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Colligative Properties of Solutions:
I. Fixed Concentrations
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Using the formalism of rigorous statistical mechanics, we study the phenom-
ena of phase separation and freezing-point depression upon freezing of solu-
tions. Specifically, we devise an Ising-based model of a solvent–solute system
and show that, in the ensemble with a fixed amount of solute, a macroscopic
phase separation occurs in an interval of values of the chemical potential of the
solvent. The boundaries of the phase separation domain in the phase diagram
are characterized and shown to asymptotically agree with the formulas used in
heuristic analyses of freezing-point depression. The limit of infinitesimal con-
centrations is described in a subsequent paper.

KEY WORDS: Freezing-point depression; phase separation; droplet transition;
Wulff construction; Ising model; canonical ensemble.

1. INTRODUCTION

1.1. Motivation

The statistical mechanics of pure systems – most prominently the topic
of phase transitions and their associated surface phenomena – has been
a subject of fairly intensive research in recent years. Several physical
principles for pure systems (the Gibbs phase rule, Wulff construction,
etc.) have been put on a mathematically rigorous footing and, if nec-
essary, supplemented with appropriate conditions ensuring their validity.
The corresponding phenomena in systems with several mixed components,
particularly solutions, have long been well-understood on the level of
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theoretical physics. However, they have not received much mathematically
rigorous attention and in particular have not been derived rigorously start-
ing from a local interaction. A natural task is to use the ideas from sta-
tistical mechanics of pure systems to develop a higher level of control for
phase transitions in solutions. This is especially desirable in light of the
important role that basic physics of these systems plays in sciences, both
general (chemistry, biology, oceanography) and applied (metallurgy, etc.).
See e.g. (refs. 11, 24, 27) for more discussion.

Among the perhaps most interesting aspects of phase transitions in
mixed systems is a dramatic phase separation in solutions upon freezing
(or boiling). A well-known example from “real world” is the formation of
brine pockets in frozen sea water. Here, two important physical phenom-
ena are observed:

(1) Migration of nearly all the salt into whatever portion of ice/water
mixture remains liquid.

(2) Clear evidence of facetting at the water–ice boundaries. Quantita-
tive analysis also reveals the following fact:

(3) Salted water freezes at temperatures lower than the freezing point
of pure water. This is the phenomenon of freezing-point depression.

Phenomenon (1) is what “drives” the physics of sea ice and is thus largely
responsible for the variety of physical effects that have been observed,
see e.g. (refs. 17, 18). Notwithstanding, (1–3) are not special to the salt–
water system; they are shared by a large class of the so called non-vola-
tile solutions. A discussion concerning the general aspects of freezing/boil-
ing of solutions – often referred to as colligative properties – can be found
in refs. 24 and 27.

Of course, on a heuristic level, the above phenomena are far from
mysterious. Indeed, (1) follows from the observation that, macroscopically,
the liquid phase provides a more hospitable environment for salt than the
solid phase. Then (3) results by noting that the migration of salt increases
the entropic cost of freezing so the energy–entropy balance forces the tran-
sition point to a lower temperature. Finally, concerning observation (2) we
note that, due to the crystalline nature of ice, the ice–water surface ten-
sion will be anisotropic. Therefore, to describe the shape of brine pockets,
a Wulff construction has to be involved with the caveat that here the crys-
talline phase is on the outside. In summary, what is underlying these phe-
nomena is a phase separation accompanied by the emergence of a crystal
shape. In the context of pure systems, such topics have been well under-
stood at the level of theoretical physics for quite some time(12,16,32,33) and,
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recently (as measured on the above time scale), also at the level of rigor-
ous theorems in two(2,4,14,22,28,29) and higher(6,9,10) dimensions.

The purpose of this and a subsequent paper is to study the qual-
itative nature of phenomena (1–3) using the formalism of equilibrium
statistical mechanics. Unfortunately, a microscopically realistic model of
salted water/ice system is far beyond reach of rigorous methods. (In fact,
even in pure water, the phenomenon of freezing is so complex that crystal-
lization in realistic models has only recently – and only marginally – been
exhibited in computer simulations.(26)) Thus we will resort to a simplified
version in which salt and both phases of water are represented by discrete
random variables residing at sites of a regular lattice. For these models
we show that phase separation dominates a non-trivial region of chemical
potentials in the phase diagram – a situation quite unlike the pure system
where phase separation can occur only at a single value (namely, the tran-
sition value) of the chemical potential. The boundary lines of the phase-
separation region can be explicitly characterized and shown to agree with
the approximate solutions of the corresponding problem in the physical-
chemistry literature.

The above constitutes the subject of the present paper. In a subse-
quent paper (1) we will demonstrate that, for infinitesimal salt concentra-
tions scaling appropriately with the size of the system, phase separation
may still occur dramatically in the sense that a non-trivial fraction of the
system suddenly melts (freezes) to form a pocket (crystal). In these circum-
stances the amount of salt needed is proportional to the boundary of the
system which shows that the onset of freezing-point depression is actually
a surface phenomenon. On a qualitative level, most of the aforementioned
conclusions should apply to general non-volatile solutions under the con-
ditions when the solvent freezes (or boils). Notwithstanding, throughout
this and the subsequent paper we will adopt the language of salted water
and refer to the solid phase of the solvent as ice, to the liquid phase as
liquid-water, and to the solute as salt.

1.2. General Hamiltonian

Our model will be defined on the d-dimensional hypercubic lattice Z
d .

We will take the (formal) nearest-neighbor Hamiltonian of the following
form:

βH=−
∑

〈x,y〉
(αIIxIy +αLLxLy)+κ

∑

x

SxIx −
∑

x

µSSx −
∑

x

µLLx.

(1.1)
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Here β is the inverse temperature (henceforth incorporated into the
Hamiltonian), x and y are sites in Z

d and 〈x, y〉 denotes a neighbor-
ing pair of sites. The quantities Ix , Lx and Sx are the ice (water), liquid
(water) and salt variables, which will take values in {0,1} with the addi-
tional constraint

Ix +Lx =1 (1.2)

valid at each site x. We will say that Ix = 1 indicates the presence of ice
at x and, similarly, Lx the presence of liquid at x. Since a single water
molecule cannot physically be in an ice state, it is natural to interpret the
phrase Ix = 1 as referring to the collective behavior of many particles in
the vicinity of x which are enacting an ice-like state, though we do not
formally incorporate such a viewpoint into our model.

The various terms in (1.1) are essentially self-explanatory: An interac-
tion between neighboring ice points, similarly for neighboring liquid points
(we may assume these to be attractive), an energy penalty κ for a simul-
taneous presence of salt and ice at one point, and, finally, fugacity terms
for salt and liquid. For simplicity (and tractability), there is no direct salt–
salt interaction, except for the exclusion rule of at most one salt “particle”
at each site. Additional terms which could have been included are super-
fluous due to the constraint (1.2). We will assume throughout that κ > 0,
so that the salt–ice interaction expresses the negative affinity of salt to the
ice state of water. This term is entirely – and not subtly – responsible for
the general phenomenon of freezing point depression. We remark that by
suitably renaming the variables, the Hamiltonian in (1.1) would just as well
describe a system with boiling point elevation.

