σ2 ) = 0, f ([S]σ1 ) = f ([S]σ2 ) = g([S]σ3 ) = 1, and f ([A]) = g([A]) = 1, so
for positive correlation we need

a ≥ (a + sσ1 + sσ2 )(a + sσ3 ),

which is true if ae ≥ sσ3 (sσ1 + sσ2 ). The right hand side is clearly maximized when
σ3 = 1 (since by assumption s1 is the maximum of s1, s2, and s3), and we obtain
ae ≥ s1(s2 + s3) as claimed. �

Remark (a). It is clear that the standard FKG technology does not extend to
the present case. Indeed, if we view our system as {0, 1}3, but restrict our atten-
tion to measures which assigns weight zero to the double edge configurations,
then it is obvious that the FKG lattice condition fails for any such measure.
On a slightly more subtle level, regarding {[A], [S]1, [S]2, [S]3, [E]} as simply
a partially ordered set with lattice structure given by X ∨ Y = in f {Z |X 
 Z
and Y 
 Z} and X ∧ Y = sup{Z |Z 
 X and Z 
 Y }, it is not hard to see that
the FKG lattice condition holds whenever ae ≥ s1s2. This is in apparent con-
tradiction with (the necessity part of) Theorem (2.4). However, the connection
between the lattice condition and positive correlation hinges on the fact that
the lattice satisfies distributivity, which is a property that our lattice lacks, as
[S]1 = [S]1 ∧ ([S]2 ∨ [S]3) �= ([S]1 ∧ [S]2) ∨ ([S]1 ∧ [S]3) = [E].

Remark (b). We observe that ae ≥ 2s2 implies that a∗e∗ ≥ 2(s∗)2 by (2.5), (2.6),
and (2.7), so the ∗-map takes the region of positive correlation into itself.
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Remark (c). It is noted that for independent bonds, at density p, the condition
ae ≥ 2s2 is well-satisfied. But supposing we write

e = (1 − p)3(1 − t), (2.9)

s = p(1 − p)2(1 − t), (2.10)

and

a = (p3 + 3p2(1 − p))(1 − t) + t (2.11)

(as we will have occasion to do when we discuss magnetic systems) and again
consider, with the obvious interpretations, our old eight configurations. Then it is
clear that the correlations between bonds are positive if and only if t ≥ 0. However,
our condition ae ≥ 2s2 is satisfied for values of t which are considerably negative.

2.3. Phase Diagram

Theorem 2.5. Consider the correlated percolation model on the triangular lat-
tice as defined previously which has parameters e, s and a; the parameters are
described by points in the ae–plane. Supposing that ae ≥ 2s2, then in the region

a + e > r0 ≡ 2
√

2

3 + 2
√

2
,

the following hold

(1) The region a > e has a (unique) infinite cluster.
(2) The region a < e has no infinite cluster and is characterized by exponential

decay of correlations.
(3) The line a = e has no infinite cluster of either type but power law (lower

bounds) on the decay of correlations.

These results are summarized in Figure 1.

Proof (sketch): We will be brief since the major ingredients are transcriptions
with minimal modifications of the well-known results from standard percolation
theory. Our setup will be as follows: we will fix the value of a + e, denoting this
by r , and write a = λr , e = (1 − λ)r , 0 ≤ λ ≤ 1. We will denote by λc(r ) the
(purported) threshold above which there is percolation (Notwithstanding, we do
not “yet” know that there will be percolation even if λ = 1). Notice by Proposition
(2.1) and its corollary that, in these circumstances, the duality takes λ to 1 − λ.

Our first claim is that the result on the exponential decay of connectivities
below threshold applies whenever r > 0 (24,25). The starting point is the adaptation
of Russo’s formula (29) to the current situation. For an increasing eventA, a triangle
t is pivotal if, when empty, the event A does not occur but if fully occupied then
it does. Denoting by Pr,λ the probability measure with parameters a = λr , etc,



Random Cluster Models on the Triangular Lattice 655

Fig. 1. Phase diagram for percolation problem on the triangular lattice; variable s suppressed. The
line a = e is the self–dual line. The curve ae = 2s2 separates the regions with and without positive
correlations. Within the region of positive correlations, a > e is the percolation phase, a < e non–
percolating with exponential decay of connectivities and percolation of the dual model. These phases
are divided by the self–dual line, where there is no percolation of either type and critical behavior
is observed. Some of these results may be extended out of the region of positive correlations by
monotonicity.

and Er,λ for the corresponding expectation, the modification of Russo’s formula
is easily shown to be

∂P(A)

∂λ
= rEr,λ(|δA|),

where |δA| denotes the number of pivotal triangles for the event A.
Next, we denote by An the event that the origin is connected by occupied

bonds to the boundary of a “ball” of radius n. It is clear that the basic “chain of
sausages” picture holds in this context (with paths of bonds replaced by clusters
of triangles) and at the endpoint of each sausage, a pivotal triangle. We note that
for the present setup two events are said to occur disjointly if they are determined
on the configurations in disjoint sets of triangles. Thus, using the more general
Reimer’s inequality (27) in place of the van den Berg–Kesten inequality one can
follow the standard derivations to obtain

Er,λ(|δAn|) ≥ n∑n
k=1 Pr,λ(Ak)

− const.

