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Abstract

We investigate, from a mathematical perspective, the problem of a layer of

fluid attracted to a horizontal plate when the layer is in equilibrium with a bulk

reservoir. It is assumed that as the temperature varies, the bulk undergoes

a continuous phase transition. On the basis of free energetics, this initially

causes thinning of the layer but, at lower temperatures, the layer recovers and

rebuilds. We provide a mathematical framework with which to investigate these

problems. As an approximation, we model the layered system by a mean–field

Ising magnet. The layered system is first studied in isolation (fixed thickness)

and then as a system in contact with the bulk (variable thickness) with general

results established. Finally, we investigate the limit of large thickness. Here,

a well defined continuum theory emerges which provides an approximation to

the discrete systems. In the context of the limiting theory, it is established

that discontinuities in the layer thickness (as a function of temperature) or the

derivative thereof are inevitable. By comparison with actual data from [8] and

[7] the discontinuities may indeed be present but they are not quite in the form

predicted by the theory. Finally – still in the context of the limiting theory –

is shown that at low temperatures, the layer may be lost altogether; the nature

of the critical binding force is elucidated.

1



1 Introduction: statement of the problem

The central purpose of this note is to provide, in the context of a well defined model,

a statistical mechanics description of a layered system interacting with a substrate all

of which is in the presence of a bulk reservoir. We will work at the level of mean–field

theory. Usually “mean–field theory” indicates a spin (or particle) system where, for a

finite number, N , of elements, each element interacts homogeneously and weakly with

all (or many) of the other elements. Then one can investigate the thermodynamic and

statistical behavior as N →∞. In this work, we will consider a finite ensemble of L

such systems arranged in a linear fashion. Each such system should be envisioned as a

d–dimensional system (d = 1 or 2 of primary importance) with the “line” extending in

an orthogonal direction. For obvious reasons we will refer to the constituent systems

as layers. Here, the interaction may be loosely described as follows: within each

layer the interaction is of the above described mean–field type and further, each

spin interacts with all (or many) spins in the neighboring layers – ostensibly with

a different interaction parameter. (We will briefly consider additional interactions

between further neighboring layers but, for present purposes, we regard this as an

unnecessary complication.) Finally there is a layer dependent chemical potential

term which represents the overall affinity that the layer has for the substrate. This is

sufficient for an informal description; the premise of this work is to figure out, on the

basis of free energetics – compared to a background homogenous system (reservoir)

– how many layers are present. Moreover, we stipulate without apology that each

layer is fully present or absent altogether – i.e., we will not consider the systems with

partial layers. The regime of interest is when the reservoir undergoes a continuous

change of phase.

The models we will consider are of the Ising type. At the level of mean–field theory,

we believe that this simplification is not too drastic. Indeed, it is likely that most of

our results could have been derived with other mean–field models (provided that the

mean–field transition is continuous). In particular, most other mean–field theories

differ from the Ising model only via the value of various parameters. Thus, at various

stages, we have substituted the particular numerical Ising parameters (e.g., couplings)

with generic parameters and, in all cases, results have proved to be independent of

these substitutions.
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The primary motivation for this work is a series of remarkable experiments [8] [7]

that has captured the thinning effects of 4He thin films suspended above a reservoir

of bulk 4He. The experiments have shown that the thickness of the film remains

relatively constant while the temperature is above the above the bulk critical tem-

perature. However: these films (dramatically) undergo thinning as the temperature

is lowered through and below Tc. Then, as the temperature continues to lower, the

film will then re-thicken to a substantial fraction of it’s previous equilibrium length.

This thinning is consistent with finite scaling theory as it exhibits data collapse [7].

Treatments of order parameter fluctuations have accurately described the thinning

in the critical region just above Tc [9]. In addition, treatments of surface fluctuations

in the superfluid regime have explained the residual thinning of the film [14]. What

remains unresolved is the relatively large part of the thinning which takes place in

the vicinity of the critical region. It is the opinion of the authors that the qualitative

aspects this phenomena can be described by the interplay of free energies between the

bulk and the film. Thus a good place to start is with a mean–field theoretic treatment

using the simplest possible model. We have acquired qualitative understanding of

this regime including, on the one hand a definitive prediction that some form of

discontinuous behavior for the layer thickness a a function of temperature is inevitable.

On the other hand, while the discontinuities are indeed present in the data, their

quantitate form differs markedly from that of the predictions. In particular, here we

find – necessarily – that the thinning epoch ends with the discontinuity whereas when

discontinuities appear in the experimental data, they typically occur in the midst of

the thinning process. Moreover, in the context of the current work there is no residual

thinning at low temperatures, i.e., generally, the original T > Tc thickness is fully

restored.