As we said, the variables Ix and Lx indicate the presence of ice and
liquid water at site x, respectively. The assumption Ix +Lx =1 guarantees
that something has to be present at x (the concentration of water in water
is unity); what is perhaps unrealistic is the restriction of Ix and Lx to only
the extreme values, namely Ix,Lx ∈{0,1}. Suffice it to say that the authors
are confident (e.g., on the basis of ref. 3) that virtually all the results in
this note can be extended to the cases of continuous variables. However,
we will not make any such mathematical claims; much of this paper will
rely heavily on preexisting technology which, strictly speaking, has only
been made to work for the discrete case. A similar discussion applies, of
course, to the salt variables. But here our restriction to Sx ∈{0,1} is mostly
to ease the exposition; virtually all of our results directly extend to the
cases when Sx takes arbitrary (positive) real values according to some a
priori distribution.
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1.3. Reduction to Ising Variables

It is not difficult to see that the “ice–liquid sector” of the general
Hamiltonian (1.1) reduces to a ferromagnetic Ising spin system. On a for-
mal level, this is achieved by passing to the Ising variables σx = Lx − Ix ,
which in light of the constraint (1.2) gives

Lx = 1+σx

2
and Ix = 1−σx

2
. (1.3)

By substituting these into (1.1), we arrive at the interaction Hamiltonian:

βH=−J
∑

〈x,y〉
σxσy −h

∑

x

σx +κ
∑

x

Sx

1−σx

2
−

∑

x

µSSx, (1.4)

where the new parameters J and h are given by

J = αL +αI

4
and h= d

2
(αL −αI)+ µL

2
. (1.5)

We remark that the third sum in (1.4) is still written in terms of “ice”
indicators so that H will have a well defined meaning even if κ = ∞,
which corresponds to prohibiting salt entirely at ice-occupied sites. (Not-
withstanding, the bulk of this paper is restricted to finite κ.) Using an
appropriate restriction to finite volumes, the above Hamitonian allows us
to define the corresponding Gibbs measures. We postpone any relevant
technicalities to Section 2.1.

The Hamiltonian as written foretells the possibility of fluctuations in
the salt concentration. However, this is not the situation which is of phys-
ical interest. Indeed, in an open system it is clear that the salt concentra-
tion will, eventually, adjust itself until the system exhibits a pure phase.
On the level of the description provided by (1.4) it is noted that, as grand
canonical variables, the salt particles can be explicitly integrated, the result
being the Ising model at coupling constant J and external field heff, where

heff =h+ 1
2

log
1+ eµS

1+ eµS−κ
. (1.6)

In this context, phase coexistence is confined to the region heff =0,
i.e., a simple curve in the (µS, h)-plane. Unfortunately, as is well
known,(5,19,20,23,30) not much insight on the subject of phase separation is to
be gained by studying the Ising magnet in an external field. Indeed, under
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(for example) minus boundary conditions, once h exceeds a particular value,
a droplet will form which all but subsumes the allowed volume. The transi-
tional value of h scales inversely with the linear size of the system; the exact
constants and the subsequent behavior of the droplet depend on the details
of the boundary conditions.

The described “failure” of the grand canonical description indicates
that the correct ensemble in this case is the one with a fixed amount of salt
per unit volume. (The technical definition uses conditioning from the grand
canonical measure; see Section 2.1.) This ensemble is physically more rel-
evant because, at the moment of freezing, the salt typically does not have
enough “mobility” to be gradually released from the system. It is noted that,
once the total amount of salt is fixed, the chemical potential µS drops out of
the problem – the relevant parameter is now the salt concentration. As will
be seen in Section 2, in our Ising-based model of the solvent–solute system,
fixing the salt concentration generically leads to sharp phase separation in
the Ising configuration. Moreover, this happens for an interval of values of
the magnetic field h. Indeed, the interplay between the salt concentration
and the actual external field will demand a particular value of the magne-
tization, even under conditions which will force a droplet (or ice crystal,
depending on the boundary condition) into the system.

Remark 1.1. We finish by noting that, while the parameter h is for-
mally unrelated to temperature, it does to a limited extent play the role of
temperature in that it reflects the a priori amount of preference of the sys-
tem for water versus ice. Thus the natural phase diagram to study is in the
(c, h)-plane.

1.4. Heuristic Derivations and Outline

The reasoning which led to formula (1.6) allows for an immediate
heuristic explanation of our principal results. The key simplification –
which again boils down to the absence of salt–salt interaction – is that
for any Ising configuration, the amalgamated contribution of salt, i.e.,
the Gibbs weight summed over salt configurations, depends only on the
overall magnetization and not on the details of how the magnetization
gets distributed about the system. In systems of linear scale L, let ZL(M)

denote the canonical partition function for the Ising magnet with con-
strained overall magnetization M. The total partition function ZL(c, h) at
fixed salt concentration c can then be written as

ZL(c, h)=
∑

M

ZL(M)ehMWL(M, c), (1.7)
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where WL(M,c) denotes the sum of the salt part of the Boltzmann weight
– which only depends on the Ising spins via the total magnetization M –
over all salt configurations with concentration c.

As usual, the physical values of the magnetization are those bring-
ing the dominant contribution to the sum in (1.7). Let us recapitulate
the standard arguments by first considering the case c = 0 (which implies
WL = 1), i.e., the usual Ising system at external field h. Here we recall
that ZL(mLd) can approximately be written as

ZL(mLd)≈ e−Ld [FJ (m)+C], (1.8)

where C is a suitably chosen constant and FJ (m) is a (normalized) canon-
ical free energy. The principal fact about FJ (m) is that it vanishes for m

in the interval [−m�,m�], where m� =m�(J ) denotes the spontaneous mag-
netization of the Ising model at coupling J , while it is strictly positive and
strictly convex for m with |m| > m�. The presence of the “flat piece” on
the graph of FJ (m) is directly responsible for the existence of the phase
transition in the Ising model: For h>0 the dominant contribution to the
grand canonical partition function comes from M �m�L

d while for h< 0
the dominant values of the overall magnetization are M � −m�L

d . Thus,
once m� = m�(J ) > 0 – which happens for J > Jc(d) with Jc(d) ∈ (0,∞)

whenever d �2 – a phase transition occurs at h=0.
The presence of salt variables drastically changes the entire picture.

Indeed, as we will see in Theorem 2.1, the salt partition function WL(M,c)

will exhibit a nontrivial exponential behavior which is characterized by
a strictly convex free energy. The resulting exponential growth rate of
ZL(M)ehMWL(M, c) for M ≈mLd is thus no longer a function with a flat
piece – instead, for each h there is a unique value of m that optimizes the
corresponding free energy. Notwithstanding (again, due to the absence of
salt–salt interactions) once that m has been selected, the spin configura-
tions are the typical Ising configurations with overall magnetizations M ≈
mLd . In particular, whenever ZL(c, h) is dominated by values of M ≈mLd

for an m∈ (−m�,m�), a macroscopic droplet develops in the system. Thus,
due to the one-to-one correspondence between h and the optimal value
of m, phase separation occurs for an interval of values of h at any pos-
itive concentration; see Fig. 1.