Thereafter, some tedious analysis shows that if at some λ0, Pr,λ0 (An) → 0
then for all λ < λ0, ∃� > 0 such that Pr,λ(An) ≤ e−�(λ,r )n ; in particular there is
exponential decay of connectivities. However, standard 2D arguments show that
once the direct model has rapid decay of correlations, the dual model percolates.
(E.g, if there is no connection between points on the x-axis with x < −L and
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points with x > +L than some dual point with x-coordinate in the vicinity of the
gap is connected to infinity).

Using duality this immediately implies that λc ≤ 1/2: Any other possibility
would imply percolation of the dual model at values of λ greater than 1/2 which, by
duality, implies percolation at λ–values less than 1/2, contradicting the possibility
of any other possibility.

For general values of parameters, the results of (6) apply which rules out the
possibility of multiple infinite clusters (of the same type). In the region of positive
correlation (r ≥ r0) the results of (28) and (18) (see also the proof by Zhang, 1988,
unpublished) demonstrates that infinite clusters of the opposite type cannot coexist.
This implies that there cannot be percolation of either type on the self-dual line,
i.e. that λc ≥ 1/2 so that λc = 1/2.

Finally, to prove power law lower bounds on the decay of correlations,
we observe that for appropriate rectangles of length–scale L , there is either a
left–right crossing by the direct bonds or a up-down crossing by the dual bonds,
so that without loss of generality there are crossing probabilities which are of
order unity uniformly in L . Standard arguments (see e.g. Theorem 2 in (11)) can
then be used to demonstrate power law lower bounds. �

Remark. Our assumptions of positive correlations and that s1 = s2 = s3 are the
ingredients needed to use the Zhang (and(28,18)) arguments. Without these assump-
tions we cannot mathematically rule out the possibility of percolation before or at
the self-dual point with unique infinite clusters of both types. In the independent
case, coexisting clusters were ruled out in (16) using direct (Kesten–style) argu-
ments. It is conceivable that these arguments could be modified to the present case
but we make no specific claims. Nevertheless, some of the isotropic results can be
extended outside the regions of positive correlations by domination arguments:

Corollary 2.6. In the region a > r0/2, e < r0/2 the relevant (percolative) con-
clusions of Theorem 2.5 hold while in the region a < r0/2, e > r0/2 the relevant
non-percolative conclusions of Theorem 2.5 hold.

Proof: Consider a point with parameters a > r0/2, e < r0/2 which is not covered
in the previous theorem. Such a point can be joined by a horizontal line to a point
in the percolative region described in Theorem 2.5. For all intents and purposes,
the new measure is obtained from the known percolative measure by replacing
empty triangles with singly occupied triangles: Explicitly, the measure in question
stochastically dominates a measure with the stated percolative properties. The
conclusion follows since the two claims about the regions a > e, a + e > r0 may
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be phrased in terms of the events:

(1) The existence (wp1) of an infinite cluster and
(2) Uniqueness of said cluster.

The first is manifestly increasing while the second is equivalent to the absence of
an infinite cluster of the dual type, hence also increasing. The region a < r0/2,
e > r0/2 is handled similarly. �

3. GENERALIZED STAR–TRIANGLE RELATIONS – RANDOM

CLUSTER MEASURE

3.1. Graphical Weights and Spin Systems

We start in this subsection with the random cluster models – a generalization
of the usual random cluster models which features interactions among certain
triples of sites. Here we will confine attention only to triples which constitute three
vertices of an up pointing triangle.

The random-cluster models are defined by four parameters, e, s, a, and q,
and are given formally by

W (ω) ∝ qc(ω)s|s(ω)|a|a(ω)|e|e(ω)| (3.1)

where ω is a bond configuration, |s(ω)| denotes the number of triangles with
solely one side occupied and |a(ω)| denotes the number of triangles with all three
vertices connected, and |e(ω)| the number of empty triangles. It may be assumed,
without loss of generality, that a + 3s + e = 1. Of course as usual the above
only makes sense in finite volumes with particular boundary conditions; infinite
volume problems are extracted via limits. However, as far as we are concerned,
boundary conditions only enter through the definition of c(ω); once we establish
the basic monotonicity properties of the model, there are natural dominations in
both volume and the various parameters s, a and e. Then, the passage to infinite
volume follows the exactly the same lines as for the usual random-cluster model.
Indeed, as far as these general matters are concerned we refer the reader to (17)

(see also (8) and (7)) where the issues have been discussed in some detail.
It is also clear (see the above mentioned citations) that for integer q greater

than one, this random-cluster model is the graphical representation of a (formal)
Potts Hamiltonian with two and three site interactions:

−βH =
∑

<x,y,z>

J (δσx σy + δσyσz + δσx σz ) + κδσx σyσz , (3.2)

where the sum is over all generic up-pointing triangles. We assume that J is
positive but there is, as of yet, no restriction concerning the parameter κ .
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For completeness, a quick derivation proceeds as follows: Let � denote
a finite collection of (up-pointing) triangles and H� the restriction of H to �

with free boundary conditions, and Z� the corresponding partition function.
Then,

Z� =
∑
σ�

e−βH� =
∑
σ�

∏
<x,y,z>∈�

(Sδσx σy + 1) (Sδσyσz + 1)