It is most likely that the discrepancies are caused by the failure of the simplistic

(classical) theory to capture important (quantum) features of the superfluid low tem-

perature state. This problem is currently under investigation by some of the authors;

our current hope/speculation is that the addition of “well understood” terms – at a

phenomenological or first principals level – will rectify all difficulties. However, as a

form of a corollary, it would therefore seem that for an analogous set up as [8] [7] with

the bulk reservoir and films undergoing a classical continuous transition – conceivably

within the realm of experimental possibility – the inevitable discontinuities, etc., will

also appear but here in the form predicted by the present work.
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2 Layered systems in isolation

Here we will study a system of L interacting Ising layers. The object will be referred

to as a film – the thickness of which is L. In this section, the thickness will be

regarded as fixed and we will derive (at a certain level of mathematical standard)

basic properties of this system. These will be used, in later sections to determine the

nature of the film when L is allowed to adjust “dynamically” in response in changes

to external parameters.

The mean–field behavior of layered spin–systems – especially Ising systems near

criticality – is hardly a new subject from the physics perspective. An early reference

(among those found by the authors) is [11] and, of course, there is the well known

analysis in [12]. The reader is invited to the review in [6] for relevant prior information.

From a mathematical perspective, this problem has been treated recently in the

context of independent percolation [3] and [5]; mathematical results about systems

of this sort are not readily found in the literature. Many of the Ising results (old

and new) have counterparts in the Bernoulli system. However notwithstanding the

approach in [2] and [5] there is no bona fide free energy with which a percolation model

can interact with an external environment. For this, a genuine interacting system is

needed and we turn to the simplest example at hand.

2.1 The (basic) layered model

For the Ising Model, with coupling J the free energy function of the (isotropic bulk)

system with magnetization m is provided by the following equation:

φβ(m)− log 2 = −βJ
2
m2 + (

1 +m

2
) log (

1 +m

2
) + (

1−m
2

) log(
1−m

2
)

=: −βJ
2
m2 − SI(m)− log 2 (2.1)

where, in the future, we will omit the constant from consideration so that the inter-

esting portion of the free energy function vanishes at m = 0. This formula is easily

derived by the usual considerations, and is the appropriate object for the model de-

fined on the complete graph. C.f., [1], especially Theorem 5, for a general discussion of

these points. The actual free energy of the system is obtained by minimizing φβ(m);
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here we will deviate from standard conventions by not dividing out the β:

f(β) = min
m∈(−1,+1)

φβ(m). (2.2)

The transition occurs at βc = J−1 meaning that for β > βc the above f is minimized

by m(β) 6= 0 and for β ≤ βc the optimal magnetization is zero.

Consider, now a system of interacting layers, (formally defined on {1, . . . L} which

we denote by LL) and let us assume that among the layers, the only interactions are

between neighboring layers. Then the appropriate free energy function is

Φβ;L(m1,m2, ...,mL) = −βJ0

2

L∑
k=1

m2
k − βJ1

L−1∑
k=1

mkmk+1 −
∑
k

SI(mk). (2.3)

where, again, we have neglected constant terms. We shall refer to this as the basic

model. The equation for the magnetization profile – found by minimizing Φβ;L is

readily seen to be

mk = tanh[βJ0mk + βJ1(mk+1 +mk−1)] (2.4)

where for connivence, an m0 = mL+1 = 0 may be envisioned. We shall abbreviate

the array (m1, . . .mL) by m and often use the alternative form

Φβ;L(m) = − b
2

∑
k

m2
k −

a

2

∑
k

mk∆mk −
∑
k

SI(mk). (2.5)

where b = β(J0 + 2J1), a = βJ1 and ∆ is notation for the discrete Laplacian:

∆mk := (mk−1 +mk+1 − 2mk).

In Eq.(2.5), all sums run from 1 to L and, again, when necessary, we assume fictitious

layers at 0 and L+ 1 with magnetizations m0 = mL+1 ≡ 0. The free energy obtained

by minimizing the right side of Eq.(2.3) will be denoted by FL. It is noted that (in

addition to the β) we do not divide out the L in the definition of FL. Finally, for the

bulk free energy associated with this problem, we will use φβ(m) as in Eq.(2.1) with

the relevant J provided by

J = J0 + 2J1.

As our notations indicates, the main intention is to keep J0 and J1 fixed (and strictly

positive) while β varies. We shall almost always adhere to this convention and in case

of deviation, all relevant quantities will be clear from context.
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While the systems defined by Eq.(2.3) will be adequate for our description of

the physical processes of interest, unfortunately, we will have some uses for general

properties shared by all systems of this sort. This will be delegated to the next

subsection in the form of a massive theorem the statement(s) of which are important

but the proof of which may be omitted on a preliminary reading.