We finish with an outline of the remainder of this paper and some
discussion of the companion paper.(1) In Section 2, we define precisely
the model of interest and state our main results concerning the asymp-
totic behavior of the corresponding measure on spin and salt configu-
rations with fixed concentration of salt. Along with the results comes
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h

c

liquid

ice

phase separation

h=h (c)

h=h (c)

Fig. 1. The phase diagram of the ice–water system with κ � 1. The horizontal axis marks
the concentration of the salt in the system, the vertical line represents the external field act-
ing on the Ising spins – see formula (1.5). For positive concentrations c>0, the system stays
in the liquid-water phase throughout a non-trivial range of negative values of h – a manifes-
tation of the freezing-point depression. For (h, c) in the shaded region, a non-trivial fraction
of the system is frozen into ice. Once (h, c) is on the left of the shaded region, the entire sys-
tem is in the ice state. For moderate values of κ, the type of convexity of the transition lines
may change from concave to convex near (h, c)= (0,0); see the companion paper.(1)

a description of the phase diagram and a discussion of freezing-point
depression, phase separation, etc., see Section 2.3. Our main results are
proved in Section 3. In ref. 1 we investigate the asymptotic of infinitesimal
salt concentrations. Interestingly, we find that, in order to induce phase
separation, the concentration has to scale at least as the inverse linear size
of the system.

2. RIGOROUS RESULTS

2.1. The Model

With the (formal) Hamiltonian (1.4) in mind, we can now start on
developing the mathematical layout of the problem. To define the model,
we will need to restrict attention to finite subsets of the lattice. We will
mostly focus on rectangular boxes �L ⊂Z

d of L×L×· · ·×L sites centered
at the origin. Our convention for the boundary, ∂�, of the set �⊂Z

d will
be the collection of sites outside � with a neighbor inside �. For each
x ∈�, we have the water and salt variables, σx ∈ {−1,+1} and Sx ∈ {0,1}.
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On the boundary, we will consider fixed configurations σ∂�; most of the
time we will be discussing the cases σ∂� =+1 or σ∂� =−1, referred to as
plus and minus boundary conditions. Since there is no salt–salt interac-
tion, we may as well set Sx =0 for all x ∈�c.

We will start by defining the interaction Hamiltonian. Let �⊂Z
d be

a finite set. For a spin configuration σ∂� and the pair (σ�,S�) of spin and
salt configurations, we let

βH�(σ�,S�|σ∂�)=−J
∑

〈x,y〉
x∈�,y∈Z

d

σxσy −h
∑

x∈�

σx +κ
∑

x∈�

Sx

1−σx

2
. (2.1)

Here, as before, 〈x, y〉 denotes a nearest-neighbor pair on Z
d and the

parameters J , h and κ are as discussed above. (In light of the discussion
from Section 1.3 the last term in (1.4) has been omitted.) The probability
distribution of the pair (σ�,S�) takes the usual Gibbs–Boltzmann form:

P
σ∂�

� (σ�,S�)= e−βH�(σ�,S�|σ∂�)

Z�(σ∂�)
, (2.2)

where the normalization constant, Z�(σ∂�), is the partition function. The
distributions in �L with the plus and minus boundary conditions will be
denoted by P +

L and P −
L , respectively.

For reasons discussed before we will be interested in the problems
with a fixed salt concentration c ∈ [0,1]. In finite volume, we take this to
mean that the total amount of salt,

NL =NL(S)=
∑

x∈�L

Sx, (2.3)

is fixed. To simplify future discussions, we will adopt the convention that
“concentration c” means that NL � c|�L| < NL + 1, i.e., NL = �cLd	. We
may then define the finite volume Gibbs probability measure with salt con-
centration c and plus (or minus) boundary conditions denoted by P

+,c,h
L

(or P
−,c,h
L ). In light of (2.2), these are given by the formulas

P
±,c,h
L (·)=P ±

L

( · ∣∣NL =�cLd	). (2.4)

Both measures P
±,c,h
L depend on the parameters J and κ in the Hamil-

tonian. However, we will always regard these as fixed and suppress them
from the notation whenever possible.
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2.2. Main Theorems

In order to describe our first set of results, we will need to bring to
bear a few standard facts about the Ising model. For each spin configura-
tion σ = (σx)∈ {−1,1}�L let us define the overall magnetization in �L by
the formula

ML =ML(σ)=
∑

x∈�L

σx. (2.5)

Let m(h, J ) denote the magnetization of the Ising model with coupling
constant J and external field h�0. As is well known, cf the proof of The-
orem 3.1, h 
→m(h, J ) continuously (and strictly) increases from the value
of the spontaneous magnetization m� =m(0, J ) to one as h sweeps through
[0,∞). In particular, for each m ∈ [m(0, J ),1), there exists a unique h =
h(m,J )∈ [0,∞) such that m(h, J )=m.

Next we will use the above quantities to define the func-
tion FJ : (−1,1)→ [0,∞), which represents the canonical free energy of
the Ising model in (1.8). As it turns out – see Theorem 3.1 in Section 3 –
we simply have

FJ (m)=
∫

dm′ h(m′, J )1{m��m′�|m|}, m∈ (−1,1). (2.6)

As already mentioned, if J > Jc, where Jc = Jc(d) is the critical coupling
constant of the Ising model, then m� > 0 and thus FJ (m) = 0 for m ∈
[−m�,m�]. (Since Jc(d) < ∞ only for d � 2, the resulting “flat piece” on
the graph of m 
→FJ (m) appears only in dimensions d �2.) From the per-
spective of the large-deviation theory, cf. (refs. 13, 21), m 
→FJ (m) is the
large-deviation rate function for the magnetization in the (unconstrained)
Ising model; see again Theorem 3.1.

Let S(p)=p log p+ (1−p) log(1−p) denote the entropy function of
the Bernoulli distribution with parameter p. (We will set S(p)=∞ when-
ever p ∈ [0,1].) For each m∈ (−1,1), each c∈ [0,1] and each θ ∈ [0,1], let

	(m, θ; c)=−1+m

2
S

( 2θc

1+m

)
− 1−m

2
S

(2(1− θ)c

1−m

)
. (2.7)

As we will show in Section 3, this quantity represents the entropy of con-
figurations with fixed salt concentration c, fixed overall magnetization m

and fixed fraction θ of the salt residing “on the plus spins” (and fraction
1− θ “on the minus spins”).
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Having defined all relevant quantities, we are ready to state our
results. We begin with a large-deviation principle for the magnetization in
the measures P

±,c,h
L :

Theorem 2.1. Let J >0 and κ >0 be fixed. For each c∈ (0,1), each
h∈R and each m∈ (−1,1), we have

lim
ε↓0

lim
L→∞

1
Ld

log P
±,c,h
L

(|ML −mLd |� εLd
)

=−Gh,c(m)+ inf
m′∈(−1,1)

Gh,c(m
′). (2.8)

Here m 
→Gh,c(m) is given by

Gh,c(m)= inf
θ∈[0,1]

Gh,c(m, θ), (2.9)

where

Gh,c(m, θ)=−hm−κθc−	(m, θ; c)+FJ (m). (2.10)

The function m 
→ Gh,c(m) is finite and strictly convex on (−1,1) with
limm→±1 G′

h,c(m)=±∞. Furthermore, the unique minimizer m=m(h, c) of
m 
→Gh,c(m) is continuous in both c and h and strictly increasing in h.