× (Sδσx σz + 1) (1 + gδσx σyσz ),

where S = eJ − 1 and g = eκ − 1, and again with no stipulation about the sign
of g. Multiplying everything out, we get

Z� =
∑
σ�

∏
<x,y,z>∈�

[1 + S(δσx σy + δσyσz + δσx σz ) + Aδσx σyσz ],

where A = 3S2 + g(1 + S)3, which we now stipulate to be positive. Notice
that we have deliberately failed to distinguish terms corresponding to prod-
ucts of two, versus three Kronecker deltas. Opening up the product and
identifying graphical terms in the usual fashion we perform the trace to
obtain

Z� =
∑

ω

qc(ω)S|s(ω)| A|a(ω)|, (3.3)

where ω denotes a bond configuration restricted to five possibilities on each
triangle as described in the previous section. Since everything is positive, the
objects in the above summand represent weights for the configurations ω. For
convenience, we can multiply the above by an overall (irrelevant) factor and
then, by suitable redefinitions of parameters, we have our weights in the form
of (3.1).

We remark that the more standard decomposition into eight configurations
per triangle would, as can be checked, lead to positive correlations if and only
if g ≥ 0. Indeed, g/(1 + g) corresponds exactly to the parameter t which was
discussed in equations (2.9)–(2.11). As we will show in Theorem 3.4 below, the
present system provides a great deal more leeway.

Remark. Finally, it is worth a reminder that as far as the spin systems are con-
cerned, most quantities of relevance can be read directly from the graphical prob-
lem (1,13). In particular (at least in the realm of positive correlations), percolation is
synonymous with magnetization, while the absence of percolation implies unicity
among the possible limiting Gibbs states.
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3.2. Duality Relations and Self-Dual Curve

Theorem 3.1. For the random cluster measure as defined in the previous section,
the duality relations are given by

s∗

e∗ =
(qs

a

)
and

a∗

e∗ =
(

q2e

a

)
.

The self dual curve, obtained in the above by setting a = a∗, e = e∗ and s = s∗ is
then

a = qe.

Remark. We note that the above corresponds exactly to equation (15)
in (15).

Proof (sketch): To derive the duality relations, we make use of Euler’s formula,
which, as usual, has to be interpreted in the context of specific boundary conditions.
And here we have the additional step of integrating out the middle spin to return
to the triangular lattice. However, with careful consideration of the situation at the
boundary, dual measures may be identified in finite volume. Specifically, if � con-
sists of nothing more than N connected up–pointing triangles with free boundary
conditions, then the dual model will consist of the corresponding down–pointing
triangles with fully wired boundary conditions. Other scenarios at the boundary
can be treated in a similar fashion; we will be content to proceed formally. But be-
fore we begin there is yet another technical difficulty: Our three-body interactions
do not distinguish between triangles with two or three edges occupied; in order
to use Euler’s formula we must take this into account, so we set the convention
that all three-body interactions have all three edges occupied. Now, finally, we
have:

W (ω) = qc(ω)s|s(ω)|a|a(ω)|e|e(ω)|

∝ ql(ω)

(
s

q

)|s(ω)| ( a

q3

)|a(ω)|
e|e(ω)|.

Thus if ω∗ is the standard dual (on the hexagonal lattice) we have:

W (ω) ∝ qc(ω∗)

(
s

q

)|s(ω∗)| ( a

q3

)|e(ω∗)|
e|a(ω∗)|,
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where |e(ω∗)| corresponds to the number of empty triads, etc. Finally, integrating
out all middle spins, we obtain:

W (ω) ∝ qc(ω∗)

(
s

q

)|s(ω∗)| ( a

q2

)|e(ω∗)|
e|a(ω∗)|

∝ qc(ω∗)
(qs

a

)|s(ω∗)|
1|e(ω∗)|

(
eq2

a

)|a(ω∗)|
.

Here we have used the fact that the empty configuration on the triad has four
connected components while that on the triangle when the middle vertex is
integrated out has only three, so we must compensate a factor of q for each e(ω∗),
yielding the q−2a. The weights are now in the form of equation (3.3). Derivation
of the self-dual curve is now straightforward. �

Simple algebra now gives:

Corollary 3.2. For λ ≥ 0, the regions ae ≥ λs2 are invariant under the ∗–map.

3.3. Positive Correlation

Our proof of positive correlations will concern N triangles with configura-
tions of the type described and measures determined by the weights given in (3.1).
For the purposes of this proof, we make no restrictions on the geometry of the
triangles: they need not represent a subset of the triangular (or any other planar)
lattice. In general, sites can belong to any number of triangles, but if a pair of
sites belong to two distinctive triangles, the associated bonds can appear twice. In
addition, we will need to consider different sorts of boundary conditions on our
N triangles; these will, generically, be denoted by �. These � conditions are the
identification of sets of points which are considered to be “preconnected” (even
if no bonds are present). In particular, the specification of � provides us with a
precise notion of c(ω) and, for all intents and purposes, determines the geometry
of the collection.