2.2 Properties of general layered models

For the purposes of this subsection, we shall temporarily consider the generalized

version of the ferromagnetic Ising layered system which is defined as follows:

Let K = (Ki,j | i, j ∈ LL) denote an array of interactions – which include i = j

with Ki,j ≥ 0. It is assumed that the graph consisting of vertices LL and edges (i, j)

corresponding to the non–zero Ki,j is a connected graph. Then, consider the free

energy

ΦK(m) := −
∑
j

SI(mj)−
1

2

∑
i,j

Ki,jmimj (2.6)

and the associated mean–field equation

mk = tanh(
∑
j

Kk,jmj) (2.7)

The following properties hold:

Theorem 2.1 Consider the generalized Ising layered system as defined. Then

(0) All minimizers of ΦK satisfy Eq.(2.7).

(1) All minimizers of ΦK(·) have each mk of the same sign which hereafter, without

loss of generality, will be taken to be non–negative.

(2) If Eq.(2.7) has a non–trivial non–negative solution, m, (where by non–trivial

it is meant that for some j, mj > 0) then for all k, mk > 0. In particular, this holds

for the minimizer of the functional in Eq.(2.6).

(3) The equation (2.7) has at most one non–trivial non–negative solution.

(4) If K′ � K (meaning that K ′i,j ≥ Ki,j for all (i, j)) with K ′i,j strictly larger than

Ki,j for at least one pair (i, j) then if Eq.(2.7) has a non–trivial solution with the

couplings K it also has a non–trivial solution for the couplings K′ and, denoting the

respective solutions by m′ and m, for all k, m′k > mk.
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(5) Regarding K as a matrix (with elements Ki,j) the necessary and sufficient

condition for the existence of a non–trivial solution is that the maximum eigenvalue

of K exceed unity. Moreover, under this condition, the afore mentioned solution

minimizes ΦK(·).

Remark. For the basic model, defined by Eq.(2.3), the eigenvalue condition reads

βJ0 + 2βJ1 > 1− 2βJ1λ0 (2.8)

where

|λ0| = 1− cos
π

L+ 1
≈ 1

2

π2

L2
(for L� 1). (2.9)

Results along these lines (at least for large L) have been known in the physics litera-

ture for quite a while; e.g., the works [11], [12] and various others; c.f., the review by

[6]. However, there results are all based on linearization of the mean–field equation

(Eq.(2.4) or, more precisely the Ginzburg–Landau continuum version thereof) and,

e.g., do not preclude the possibility of discontinuous transitions at higher tempera-

tures. But, in any case, these results all turn out to be essentially correct and here

a complete proof is provided. It is further remarked that in the context of layered

percolation, most of these results were established in [5] and [3] by methods which

are not dissimilar. Finally, it is remarked that some of the monotonicities in the

statement of Theorem 2.1 – but not necessarily their strict versions – can be derived

by considering the layered model a a limit of actual Ising systems with long–range in-

teractions. However, here we use only the basic structure of the mean–field equations

thence one may anticipate that these results hold for alternative spin–systems.

Proof. (0). This blatantly follows by differentiation of Eq.(2.7); it is included, for

completeness and to emphasize that that any property of (all) solutions to Eq.(2.7)

automatically holds for (all) minimizers of Eq.(2.6).

(1). Here, we make the observation that if m is a trial minimizer for the

functional in Eq.(2.6), the free energy is only lowered by replacing each component

of m with its absolute value. Indeed, it is clear that entropy terms as well as the

“diagonal” energy terms are unchanged by this transformation while the off diagonal

terms are only get lowered.

(2). Suppose that m satisfies this equation with some mj 6= 0 (and therefore

positive by our convention). Examining the form of Eq.(2.7), it is clear (by positivity
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of the tangent function and by the assumed fact that none of the other magnetizations

are negative) that for all k such that Ki,k 6= 0, mk > 0. The desired result follows

from the definition of a connected graph.

We turn to the more substantive items.