On the basis of the above large-deviation result, we can now charac-
terize the typical configurations of the measures P

±,c,h
L . Consider the Ising

model with coupling constant J and zero external field and let P
±,J
L be the

corresponding Gibbs measure in volume �L and ±-boundary condition.
Our main result in this section is then as follows:

Theorem 2.2. Let J > 0 and κ > 0 be fixed. Let c ∈ (0,1) and h ∈
R, and define two sequences of probability measures ρ±

L on [−1,1] by the
formula

ρ±
L

(
[−1,m]

)=P
±,c,h
L (ML �mLd), m∈ [−1,1]. (2.11)

The measures ρ±
L allow us to write the spin marginal of the measure P

±,c,h
L

as a convex combination of the Ising measures with fixed magnetization;
i.e., for any set A of configurations (σx)x∈�L

, we have

P
±,c,h
L

(A×{0,1}�L
)=

∫
ρ±

L (dm)P
±,J
L

(A∣∣ML =�mLd	). (2.12)

Moreover, if m = m(h, c) denotes the unique minimizer of the func-
tion m 
→Gh,c(m) from (2.9), then the following properties are true:
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(1) Given the spin configuration on a finite set �⊂Z
d , the salt vari-

ables on � are asymptotically independent. Explicitly, for each finite set
�⊂Z

d and any two configurations S̄� ∈{0,1}� and σ̄� ∈{−1,1}�,

lim
L→∞

P
±,c,h
L

(
S� = S̄�

∣∣σ� = σ̄�

)

=
∏

x∈�

{
qσ̄x δ1(S̄x)+ (1−qσ̄x )δ0(S̄x)

}
, (2.13)

where the numbers q± ∈ [0,1] are uniquely determined by the equations

q+
1−q+

= q−
1−q−

eκ and q+
1+m

2
+q−

1−m

2
= c. (2.14)

(2) The measure ρ±
L converges weakly to a point mass at m=m(h, c),

lim
L→∞

ρ±
L (·)= δm(·). (2.15)

In particular, the Ising-spin marginal of the measure P
±,c,h
L is asymptot-

ically supported on the usual Ising spin configurations with the overall
magnetization ML = (m+o(1))Ld , where m minimizes m 
→Gh,c(m).

The fact that conditioning P
±,c,h
L on a fixed value of magnetization

produces the Ising measure under same conditioning – which is the con-
tent of (2.12) – is directly related to the absence of salt–salt interac-
tion. The principal conclusions of the previous theorem are thus parts (1)
and (2), which state that the presence of a particular amount of salt forces
the Ising sector to choose a particular value of magnetization density. The
underlying variational principle provides insight into the physical mecha-
nism of phase separation upon freezing of solutions. (We refer the reader
back to Section 1.4 for the physical basis of these considerations.)

We will proceed by discussing the consequences of these results for
the phase diagram of the model and, in particular, the phenomenon of
freezing point depression. Theorems 2.1 and 2.2 are proved in Section 3.2.

2.3. Phase Diagram

The representation (2.12) along with the asymptotic (2.15) allow us
to characterize the distribution P

±,c,h
L in terms of the canonical ensem-

ble of the Ising ferromagnet. Indeed, these formulas imply that the dis-
tribution of Ising spins induced by P

±,c,h
L is very much like that in the
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measure P
±,J
L conditioned on the event that the overall magnetization ML

is near the value m(h, c)Ld . As a consequence, the asymptotic statements
(e.g., the Wulff construction) that have been (or will be) established for the
spin configurations in the Ising model with fixed magnetization will auto-
matically hold for the spin-marginal of the P

±,c,h
L as well.

A particular question of interest in this paper is phase separation.
Recall that m� =m�(J ) denotes the spontaneous magnetization of the Ising
model at coupling J . Then we can anticipate the following conclusions
about typical configurations in measure P

±,c,h
L :

(1) If m(h, c)�m�, then the entire system (with plus boundary condi-
tion) will look like the plus state of the Ising model whose external field
is adjusted so that the overall magnetization on the scale Ld is roughly
m(h, c)Ld .

(2) If m(h, c)�−m�, then the system (with minus boundary condition)
will look like the Ising minus state with similarly adjusted external field.

(3) If m(h, c)∈ (−m�,m�), then, necessarily, the system exhibits phase
separation in the sense that typical configurations feature a large droplet
of one phase inside the other. The volume fraction taken by the droplet is
such that the overall magnetization is near m(h, c)Ld . The outer phase of
the droplet agrees with the boundary condition.

The cases (1–2) with opposite boundary conditions – that is, the minus
boundary conditions in (1) and the plus boundary conditions in (2) – are
still as stated; the difference is that now there has to be a large contour
near the boundary flipping to the “correct” boundary condition.

Remark 2.3. We have no doubt that the aforementioned conclu-
sions (1–3) hold for all d � 2 and all J > Jc (with a proper definition of
the droplet in part (3), of course). However, the depth of conclusion (3)
depends on the level of understanding Wulff construction, which is at
present rather different in dimensions d =2 and d �3. Specifically, while in
d =2 the results of(14,22) allow us to claim that for all J >Jc and all mag-
netizations m∈ (−m�,m�), the system will exhibit a unique large contour
with appropriate properties, in d � 3 this statement is known to hold(6,10)

only in “L1-sense” and only for m ∈ (−m�,m�) which are near the end-
points. (Moreover, not all values of J >Jc are, in principle, permitted; cf.
ref. 7 for a recent improvement of these restrictions.) We refer to ref. 8 for
an overview of the situation.

Notwithstanding the technical difficulties of Wulff construction, the
above allows us to characterize the phase diagram of the model at hand.
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As indicated in Fig. 1, the h� 0 and c � 0 quadrant splits into three dis-
tinct parts: The liquid-water region, the ice region and the phase separa-
tion region, which correspond to the situations in (1–3), respectively. The
boundary lines of the phase-separation region are found by setting

m(h, c)=±m�, (2.16)

which in light of strict monotonicity of h 
→ m(h, c) allows us to calcu-
late h as a function of c. The solutions of (2.16) can be obtained on the
basis of the following observation:

Proposition 2.4. Let m ∈ [−m�,m�] and c ∈ [0,1] and define the
quantities q± =q±(m, c, κ) by (2.14). Let h be the solution to m(h, c)=m.
Then we have:

h= 1
2

log
1−q+
1−q−

. (2.17)

In particular, there exist two continuous and decreasing functions h± :
[0,∞) → (−∞,0] with h+(c) > h−(c) for all c > 0, such that −m� <

m(h, c)<m� is equivalent to h−(c)<h<h+(c) for all c>0.

Proposition 2.4 is proved at the very end of Section 3.2. Here is
an informal interpretation of this result: The quantities q± represent the
mole fractions of salt in liquid-water and ice, respectively. In mathematical
terms, q+ is the probability of having a salt particle on a given plus spin,
and q− is the corresponding quantity for minus spins, see (2.13). Formula
(2.17) quantifies the shift of the chemical potential of the solvent (which is
given by 2h in this case) due to the presence of the solute. This is a man-
ifestation of freezing-point depression, see also Remark 1.1. In the asymp-
totic when c�1 we have

2h≈q− −q+. (2.18)

This relation, derived in standard chemistry and physics books under the
auspicies of the “usual approximations,” is an essential ingredient in the
classical analyses of colligative properties of solutions.(24,27) Here the der-
ivation is a direct consequence of a microscopic (albeit simplistic) model
which further offers the possibility of systematically calculating higher-
order corrections.
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3. PROOFS

The proofs of our main results are, more or less, straightforward exer-
cises in large-deviation analysis of Gibbs distributions. We first state and
prove a couple of technical lemmas; the actual proofs come in Section 3.2.

3.1. Preliminaries

The starting point of the proof of Theorem 2.1 (and, consequently,
Theorem 2.2) is the following large-deviation principle for the Ising model
at zero external field:

Theorem 3.1. Consider the Ising model with coupling constant J ∈
[0,∞) and zero external field. Let P

±,J
L be the corresponding (grand

canonical) Gibbs measure in volume �L and ±-boundary conditions.
Then for all m∈ [−1,1],

lim
ε↓0

lim
L→∞

1
Ld

log P
±,J
L

(|ML −mLd |� εLd
)=−FJ (m), (3.1)

where ML is as in (2.5) and FJ is as defined in (2.6).