Definition 3.3 Fix a, e, s with a + 3s + e = 1. Let � be a fixed set of ver-
tices in the triangular lattice corresponding to M triangles which we label
t1, t2, . . . , tM . Let TM ≡ {[E], [S]1, [S]2, [S]3, [A]}M denote the set of config-
urations on {t1, t2, . . . , tM }. Let � denote an arbitrary wiring on �, then for
ω ∈ TM ,

W �
�(ω) ∝ qc(ω,�)e|e(ω)|s|s(ω)|a|a(ω)|, (3.4)
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where c(ω,�) now denotes the number of connected components determined by
the wiring � as well as the configuration ω. Now for N ≤ M , and ω ∈ TN , we let

µ�
N (ω) ∝ W �

�(ω, [E], . . . , [E]︸ ︷︷ ︸
M−N times

),

denote the measure on those N triangles obtained from the corresponding weight.

Remark. The main thing to remember from the above definition is that we are
working with some a priori � and all the vertices of � are taken into account in
the term c(ω,�); this will become important later in the section when the structure
of the weights actually come into play. Needless to say, we will be interested (for
the purposes of induction) in an N which may be envisioned as far smaller than M ;
indeed, for finite M there is no difficulty with the immediate passage M → ∞.

Theorem 3.4. Let µ�
N denote the measures as described above with q ≥ 1 and

ae ≥ 2s2. Then for all N and all wiring boundary conditions �, these measures
have positive correlations.

The idea is to proceed by induction on the number of triangles N which
we regard as embedded in the larger space of M triangles, M − N of which are
automatically empty. We will need the strong inductive hypothesis that µ�

N−1 has
positive correlations for all possible wirings �. For the case N = 1, there are
clearly only five possible outside wirings: no vertices are connected, the vertices
corresponding to side one (respctively two and three) are connected, and finally
all three vertices are connected; we denote these wirings by E , S1 S2, S3, and A,
respectively. The all wired case, namely µA

1 is exactly the case proved in Theorem
2.4. Let us quickly dispense with another example, µ

S1
1 . Here we see

µ
S1
1 ([S]1) = zs.

Meanwhile, for k = 2, 3,

µ
S1
1 ([S]k) = z

s

q
,

and finally

µ
S1
1 ([A]) = z

a

q
, µ

S1
1 ([E]) = ze,

where we use the notation [A], [S]1, . . . , [E] to denote the relevant corre-
sponding events and z is a normalization constant. The necessary inequal-
ity µ

S1
1 ([A])µS1

1 ([E]) ≥ µ
S1
1 ([S]1)(µS1

1 ([S]2) + µ
S1
1 ([S]3) follows readily from

ae ≥ 2s2 provided q ≥ 1. The other cases are just as easily demonstrated and we
may consider the base case to be established.
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We make use of two key ideas in the forthcoming inductive proof. The first
is a generalized version of the lattice condition. Indeed, whenever the underlying
space is the product of linearly ordered spaces, the lattice condition is entirely
equivalent to the minimalist version:

ν(η, a, b)

ν(η, a, b′)
≥ ν(η, a′, b)

ν(η, a′, b′)
, (3.5)

where the a’s and b’s represent the configuration at any two coordinates, η is
all other coordinates and a ≥ a′ and b ≥ b′. Crucial to our argument is that
despite the absence (or inapplicability) of the full lattice condition, an analogue
of (3.5) nevertheless holds. The second key idea is a slight generalization of
Proposition 2.22 in (22) which is the statement that a convex combination of two
measures with positive correlations itself has positive correlations if one of the
measures FKG dominates the other. We state and prove these as our next two
lemmas below.

Lemma 3.5. Let µ�
N be defined as above with q ≥ 1. Then an analogue of (3.5)

holds for µ�
N , provided the separate increases pertain to different triangles. E.g.,

if TN−2 is the configuration on the first N − 2 triangles, and we have TN−1,
T ′

N−1, TN , T ′
N as configurations on the last two triangles with TN−1 � T ′

N−1 and
TN � T ′

N , then

µ�
N (TN−2, TN−1, TN )

µ�
N (TN−2, TN−1, T ′

N )
≥ µ�

N (TN−2, T ′
N−1, TN )

µ�
N (TN−2, T ′

N−1, T ′
N )

.

Proof: Examining the ratios in the statement above, a quick glance at (3.4)
reveals that all the “prefactors” cancel on both sides of the purported inequality,
leaving only the q–dependent terms. Since q > 1, the above amounts to a special
case of

C(ω ∨ η) + C(ω ∧ η) ≥ C(ω) + C(η),

which has been proved in complete generality in numerous places (e.g. (1)). �

Lemma 3.6. Let (H,�H ) and (K,�K ) be finite partially ordered sets. Let µ be
a probability measure on H and for each η ∈ H, let νη be a probability measure
on K. It is supposed that µ has positive correlations, that for each η, the measure
νη has positive correlations and furthermore, if η1 � η2, then νη1

≥
FKGνη2 . Then

ν(−) ≡
∑
η∈H

µ(η)νη(−)

has positive correlations.
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Proof: Let f and g be increasing functions on K. Then

Eν( f g) =
∑
ω∈K

ν(ω) f (ω)g(ω)

=
∑
η∈H

µ(η)Eνη
( f g)

≥
∑
η∈H

µ(η)Eνη
( f )Eνη

(g).