(3). By standard compactness arguments, there are always minimizers of the

functional in Eq.(2.6); by (0) – (2) above, these are identically zero or componentwise

positive (plus overall sign reverses which we do not discuss). We shall construct

the maximal positive solution of Eq.(2.7) and shortly thereafter, demonstrate that, if

non–trivial, it is the only positive solution of this equation. To this end, let us treat

Eq.(2.7) as an iterative map:

m[n+1] = Θ(m[n]) (2.10)

where, componentwise,

m
[n+1]
k = Θk(m) := tanh(

∑
j

Kj,kmj). (2.11)

By the afore mentioned positivity properties and other apparent monotonicity proper-

ties, the following is observed: Suppose that m is componentwise positive and m′ � m

– meaning for all j, m′j ≥ mj – then for each j,

Θj(m
′) ≥ Θj(m) (2.12)

i.e., Θ(m′) � Θ(m). Thus, starting at (1, . . . , 1) we obtain a non–increasing sequence

that tends to a definitive limit which we denote by m?. Moreover, it is claimed that if s

is any other (non–negative) solution to Eq.(2.7) then m? � s. To see this, the iterative

scheme is invoked; starting with initial conditions s = s(0) and (1, . . . , 1) = m(0), by

the above m(n) � s(n); the former converges to m? while the latter is identically s

and, meanwhile, the ordering holds in the limit.

Finally we show uniqueness. This is clear if m? is (identically) zero. Supposing

otherwise, and further supposing there is an another (lower) s which is componentwise

positive satisfying Eq.(2.7). Using strict positivity of all relevant components, we can

find a t ∈ (0, 1) for which

s � tm? (2.13)

while for at least one component – the jth –

sj = tm?
j . (2.14)
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With this in mind, it is claimed that for any (fixed) non–negative m and for any

t, all the functions Θk(tm) are concave in t. Moreover, each Θk is strictly concave

if and only if at least one the components of m which enter are Θk is non–zero.

Notwithstanding the weight of the preceding statement, the result is obtained by

differentiating the tangent function.

Now since Θk(0, . . . , 0) ≡ 0 then, by the concavity we have that for all k, Θk(tm
?) >

tm?
k. In particular, Θj(tm

?) strictly exceeds rj while, since it was supposed that

tm? ≺ s, we should have Θk(tm
?) ≤ Θk(s) for all k.

(4). This is a direct consequence of previously employed arguments. Starting

from the initial conditions (1, . . . , 1) we iterate according to Eq.(2.10) using the cou-

plings K and K′ to generate the sequences here denoted by m[n] and m′[n] respectively.

For each n, by monotonicity of the couplings, we have m[n] ≺ m′[n] and the ordering

holds in the limit – which is denoted without superscript. Supposing, then that the

limiting maximal m is non–trivial then so is m′ and, indeed, for all j, m′j ≥ mj.

Writing the fixed point equation as

m′j = Θ′(m′) (2.15)

it is seen that m′j 6= Θ′j(m) any time there is a K ′j,k > Kj,k. Since this was the

hypothesis, there must be j’s for which m′j > mj. And thus, for any i “connected”

to one of these j’s (by a non–zero (K ′i,j) we have m′i > mi. The strict inequality for

each component now follows from the assumed graph connectivity.

(5). Finally the necessary and sufficient conditions for non–trivial m’s asso-

ciated with Eq.(2.6) and Eq.(2.7): Suppose that m is componentwise non–negative.

Then, it is apparent that

Θk(m) ≥
∑
j

Kk,jmj (2.16)

with the inequality strict whenever the right side is non–zero. Let κ denote the

maximum eigenvalue of K and suppose that κ ≤ 1. For m?, the maximal solution, we

multiply both sides of Eq.(2.16) by m? and sum. Using traditional bra–ket notation

we obtain

〈m?| m?〉 ≤ 〈m?| K | m?〉 ≤ κ〈m?| m?〉 (2.17)

where the first inequality is an equality if and only if m? is identically zero. If κ ≤ 1,

this is evidently the case.
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Finally, suppose κ > 1. To show that m? is non–trivial and minimizes ΦK(·),
it is sufficient to show that ΦK is not minimized by the trivial magnetization. Let

m] denote the eigenvector associated with κ. By the Perron–Frobenius theorem, all

components of m] are positive. Letting ε > 0 (with ε� 1) we have∑
k

SI(εm
]
k) =

1

2
ε2〈m]| m]〉+O(ε4) (2.18)

while the energy term is exactly −1
2
κε2〈m]| m]〉. This is negative for ε small enough

while ΦK evaluated at zero magnetization profile is zero.

2.3 Further properties of the basic model

We return attention to the basic model defined by Eqs. (2.3) – (2.5).

Theorem 2.2 If m is a non–trivial (positive) magnetization profile which minimizes

Φβ;L(·), the following hold:

(i) The profile is symmetric about the midpoint (i.e., for k < L/2, mk = mL+1−k).