Proof. The claim is considered standard, see e.g. (ref. 31, Section II.1),
and follows by a straightforward application of the thermodynamic relations
between the free energy, magnetization and external field. For completeness
(and reader’s convenience) we will provide a proof.

Consider the function φL(h) = 1
Ld log E

±,J
L (ehML), where E

±,J
L is the

expectation with respect to P
±,J
L , and let φ(h)= limL→∞ φL(h). The limit

exists by subadditivity arguments and is independent of the boundary con-
dition. The function h 
→φ(h) is convex on R, real analytic (by the Lee–
Yang theorem(25)) on R \ {0}, and hence it is strictly convex on R. By
the h ↔ −h symmetry there is a cusp at h = 0 whenever m� = φ′(0+) > 0.
It follows that for each m∈ [m�,1) there is a unique h= h(m,J )� 0 such
that φ′(h) = m, with h(m,J ) increasing continuously from 0 to ∞ as m

increases from m� to 1. The plus–minus symmetry shows that a similar
statement holds for the magnetizations in (−1,−m�].

Let φ� denote the Legendre transform of φ, i.e., φ�(m)= suph∈R[mh−
φ(h)]. By the above properties of h 
→φ(h) we infer that φ�(m)=mh−φ(h)

when m ∈ (−1,−m�) ∪ (m�,1) and h = h(m,J ), while φ�(m) = −φ(0) = 0
for m∈ [−m�,m�]. Applying the Gärtner–Ellis theorem (ref. 21, Theorem V.6
or ref. 13, Theorem 2.3.6), we then have (3.1) with FJ (m) = φ�(m) for
all m ∈ [−1,−m�) ∪ (m�,1] – which is the set of so called exposed points
of φ�. Since φ�(±m�)=0 and the derivative of m 
→φ�(m) is h(m,J ), this FJ
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is given by the integral in (2.6). To prove (3.1) when m∈ [−m�,m�], we must
note that the left-hand-side of (3.1) is nonpositive and concave in m. (This
follows by partitioning �L into two parts with their own private magnetiza-
tions and disregarding the interaction through the boundary.) Since FJ (m)

tends to zero as m tends to ±m� we thus have that (3.1) for m∈ [−m�,m�]
as well.

Remark 3.2. The “first” part of the Gärtner-Ellis theorem (ref. 21,
Theorem V.6) actually guarantees the following large-deviation principle:

lim sup
L→∞

1
Ld

log P
±,J
L

(ML

Ld
∈C

)
�− inf

m∈C
φ�(m) (3.2)

for any closed set C ⊂R while

lim inf
L→∞

1
Ld

log P
±,J
L

(ML

Ld
∈O

)
�− inf

m∈O�[−m�,m�]
φ�(m) (3.3)

for any open set O⊂R. (Here φ�(m)=FJ (m) for m∈ [−1,1] and φ�(m)=
∞ otherwise.) The above proof follows by specializing to ε-neighborhoods
of a given m and letting ε ↓ 0. The m ∈ [−m�,m�] cases – i.e, the non-
exposed points – have to be dealt with separately.

The above is the core of our proof of Theorem 2.1. The next step will
be to bring the quantities c and h into play. This, as we shall see, is easily
done if we condition on the total magnetization. (The cost of this condi-
tioning will be estimated by (3.1).) Indeed, as a result of the absence of
salt–salt interaction, the conditional measure can be rather precisely char-
acterized. Let us recall the definition of the quantity NL from (2.3) which
represents the total amount of salt in the system. For any spin configura-
tion σ = (σx)∈{−1,1}�L and any salt configuration S = (Sx)∈{0,1}�L , let
us introduce the quantity

QL =QL(σ,S)=
∑

x∈�L

Sx

1+σx

2
(3.4)

representing the total amount of salt “on the plus spins.” Then we have:

Lemma 3.3. For any fixed spin configuration σ̄ = (σ̄x) ∈ {−1,1}�L ,
all salt configurations (Sx)∈ {0,1}�L with the same NL and QL have the
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same probability in the conditional measure P
±,c,h
L (·|σ = σ̄ ). Moreover, for

any S̄ = (S̄x)∈{0,1}�L with NL =�cLd	 and for any m∈ [−1,1],

P
±,c,h
L

(
S̄ occurs, ML =�mLd	)

= 1
ZL

E
±,J
L

(
eκQL(σ,S̄)+hML(σ)1{ML(σ)=�mLd	}

)
, (3.5)

where the normalization constant is given by

ZL =
∑

S′∈{0,1}�L

1{NL(S′)=�cLd	} E
±,J
L

(
eκQL(σ,S′)+hML(σ)

)
. (3.6)

Here E
±,J
L is the expectation with respect to P

±,J
L .

Proof. The fact that all salt configurations with given NL and QL

have the same probability in P
±,c,h
L (·|σ = σ̄ ) is a consequence of the obser-

vation that the salt-dependent part of the Hamiltonian (2.1) depends only
on QL. The relations (3.5)–(3.6) follow by a straightforward rewrite of the
overall Boltzmann weight.

The characterization of the conditional measure P
±,c,h
L (·|ML =�mLd	)

from Lemma 3.3 allows us to explicitly evaluate the configurational
entropy carried by the salt. Specifically, given a spin configuration σ =
(σx)∈{−1,1}�L and numbers θ, c∈ (0,1), let

Aθ,c
L (σ )={

(Sx)∈{0,1}�L : NL =�cLd	, QL =�θcLd	}. (3.7)

The salt entropy is then the rate of exponential growth of the size
of Aθ,c

L (σ ) which can be related to the quantity 	(m, θ; c) from (2.7) as
follows:

Lemma 3.4. For each ε′ > 0 and each η > 0 there exists a num-
ber L0 < ∞ such that the following is true for any θ, c ∈ (0,1), any m ∈
(−1,1) that obey |m|�1−η,

2θc

1+m
�1−η and

2(1− θ)c

1−m
�1−η, (3.8)

and any L � L0: If σ = (σx) ∈ {−1,1}�L is a spin configuration with
ML(σ)=�mLd	, then

∣∣∣∣
log |Aθ,c

L (σ )|
Ld

−	(m, θ; c)

∣∣∣∣� ε′. (3.9)
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Proof. We want to distribute NL =�cLd	 salt particles over Ld posi-
tions, such that exactly QL = �θcLd	 of them land on 1

2 (Ld + ML) plus
sites and NL −QL on 1

2 (Ld −ML) minus sites. This can be done in

|Aθ,c
L (σ )|=

( 1
2 (Ld +ML)

QL

)( 1
2 (Ld −ML)

NL −QL

)
(3.10)

number of ways. Now all quantities scale proportionally to Ld which,
applying Stirling’s formula, shows that the first term is within, say, e±Ldε′/2

multiples of

exp
{
−Ld 1+m

2
S

( 2θc

1+m

)}
(3.11)

once L � L0, with L0 depending only on ε′. A similar argument holds
also for the second term with θ replaced by 1 − θ and m by −m. Com-
bining these expressions we get that |Aθ,c

L (σ )| is within e±Ldε′
multiples

of exp{Ld	(m, θ; c)} once L is sufficiently large.