It is observed from the hypothesis that Eνη
( f ) and Eνη

(g) are increasing in η and
the result follows from the positive correlation of µ. �

Now let us informally proceed with an inductive proof. In what is to follow
we assume that f and g are increasing functions on N triangles, TN−1 always
denotes the configuration on the first N − 1 triangles and TN ∈ {[A], . . . , [E]} a
generic state of the N th triangle. We condition on the state of the last triangle, and
according to Bayes’ formula, we get

µ�
N (−) =

∑
TN

µ�
N |�N

(TN )µ�
N (−|TN ),

where µ�
N |�N

is the restriction of µ�
N to the last triangle.

As far as the first N − 1 triangles are concerned, we can apply the inductive
hypothesis to conclude that the measures µ�

N (−|TN ) has positive correlations,
since the conditioning, along with �, give us some wiring scenario for these
triangles. So (appealing to Lemma (3.6)) we will be done if we can show that
(i) E�

N ( f |TN ) and E�
N (g|TN ) are increasing in TN (i.e. µ�

N (−|TN ) ≥
FKGµ�

N (−|T ′
N )

whenever TN � T ′
N ), and (ii) the measure µ�

N |�N
has positive correlation. These

are the topics of yet the next two lemmas.

Lemma 3.7. Let f and TN be as described and define

FTN = E�
N ( f |TN ).

Then FTN is an increasing function.

Proof: Suppose TN � T ′
N . Then we note that, as in the standard argument,

Lemma (3.5) implies that

φ(TN−1) = µ�
N (T ′

N )

µ�
N (TN−1, T ′

N )

µ�
N (TN−1, TN )

µ�
N (TN )

(3.6)

is an increasing function of TN−1 = (T1, . . . , TN−1). We aim to show that

E�
N ( f |TN ) ≥ E�

N ( f |T ′
N ).
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We have

E�
N ( f |TN ) =

∑
TN−1

f (TN−1, TN )
µN (TN−1, TN )

µN (TN )

≥
∑
TN−1

f (TN−1, T ′
N )

µN (TN−1, TN )

µN (TN )
,

since f is increasing and TN ≥ T ′
N . Now the last expression can be rewritten as

∑
TN−1

f (TN−1, T ′
N )

µ�
N (TN−1, T ′

N )

µ�
N (T ′

N )
φ(TN−1) = E�

N ( f φ|T ′
N ),

which by induction is greater than or equal to E�
N ( f |T ′

N )E�
N (φ|T ′

N ). Thus,
concatenating the above expressions, we have

E�
N ( f |TN ) ≥ E�

N ( f |T ′
N )E�

N (φ|T ′
N )

=

∑

TN−1

f (TN−1, T ′
N )

µ�
N (TN−1, T ′

N )

µ�
N (T ′

N−1)





∑

TN−1

µ�
N (TN−1, TN )

µ�
N (TN )




= E�
N ( f |T ′

N ),

since
∑

TN−1

µ�
N (TN−1,TN )
µ�

N (TN )
= 1. �

Lemma 3.8. Let µ�
N |�N

denote the measure µ�
N as described above restricted to

the N th triangle. Then µ�
N |�N

has positive correlation.

Proof: We will again make use of Lemma 3.6, so we write

µ�
N |�N

(−) =
∑
B

µ�
N (B)µB

N |�N
(−), (3.7)

where B represents the total wiring conditions outside the N th triangle due to
the initial wiring condition � and the outside configurations, TN−1. However, the
overall effect of � and TN−1 is to produce one of the five types of wiring on a
single triangle – a situation with which we are familiar – and henceforth we may
assume B ∈ {A,S1,S2,S3, E}.

We note that for each B, µB
�N

has positive correlations (the subject of the

base case). Next, we claim that B � B′ implies that µB
N

≥
FKGµB′

N . This follows from
the observation that less wiring on the outside produces more factors of q−1 for
the weights of the higher configurations (see the Remark after Definition (3.3)).
Explicitly, it can be checked that for B � B′,

µB′
N ∝ DµB

N ,
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where D (which depends on B′ and B) is a decreasing function of TN . Thus we
have verified two of the three hypotheses of Lemma (3.6).

We are down to the last hypothesis; here we will need to write µ�
N (B)

in a more explicit form. Note that by induction µ�
N−1(B) has positive correla-

tions, so we seek some relationship between µ�
N (B) and µ�

N−1(B). To do this
we must exploit the “almost” product structure of the weights (3.4) from which
our measures came. So we first let Z N−1(B) denote the weight of observing B,
before the introduction of the N th triangle, and let Z T

N−1 = ∑
B Z N−1(B) de-

note the overall normalization factor, so that λB ≡ Z N−1(B)/Z T
N−1 = µ�

N−1(B).
Next we may write Z N−1(B) = ∑

TN−1
1TN−1∪�=BW �

�(TN−1), where W �
�(TN−1)

is the weight of observing the configuration TN−1 as given by (3.4). Simi-
larly, if Z N (B) denotes the weight of observing B given the N th triangle, then
Z N (B) = ∑

TN−1
1TN−1∪�=B

(∑
TN

W �
�(TN−1, TN )

)
. Comparing the previous two

expressions and referring back to Definition (3.3), it is not difficult to see that

Z N (B) = nB Z N−1(B),

where (up to factors of e) nE = ( a
q2 + 3s

q + e), nSi
= ( a

q + s + 2s
q + e), and nA =

(a + 3s + e) – which happens to be one. Thus, letting Z T
N = ∑

B Z N (B), we arrive
at

µ�
N (B) = Z N (B)

Z T
N

= Z T
N−1

Z T
N

λBnB .

It is noted that the factor Z T
N−1/Z T

N is independent of the wiringB, TN , etc. Thus by
Theorem (2.4) all we need to show is that (nAλA)(nEλE ) exceeds nS1

λS1 (nS2
λS2 +

nS3
λS3 ) – or whatever ordering combination maximizes the latter object. To this

end, let σ be a permutation on three letters such that λSσ1
≥ λSσ2

and λSσ1
≥ λSσ3

.
Our last hypothesis will be verified if we can show that

(nEλE )(nAλA) ≥ (nSσ1
λSσ1

) (nSσ2
λSσ2

+ nSσ3
λSσ3

).

To this end, we first observe that the induction hypothesis implies λAλE ≥
λSτ (1) (λSτ (2) + λSτ (3) ) for any permutation on three letters τ : On general grounds
this is true because of the similarity between the outside wiring space and the
inside configuration space. But, to proceed formally, let f and g be the increasing
functions of the outside wiring such that f (E) = g(E) = 0, f (A) = g(A) = 1,
f (Sτ (1)) = 1 − g(Sτ (1)) = 1 and f (Sτ (i)) = 1 − g(Sτ (i)) = 0, i = 2, 3. Then by
the fact that µN−1 has positive correlation, we indeed get λAλE ≥ λSτ (1) (λSτ (2) +
λSτ (3) ). On the basis of this inequality we only need that nAnE ≥ n2

Sσ1
(since

nSσ1
nSσ1

= nSσ1
nSσ2

= nSσ1
nSσ3

) i.e. we need that,

(a + 3s + e)

(
a

q2
+ 3s

q
+ e

)
≥

(
a

q
+ s + 2s

q
+ e

)2

.
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Now if one multiplies and compares terms, one has an expression which involves
(q − 1) times a quantity which is “easily positive”.

We have verified all three hypotheses of Lemma (3.6) and can therefore
conclude that µ�

N |�N
has positive correlation. �

Proof of Theorem (3.4): As already remarked, we will (again) use
Lemma 3.6. Explicitly, we apply Lemma (3.6) with H = {[A], [S]1, . . . , [E]}
(corresponding to configurations on the N th triangle) and µ = µ�

N |�N
, and

K = {[A], [S]1, . . . , [E]}N (corresponding to configurations on all N triangles)
and νη = µ�

N (−|η). The three hypotheses of the Lemma are verified by the
induction hypothesis and Lemmas 3.7 and 3.8. �

We conclude this section with a brief discussion on infinite-volume limits:
In the region of positive correlations, more wiring leads to a higher measure.
Thus, for free boundary conditions (restrictions of) the measures increase with in-
creasing volume and for fully wired boundary conditions, they decrease. So, for a
nested sequence of volumes which exhaust the lattice, well-defined infinite-volume
limits–which are independent of sequence–exist. Furthermore, as mentioned ear-
lier, wired and free measures may be dually identified in finite volume. Thus, in
turn, we may identify the dual of the infinite volume free measure as the wired
measure and vice versa.

3.4. Phase Transitions

In this subsection, we establish results on phase transitions in the q–state
Potts/random cluster models under consideration. Here, unlike in the percolation
case, we cannot establish with certainty whether the transition is continuous or
discontinuous. Moreover, for the continuous cases, our statements will be con-
siderably weaker than our Theorem 2.5 since much of the technical artillery (e.g.
the van den Berg-Kesten inequalities) do not apply. In particular, in the contin-
uous case, we cannot even prove that the percolation/magnetization transition
actually occurs on the self-dual line. Nevertheless, critical behavior is established
for self–dual points which are also points of continuity, the subject of our first
proposition:

Proposition 3.9. Consider the random cluster model on the triangular lattice as
defined by (3.1) and satisfying ae ≥ 2s2. Then at any self–dual point a = qe which
is a point of continuity of the bond density the following hold: (1) The percolation
probability vanishes and (2) there are power law lower bounds on the correlation
functions.
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Proof: Much of the proof can be transcribed directly from our proof of Theorem
2.5 and as for the rest, similar arguments have appeared before ((3,11)), so we will
be succinct. The first statement follows from the results in (19) which, under the
conditions of positive correlations and 2D symmetries, forbids coexisting infinite
clusters of the opposite types. Thus, in any realization, there is either no percolation
of either type or there are separate states (depending on how the infinite–volume
limit was constructed) which have and don’t have percolation. However, this latter
happenstance, by appeal to Strassen’s Theorem (30) implies that the distinctive
states have different bond densities which would imply a discontinuity in the
bond density. For the second statement, routine arguments which may be traced
back to (1) imply that the limiting random cluster measure is unique and therefore
may be identified with the dual measure; on this basis the rest of the argument
follows mutatis mutantis from the proof of Theorem 2.5 for percolation (again
see (11)). �

Finally we show that in the region of positive correlation, any discontinuity
in bond density must occur on the self–dual curve:

Proposition 3.10. Consider the random cluster model on the triangular lattice
as defined by (3.1) and satisfying ae ≥ 2s2. Then any discontinuity in the bond
density must occur on the self–dual curve as given by a = qe.