For the proof of Theorem 2.2, we will also need an estimate on how
many salt configurations in Aθ,c

L (σ ) take given values in a finite subset �⊂
�L. To that extent, for each σ ∈ {−1,1}�L and each S̄� ∈ {0,1}� we will
define the quantity

R
θ,c
�,L(σ, S̄�)= |{S̄ ∈Aθ,c

L (σ ) : S� = S̄�}|
|Aθ,c

L (σ )|
. (3.12)

As a moment’s thought reveals, R
θ,c
�,L(σ, S̄�) can be interpreted as the

probability that {S� = S̄�} occurs in (essentially) any homogeneous prod-
uct measure on S = (Sx) ∈ {0,1}�L conditioned to have NL(S) = �cLd	
and QL(σ,S) = �θcLd	. It is therefore not surprising that, for spin con-
figurations σ with given magnetization, R

θ,c
�,L(σ, ·) will tend to a product

measure on S� ∈ {0,1}�. A precise characterization of this limit is as fol-
lows:

Lemma 3.5. For each ε > 0, each K � 1 and each η > 0 there
exists L0 < ∞ such that the following holds for all L � L0, all � ⊂ �L

with |�|�K, all m with |m|�1−η and all θ, c∈ [η,1−η] for which

p+ = 2θc

1+m
and p− = 2(1− θ)c

1−m
(3.13)
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satisfy p± ∈ [η,1 − η]: If σ = (σx) ∈ {−1,1}�L is a spin configuration such
that ML(σ)=�mLd	 and S̄� ∈{0,1}� is a salt configuration in �, then

∣∣∣Rθ,c
�,L(σ, S�)−

∏

x∈�

{
pσx δ1(S̄x)+ (1−pσx )δ0(S̄x)

}∣∣∣� ε. (3.14)

Proof. We will expand on the argument from Lemma 3.4. Indeed,
from (3.10) we have an expression for the denominator in (3.12). As to the
numerator, introducing the quantities

M� =
∑

x∈�

σx, N� =
∑

x∈�

Sx, Q� =
∑

x∈�

Sx

1+σx

2
, (3.15)

and the shorthand

D =Dr,r ′,s,s′(�, �′, q, q ′)=

(
r −�

s −q

)(
r ′ −�′

s′ −q ′

)

(
r

s

)(
r ′

s′

) , (3.16)

the same reasoning as we used to prove (3.10) allows us to write the
object R

θ,c
�,L(σ, S�) as Dr,r ′,s,s′(�, �′, q, q ′), where the various parameters

are as follows: The quantities

r = Ld +ML

2
and r ′ = Ld −ML

2
(3.17)

represent the total number of pluses and minuses in the system, respec-
tively,

s =QL and s′ =NL −QL (3.18)

are the numbers of salt particles on pluses and minuses, and, finally,

�= |�|+M�

2
, �′ = |�|−M�

2
, q =Q� and q ′ =N� −Q� (3.19)

are the corresponding quantities for the volume �, respectively.
Since (3.13) and the restrictions on |m| � 1 − η and θ, c ∈ [η,1 − η]

imply that r, r ′, s, s′, r − s and r ′ − s′ all scale proportionally to Ld , uni-
formly in σ and S�, while � and �′ are bounded by |�| – which by our
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assumption is less than K – we are in a regime where it makes sense to
seek an asymptotic form of quantity D. Using the bounds

abe−b2/a � (a +b)!
a!

�abeb2/a, (3.20)

which are valid for all integers a and b with |b|�a, we easily find that

D =
( s

r

)�(
1− s

r

)�−q( s′

r ′
)�′(

1− s′

r ′
)�′−q ′

+o(1), L→∞. (3.21)

Since s/r → p+ and s′/r ′ → p− as L → ∞, while �, q, �′ and q ′ stay
bounded, the desired claim follows by taking L sufficiently large.

The reader may have noticed that, in most of our previous arguments,
θ and m were restricted to be away from the boundary values. To con-
trol the situation near the boundary values, we have to prove the following
claim:

Lemma 3.6. For each ε ∈ (0,1) and each L�1, let EL,ε be the event

EL,ε = {|ML|� (1− ε)Ld
}

∩ {
ε 1

2 (Ld +ML)�QL � (1− ε) 1
2 (Ld +ML)

}
. (3.22)

Then for each c∈ (0,1) and each h∈R there exists an ε >0 such that

lim sup
L→∞

1
Ld

log P
±,c,h
L

(Ec
L,ε)<0. (3.23)

Proof. We will split the complement of EL,ε into four events and
prove the corresponding estimate for each of them. We begin with the
event {ML �−(1− ε)Ld}. The main tool will be stochastic domination by
a product measure. Consider the usual partial order on spin configurations
defined by putting σ ≺σ ′ whenever σx �σ ′

x for all x. Let

λ= inf
L�1

min
x∈�L

min
σ ′∈{−1,1}�L�{x}

S̄∈{−1,1}�L

P
±,c,h
L (σx =1|σ ′, S̄) (3.24)

be the conditional probability that σx =+1 occurs given a spin configura-
tion σ ′ in �L \{x} and a salt configuration S̄ in �L, optimized over all σ ′,
S̄ and also x ∈�L and the system size. Since P

±,c,h
L (σx = 1|σ ′, S̄) reduces
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to (the exponential of) the local interaction between σx and its ultimate
neighborhood, we have λ>0.

Using standard arguments it now follows that the spin marginal
of P

±,c,h
L stochastically dominates the product measure Pλ defined

by Pλ(σx =1)=λ for all x. In particular, we have

P
±,c,h
L

(
ML �−(1− ε)Ld

)
�Pλ

(
ML �−(1− ε)Ld

)
. (3.25)

Let ε < 2λ. Then λ− (1 −λ) – namely, the expectation of σx with respect
to Pλ – exceeds the negative of (1 − ε) and so Cramér’s theorem (ref. 21,
Theorem I.4 or ref. 13, Theorem 2.1.24) implies that the probability on the
right-hand-side decays to zero exponentially in Ld , i.e.,

lim sup
L→∞

1
Ld

log Pλ

(
ML �−(1− ε)Ld

)
<0. (3.26)

The opposite side of the interval of magnetizations, namely, the event
{ML � (1−ε)Ld}, is handled analogously (with λ now focusing on σx =−1
instead of σx =1).

The remaining two events, marking when QL is either less than ε or
larger than (1−ε) times the total number of plus spins, are handled using
a similar argument combined with standard convexity estimates. Let us
consider the event {QL � εLd} – which contains the event {QL � ε 1

2 (ML +
Ld)} – and let us emphasize the dependence of the underlying probability
distribution on κ by writing P

±,c,h
L as Pκ . Let Eκ denote the expectation

with respect to Pκ and note that Eκ(f )=E0(f eκQL)/E0(e
κQL). We begin

by using the Chernoff bound to get

Pκ(QL � εLd)� eaεLd

Eκ(e−aQL)= eaεLd

Eκ−a(eaQL)
, a �0. (3.27)

A routine application of Jensen’s inequality gives us

Pκ(QL � εLd)� exp
{
a
(
εLd −Eκ−a(QL)

)}
. (3.28)

It thus suffices to prove that there exists a κ ′ <κ such that infL�1
1

Ld Eκ ′(QL)

is positive. (Indeed, we take ε to be strictly less than this number and set
a=κ −κ ′ to observe that the right-hand-side decays exponentially in Ld .) To
show this we write Eκ ′(QL) as the sum of Pκ ′(σx =1, Sx =1) over all x ∈�L.
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Looking back at (3.24), we then have Pκ ′(σx =1, Sx =1)�λPκ ′(Sx =1),
where λ is now evaluated for κ ′, and so

Eκ ′(QL)�λ
∑

x∈�L

Pκ ′(Sx =1)=λEκ ′(NL)≈λcLd. (3.29)

Thus, once λc > ε, the probability Pκ(QL � εLd) decays exponentially
in Ld .