Proof: Our proof is a variation of the one found in (3); here we unfortunately
do not have a convenient family of curves which are nicely preserved under the
duality relations. We will work with the A and S parameters given in (3.3); suppose
at (A0, S0) – with A0 > 2S2

0 – we have a discontinuity in the bond density. Let
λ ≥ 1 and consider the curve C ≡ {(2λS2

0 , S0) : λ ≥ 1}. We note that along C the
measure is FKG increasing with increasing λ. Next let λSD , λP and λD denote
the corresponding values of λ at which the curve C intersects the self–dual curve,
the percolation threshold, and the discontinuity, respectively. We aim to show that
λSD = λP = λD .

Let Cl denote the part of C which is below the self–dual curve and similarly
let Cu denote the part of C which is above the self–dual curve. Since it is not
the case that (Cl)∗ = Cu , we need to define two new curves to work with: Let
Cy = Cl ∪ (Cl)∗ and C p = Cu ∪ (Cu)∗, and we parametrize Cy by λy and C p by
λp with the requirement that λ = λy on Cl and λ = λp on Cu (and extending in the
obvious fashion). We remark that with these parametrizations, Cy and C p are FKG
increasing in λy and λp by duality (or by explicit computation): E.g., on Cy ∩ Cl the
measures are clearly FKG increasing; on the other hand, this implies the measures
corresponding to the dual parameters – these lie on (Cl)∗ and are parametrized
by λy ≥ λSD

y – are decreasing in λy for λy ≤ λSD
y , and hence increasing in λy for
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λy ≥ λSD
y . Now we let λD

y , λSD
y and λP

y denote the corresponding values of λy at
which the curve C intersects the self–dual curve, the percolation threshold and
(should it exist) the discontinuity, respectively. Similarly we define λD

p , λSD
p and

λP
p for C p. Then λSD

y = λSD
p = λSD .

First we show that λP ≥ λSD: If this is not the case, then for λSD > λ > λP

the direct model is percolating in the wired state. Note that this λ corresponds to
a λy in our new parametrization. At the dual value, λ∗

y , we would then have dual
percolation in the state with free boundary conditions. However, the dual model
in the wired state at parameter λ “dominates” the dual model in the free state at
parameter λ∗

y , and hence there is dual and direct percolation at λ (e.g. in the wired
state), which is a contradiction of (19). Next we can easily show that λP ≤ λD:
This is because a discontinuity in the bond density implies non-uniqueness of
the limiting measure and hence, ultimately, percolation. Finally, we must have
λD ≤ λSD: Towards a contradiction assume that λD > λSD; this implies that λD

p

actually exists and is equal to λD . Next note that the same argument that showed
λP ≤ λD also shows λP

p ≤ λD
p . Since we have a discontinuity in the direct model if

and only if we have a discontinuity in the dual model, we have another discontinuity
at λ∗

p < λSD
p ≤ λP

p , a contradiction. �

4. CONCLUSION

We have described a Potts/random cluster model on the triangular lattice
with three–body correlations. By introducing a reduced state space, the duality
relations are easily derived. It is noted, in the context of spin systems, that the purely
ferromagnetic region of parameters is not mapped into itself under duality. More
generally, in the q ≥ 1 random cluster models, when we consider the full state
space, the region which has positive correlations is not mapped into itself. However,
for the reduced case, necessary and sufficient conditions for positive correlations
are derived which are invariant under duality and include a larger portion of
the original parameter space. Under the conditions of positive correlations, for
percolation and for values of q where there are discontinuities, it is proved that
the transition occurs at the self–dual point; if there is no discontinuity, self–dual
points admit critical behavior. On the basis of exact solutions (4) it has been argued
that the dividing line is q = 4, similar to the situation on the square lattice. The
advantage of the current random cluster formulation is that this hypothesis can
be tested numerically using cluster methods; e.g., the algorithms in (31,23) and (10)

can be readily adapted. While we have no reason to doubt the results in (4) in this
case, for a related model with three–body interactions on the square lattice, there
is some evidence pointing to the reduction of the dividing q. In any case, although
we will not discuss details, it should at least be possible to prove that for large q
there is a discontinuous transition. Here certain modifications will be needed to
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adapt the methods of reflection positivity to the present case, which may very well
be the subject of a later paper.

ACKNOWLEDGMENTS

This research was supported by the NSF grant DMS-0306167.

REFERENCES

1. M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the Magnetization in
One-Dimensional 1/|x − y|2 Ising and Potts Models, J. Stat. Phys. 77:351–359 (1994).

2. J. Ashkin and E. Teller, Statistics of Two-Dimensional Lattices with Four Components, Phys. Rev.
64:178–184 (1943).

3. T. Baker and L. Chayes. On the Unicity of Discontinuous Transitions in the Two-Dimensional
Potts and Ashkin-Teller Models, Jour. Stat. Phys. 93:1–15 (1998).

4. R. J. Baxter, N. H. V. Temperley and S. E. Ashley, Triangular Potts Model at Its Transition
Temperature, and Related Models, Proc. R. Soc. A 358:535–539 (1978).

5. Theodore W. Burkhardt, Applications of an Exact Duality-Decimation Transformation for Two-
Dimensional Spin Systems on a Square Lattice, Physical Review B. 20 no. 7, 2905–2913 (1979).

6. R. M. Burton and M. Keane, Density and Uniqueness in Percolation, Comm. Math. Phys. 121 no.
3, 501–505 (1989).

7. J. T. Chayes and L. Chayes, The Correct Extension of the Fortuin-Kasteleyn Result to Plaquette
Percolation, Nuclear Physics B 235:19–23 (1983).

8. L. Chayes, Percolation and Ferromagnetism on Z
2: the q-state Potts Cases, Stochastic Processes

and Their Applications 65:209–216 (1996).
9. L. Chayes and J. Machta, Graphical Representations and Cluster Algorithms I. Discrete spin

systems, Physica A 239:542–601 (1997).
10. L. Chayes and J. Machta, Graphical Representations and Cluster Algorithms II, Physica A

254:477–516 (1998).
11. L. Chayes and K. Shtengel, Critical Behavior for 2D Uniform and Disordered Ferromagnets at

Self-Dual Points, Comm. Math. Phys. 204:353–366 (1999).
12. E. Domany and E. K. Riedel, Two-Dimensional Anisotropic N-Vector Models, Phys. Rev. B

19:5817–5834 (1979).
13. R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang Rep-

resentation and Monte Carlo Algorithm, Phys. Rev. D. 38:2009–2012 (1988).
14. Essam and Syskes, Dimensional Crossover in Selective Site Percolation, J. Math. Phys. 5:1117–27

(1964).
15. C. M. Fortuin and P. W. Kasteleyn, On the Random-Cluster Model. I. Introduction and Relation

to Other Models, Physica 57:536–564 (1972).
16. G. Grimmett, Percolation. Berlin, New York: Springer Verlag (1999).
17. G. Grimmett, Potts models and random-cluster models with many-body interactions, J. Stat. Phys.

75:67–121 (1994).
18. A. Gandolfi, G. Grimmett and L. Russo, On the Uniqueness of the Infinite Open Cluster in the

Percolation Model, Comm. Math. Phys. 113:549–552 (1988).
19. A. Gandolfi, M. Keane and L. Russo, On the Uniqueness of the Infinite Cluster in Dependent

Two-Dimensional Site Percolation, Annals of Prob. 16:1147–1157 (1988).
20. D. Kim and R. I. Joseph, Exact Transition Temperature of the Potts Model With q States Per Site

for the Triangular and Honeycomb Lattices, J. Phys. C. 7:L167 (1974).



670 Chayes and Lei

21. H. A. Kramers and G. H. Wannier, Statistics of the Two-Dimensional Ferromagnet, I. Phys. Rev.
(2) 60:252–262 (1941).

22. T. M. Liggett, Interacting Particle Systems, Berlin, New York: Springer Verlag (2005).
23. J. Machta, Y. S. Choi, A. Lucke, T. Schweizer and L. V. Chayes, Invaded Cluster Algorithm for

Equilibrium Critical Points, Phys. Rev. Lett. 75:2792–2795 (1995).
24. M. V. Menshikov, Coincidence of Critical Points in Percolation Problems, Soviet Mathematics

Doklady 33:856–859 (1986).
25. M. V. Menshikov, S. A., Molchanov and A. F. Sidorenko, Percolation Theory and Some Applica-

tions. Itogi Nauki i Techniki, Series of Probability Theory, Mathematical Statistics, Theoretical
Cybernetics 24:53–110 (1986).

26. C. E. Pfister, Phase Transitions in the Ashkin-Teller Model, J. Stat. Phys. 29:115–118 (1982).
27. D. Reimer, Proof of the vanden Berg-Kesten Conjecture, Combin. Probab. Comput. 9 no. 1, 27–32

(2000).
28. L. Russo, A Note on Percolation. Z. Wahrscheinlichkeitstheorie und Verw, Gebiete 43 no. 1,

39–48 (1978).
29. L. Russo, On the Critical Percolation Probabilities. Zeitschrift fur Wahrscheinlichkeitstheorie und

Verwandte Gebiete 56:229–237 (1981).
30. V. Strassen, The Existence of Probability Measures with Given marginals, Ann. Math. Statist.

36:423–439 (1965).
31. R. H. Swendsen and J. S. Wang, Nonuniversal Critical Dynamics in Monte Carlo Simulations,

Phys. Rev. Lett. 58:86–88 (1987).
32. F. J. Wegner, Duality Relation Between the Ashkin-Teller and the Eight-Vertex Model, J. Phys. C

5:L131–132 (1972).
33. J. C. Wierman, Bond Percolation On Honeycomb and Triangular Lattices, Adv. in Appl. Probab.

13:298–313 (1981).
34. J. C. Wierman, A Bond Percolation Critical Probability Determination Based On the Star-Triangle

Transformation, J. Phys. A. 17:1525–1530 (1984).
35. F. Y. Wu and K. Y. Lin, On the Triangular Potts Model With Two- and Three-Site Interaction, J.

Phys. A 13:629–636 (1980).
36. F. Y. Wu, The Potts Model, Rev. Mod. Phys. 54:235–268 (1982).
37. F. Y. Wu and R. K. P. Zia, Critical Point of a Triangular Potts Model With Two- and Three-Site

Interactions, Journal of Physics A. 14:721–727 (1981).