As to the complementary event, {QL � (1 − ε) 1
2 (ML + Ld)}, we

note that this is contained in {HL � εLd}, where HL counts the num-
ber of plus spins with no salt on it. Since we still have Eκ(f ) =
E0(f e−κHL)/E0(e

−κHL), the proof boils down to the same argument as
before.

3.2. Proofs of Theorems 2.1 and 2.2

On the basis of the above observations, the proofs of our main theo-
rems are easily concluded. However, instead of Theorem 2.1 we will prove
a slightly stronger result of which the large-deviation part of Theorem 2.1
is an easy corollary.

Theorem 3.7. Let J > 0 and κ � 0 be fixed. For each c, θ ∈ (0,1),
each h ∈ R and each m ∈ (−1,1), let BL,ε = BL,ε(m, c, θ) be the set of all
(σ, S)∈{−1,1}�L ×{0,1}�L for which |ML −mLd |�εLd and |QL −θcLd |�
εLd hold. Then

lim
ε↓0

lim
L→∞

log P
±,c,h
L (BL,ε)

Ld
=−Gh,c(m, θ)+ inf

m′∈(−1,1)
θ ′∈[0,1]

Gh,c(m
′, θ ′), (3.30)

where Gh,c(m, θ) is as in (2.10).

Proof. Since the size of the set Aθ,c
L (σ ) depends only on the over-

all magnetization, let A
θ,c
L (m) denote this size for the configurations σ

with ML(σ)=�mLd	. First we note that, by Lemma 3.3,

P
±,c,h
L

(
QL =�θcLd	, ML =�mLd	)= KL(m, θ)

ZL

(3.31)

where

KL(m, θ)=A
θ,c
L (m) eh�mLd	+κ�θcLd	

P
±,J
L

(
ML =�mLd	). (3.32)
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Here ZL is the normalization constant from (3.6) which in the present for-
mulation can also be interpreted as the sum of KL(m, θ) over the relevant
(discrete) values of m and θ .

Let KL,ε(m, θ) denote the sum of KL(m′, θ) over all m′ and θ ′ for
which m′Ld and θ ′cLd are integers and |m′ − m| � ε and |θ ′c − θc| � ε.
(This is exactly the set of magnetizations and spin-salt overlaps contrib-
uting to the set BL,ε .) Applying (3.1) to extract the exponential behavior
of the last probability in (3.32), and using (3.9) to do the same for the
quantity A

θ,c
L (m), we get

∣∣∣
log KL,ε(m, θ)

Ld
+Gh,c(m, θ)

∣∣∣� ε + ε′, (3.33)

where ε′ is as in (3.9). As a consequence of the above estimate we have

lim
ε↓0

lim
L→∞

log KL,ε(m, θ)

Ld
=−Gh,c(m, θ) (3.34)

for any m∈ (−1,1) and any θ ∈ (0,1).
Next we will attend to the denominator in (3.31). Pick δ>0 and con-

sider the set

Mδ ={
(m, θ) : |m|�1− δ, δ � θ �1− δ

}
. (3.35)

We will write ZL as a sum of two terms, ZL = Z
(1)
L + Z

(2)
L , with Z

(1)
L

obtained by summing K(m, θ) over the admissible (m, θ) ∈ Mδ and Z
(2)
L

collecting the remaining terms. By Lemma 3.6 we know that Z
(2)
L /ZL

decays exponentially in Ld and so the decisive contribution to ZL comes
from Z

(1)
L . Assuming that ε � δ, let us cover Mδ by finite number of sets

of the form [m′
� − ε,m′

� + ε] × [θ ′
� − ε, θ ′

� + ε], where m′
� and θ ′

� are such
that m′

�L
d and θ ′

�cL
d are integers. Then Z

(1)
L can be bounded as in

max
�

KL,ε(m
′
�, θ

′
�)�Z

(1)
L �

∑

�

KL,ε(m
′
�, θ

′
�). (3.36)

Moreover, the right-hand-side is bounded by the left-hand-side times a
polynomial in L. Taking logarithms, dividing by Ld , taking the limit L→
∞, refining the cover and applying the continuity of (m, θ) 
→Gh,c(m, θ)

allows us to conclude that

lim
L→∞

log ZL

Ld
=− inf

m∈(−1,1)
inf

θ∈[0,1]
Gh,c(m, θ). (3.37)
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Combining these observations, (2.8) is proved.

Proof of Theorem 2.1. The conclusion (2.8) follows from (3.30) by
similar arguments that prove (3.37). The only remaining thing to prove is
the strict convexity of m 
→ Gh,c(m) and continuity and monotonicity of
its minimizer. First we note that θ 
→Gh,c(m, θ) is strictly convex on the
set of θ where it is finite, which is a simple consequence of the strict con-
vexity of p 
→S(p). Hence, for each m, there is a unique θ = θ(m) which
minimizes θ 
→Gh,c(m, θ).

Our next goal is to show that, for κc > 0, the solution θ = θ(m) will
satisfy the inequality

θ >
1+m

2
. (3.38)

(A heuristic reason for this is that θ = 1+m
2 corresponds to the situation

when the salt is distributed independently of the underlying spins. This is
the dominating strategy for κ =0; once κ >0 it is clear that the fraction of
salt on plus spins must increase.) A formal proof runs as follows: We first
note that m 
→ θ(m) solves for θ from the equation

∂

∂θ
	(m, θ; c)=−κc, (3.39)

where 	(m, θ; c) is as in (2.7). But θ 
→	(m, θ; c) is strictly concave and
its derivative vanishes at θ = 1

2 (1 + m). Therefore, for κc > 0 the solu-
tion θ = θ(m) of (3.39) must obey (3.38).

Let V be the set of (m, θ)∈ (−1,1)× (0,1) for which (3.38) holds and
note that V is convex. A standard second-derivative calculation now shows
that Gh,c(m, θ) is strictly convex on V . (Here we actually differentiate the
function Gh,c(m, θ) − FJ (m) – which is twice differentiable on the set
where it is finite – and then use the known convexity of FJ (m). The strict
convexity is violated on the line θ = 1

2 (1+m) where (m, θ) 
→Gh,c(m, θ) has
a flat piece for m ∈ [−m�,m�].) Now, since θ(m) minimizes Gh,c(m, θ) for
a given m, the strict convexity of Gh,c(m, θ) on V implies that for any λ∈
(0,1),

Gh,c

(
λm1 + (1−λ)m2

)

�Gh,c

(
λm1 + (1−λ)m2, λθ(m1)+ (1−λ)θ(m2)

)

<λGh,c

(
m1, θ(m1)

)+ (1−λ)Gh,c

(
m2, θ(m2)

)
(3.40)

=λGh,c(m1)+ (1−λ)Gh,c(m2).



Colligative Properties of Solutions 503

Hence, m 
→ Gh,c(m) is also strictly convex. The fact that G′(m) diverges
as m → ±1 is a consequence of the corresponding property of the func-
tion m 
→FJ (m) and the fact that the rest of Gh,c is convex in m.

As a consequence of strict convexity and the abovementioned “steep-
ness” at the boundary of the interval (−1,1), the function m 
→ Gh,c(m)

has a unique minimizer for each h∈R and c>0, as long as the quantities
from (3.13) satisfy p± <1. The minimizer is automatically continuous in h

and is manifestly non-decreasing. Furthermore, the continuity of Gh,c in c

allows us to conclude that θ(m) is also continuous in c. What is left of the
claims is the strict monotonicity of m as a function of h. Writing Gh,c(m)

as −hm+g(m) and noting that g is continuously differentiable on (−1,1),
the minimizing m satisfies

g′(m)=h. (3.41)

But g(m) is also strictly convex and so g′(m) is strictly increasing. It fol-
lows that m has to be strictly increasing with h.

Theorem 3.1 has the following simple consequence that is worth high-
lighting:

Corollary 3.8. For given h∈R and c∈ (0,1), let (m, θ) be the mini-
mizer of Gh,c(m, θ). Then for all ε >0,

lim
L→∞

P
±,c,h
L

(|QL − θcLd |� εLd or |ML −mLd |� εLd
)=0. (3.42)

Proof. On the basis of (3.30) and the fact that Gh,c(m, θ) has a
unique minimizer, a covering argument – same as used to prove (3.37) –
implies that the probability on the left-hand-side decays to zero exponen-
tially in Ld .

Before we proceed to the proof of our second main theorem, let us
make an observation concerning the values of p± at the minimizing m

and θ :

Lemma 3.9. Let h ∈ R and c ∈ (0,1) be fixed and let (m, θ) be the
minimizer of Gh,c(m, θ). Define the quantities q± = q±(m, c, κ) by (2.14)
and p± =p±(m, θ, c) by (3.13). Then

q+ =p+ and q− =p−. (3.43)

Moreover, q± are then related to h via (2.17) whenever m∈ [−m�,m�].
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Proof. First let us ascertain that q± are well defined from equa-
tions (2.14). We begin by noting that the set of possible values of (q+, q−)

is the unit square [0,1]2. As is easily shown, the first equation in (2.14)
corresponds to an increasing curve in [0,1]2 connecting the corners (0,0)

and (1,1). On the other hand, the second equation in (2.14) is a straight
line with negative slope which by the fact that c<1 intersects both the top
and the right side of the square. It follows that these curves intersect at a
single point – the unique solution of (2.14).

Next we will derive equations that p± have to satisfy. Let (m, θ) be
the unique minimizer of Gh,c(m, θ). The partial derivative with respect
to θ yields

c
(
S′(p+)−S′(p−)

)=κc (3.44)

and from the very definition of p± we have

1+m

2
p+ + 1−m

2
p− = c. (3.45)

Noting that S′(p)= log p
1−p

, we now see that p± satisfies the same equa-
tions as q± and so, by the above uniqueness argument, (3.43) must hold.

To prove relation (2.17), let us also consider the derivative of Gh,c(m, θ)

with respect to m. For solutions in [−m�,m�] we can disregard the FJ part
of the function (because its vanishes along with its derivative throughout
this interval), so we have

h=− ∂

∂m
	(m, θ; c). (3.46)

A straightforward calculation then yields (2.17).

Now we are ready to prove our second main result:

Proof of Theorem 2.2. The crucial technical step for the present
proof has already been established in Lemma 3.3. In order to plug into
the latter result, let us note that the sum of eκQL(σ,S) over all salt configu-
rations S = (Sx)∈{0,1}�L with NL =�cLd	 is a number depending only on
the total magnetization ML =ML(σ). Lemma 3.3 then implies

P
±,c,h
L

(A×{0,1}�L ∩{ML = �mLd	})

= ωL(m)P
±,J
L

(A∩{ML =�mLd	}) (3.47)
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where ωL(m) is a positive number depending on m, the parameters c, h, J

and the boundary condition ± but not on the event A. Noting that ρ±
L is

simply the distribution of the random variables ML/Ld in measure P
±,c,h
L ,

this proves (2.12).
In order to prove the assertion (2.13), we let σ̄ ∈{0,1}�L , pick �⊂�L

and fix S̄ ∈{0,1}�. Since Lemma 3.3 guarantees that, given {σ = σ̄ }, all salt
configurations with fixed QL and concentration c have the same probabil-
ity in P

±,c,h
L (·|σ = σ̄ ), we have

P
±,c,h
L

(
S� = S̄�, S ∈Aθ,c

L (σ̄ )
∣∣σ = σ̄

)=R
θ,c
�,L(σ̄ , S�), (3.48)

where R
θ,c
�,L is defined in (3.12). Pick η>0 and assume, as in Lemma 3.5,

that c∈ [η,1−η], θ ∈ [η,1−η] and ML(σ̄ )=�mLd	 for some m with |m|�
1−η. Then the aforementioned lemma tells us that R

θ,c
�,L(σ̄ , ·) is within ε

of the probability that S̄� occurs in the product measure where the prob-
ability of Sx =1 is p+ if σ̄x =+1 and p− if σ̄x =−1.

Let (m, θ) be the unique minimizer of Gh,c(m, θ). Taking expecta-
tion of (3.48) over σ̄ with σ̄� fixed, using Corollary 3.8 to discard the
events |ML/Ld − m| � ε or |QL/Ld − θc| � ε and invoking the continuity
of p± in m and θ , we find out that P

±,c,h
L (S� = S̄�|σ� = σ̄�) indeed con-

verges to

∏

x∈�

{
pσ̄x δ1(S̄x)+ (1−pσ̄x )δ0(S̄x)

}
, (3.49)

with p± evaluated at the minimizing (m, θ). But for this choice Lemma 3.9
guarantees that p± =q±, which finally proves (2.13–2.14).

The last item to be proved is Proposition 2.4 establishing the basic
features of the phase diagram of the model under consideration:

Proof of Proposition 2.4. From Lemma 3.9 we already know that
the set of points m(h, c)=m for m∈ [−m�,m�] is given by the Eq. (2.17).
By the fact that m(h, c) is strictly increasing in h and that m(h, c) → ±1
as h→±∞ we thus know that (2.17) defines a line in the (h, c)-plane. Spe-
cializing to m = ±m� gives us two curves parametrized by functions c 
→
h±(c) such that at (h, c) satisfying h−(c)<h<h+(c) the system magneti-
zation m(h, c) is strictly between −m� and m�, i.e., (h, c) is in the phase
separation region.

It remains to show that the above functions c 
→ h±(c) are strictly
monotone and negative for c > 0. We will invoke the expression (2.17)
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which applies because on the above curves we have m(h, c)∈ [−m�,m�]. Let
us introduce new variables

R+ = q+
1−q+

and R− = q−
1−q−

(3.50)

and, writing h in (2.17) in terms of R±, let us differentiate with respect
to c. (We will denote the corresponding derivatives by superscript prime.)
Since (2.14) gives us that R− = e−κR+, we easily derive

2h′ = R′−
1+R−

− R′+
1+R+

=−R′
+

1− e−κ

(1+R+)(1+R−)
. (3.51)

Thus, h′ and R′+ have opposite signs; i.e., we want to prove that R′+ > 0.
But that is immediate: By the second equation in (2.14) we conclude that
at least one of R′± must be strictly positive, and by R− = e−κR+ we find
that both R′± > 0. It follows that c 
→ h±(c) are strictly decreasing, and
since h±(0)=0, they are also negative once c>0.
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