(ii) For each k, the discrete Laplacian is pointwise negative: ∆mk < 0

Proof (i). The cases L even or odd differ only slightly; we omit full details of the even

case. For L odd, let ` denote the midpoint. We may write, for any m

Φβ;L(m) = ΦLeft
β;L + ΦRight

β;L + qβ(m`) (2.19)

where ΦLeft
β;L accounts for all interactions involving all spins with index j < ` as well as

the interaction ∝ m`−1m`, the quantity ΦRight
β;L defined similarly and qβ(m`) accounts

for all terms involving m` alone. Now suppose, e.g., ΦLeft
β;L ≤ ΦRight

β;L . Then we will

replace the magnetizations on layers with index larger than ` with the magnetizations

of the reflection of these layers about the midpoint:

m`+j → m`−j (j < `). (2.20)

Then the free energy “improves” to 2ΦLeft
β;L + qβ(m`) for this symmetrized profile.

In particular a minimizing profile would be symmetric which by uniqueness of the

minimizer implies that the minimizing profile is symmetric.

10



The argument for the even case is almost identical: Let ` = L
2

and `′ = ` + 1

denote the two “midpoints”. We may write (using the same notation with slightly

different meaning)

Φβ;L(m) = ΦLeft
β;L + ΦRight

β;L +
1

2
βJ1(m` −m`′)

2 (2.21)

and the argument proceeds along the same lines noting that replacing the higher half

with the profile of the lower half also gets rid of the last (positive) term on the right

side of Eq.(2.21)

Proof (ii). Let k ∈ LL (our notation for the lattice of L layers) and let us focus on

the portion of the free energy function that depends on mk. We write

Φβ;L(m) = −1

2
βJ0m

2
k − βJ1(mkmk−1 +mkmk+1)− SI(mk) +R(m) (2.22)

whereR does not depend on mk and in case k equals 1 or L we invoke m0 = mL+1 = 0.

Let us rewrite the mk–dependent part denoting the result by p(mk):

p(mk) = −(
1

2
βJ0 + βJ1)m2

k − SI(mk)− βJ1(mkmk−1 +mkmk+1 −m2
k)

= φβ(mk)− βJ1(mkmk−1 +mkmk+1 −m2
k) (2.23)

Now if we change mk → mk + δmk, we see

p(mk+δmk) = φβ(mk+δmk)−βJ1(mkmk−1+mkmk+1−m2
k)−2βJ1(δmk∆mk) (2.24)

i.e., p(mk+δmk)−p(mk) = φβ(mk+δmk)−φ(mk)−2βJ1(δmk∆mk) while, of course,

R does not change. Now by item (4) in Theorem 2.1 we have that in any minimizing

profile, mk(β) < m(β) where m(β) is defined with coupling J = J0 + 2J1. (This can

be seen in any number of ways – the quickest is to compare with periodic boundary

conditions, i.e., to connect the first and last site which, miraculously, reproduces the

magnetization of the bulk system.) Thus, if ∆mk ≥ 0, we could (strictly) lower the

free energy by increasing mk – all the way up to m(β).

Corollary 2.3 If a and b (i.e., β, J0 and J1) are such that Φβ(·) is minimized by

a non–trivial (positive) m then the maximum magnetization occurs at the center(s).

In particular, the magnetizations mk(β) rise from their lowest value at k = 1 in a

strictly monotone fashion till the “center” whereupon they fall, symmetrically, as one

moves from the center to k = L.
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Proof. Since mk is symmetric as a function of k, it is clear that the center must be

some form of local extremum. Since ∆mk < 0 for all k and (as is not hard to see)

the discrete analog of the usual elementary result holds, it follows that the center

must be a local maximum. Again invoking ∆mk < 0, there can be no local minima

anywhere aside from the endpoints so it follows that the center is the maximum. The

remainder of the statements follow directly from the above (i) and (ii).

Our final result of this subsection will be of pertinence for the large L systems.

Proposition 2.4 Let b = 1 + a|λ0| + gL−2 with g > 0 and with b and a as defined

in Eq.(2.5), λ0 in Eq.(2.9) and, explicitly, J0 and J1 strictly positive. Moreover, the

quantity gL−2 is considered, one way or the other to be “small”. Then the magneti-

zation is positive. In particular, uniformly in L, for L sufficiently large,

m` > [const.]gL−1

Proof. For L’s that are of order unity (i.e., any particular L) positivity of the magne-

tization is the content of item (5) in Theorem 2.1. Of pertinence here is a statement

that is uniform in L.

Our opening claim is that for µ < m(β), with β sufficiently close to (bulk) crit-

icality, the following holds: The free energy of the system on LL which has been

constrained so that each mk does not exceed µ, is less than Lφβ(µ).

Foremost, for each m on LL, is is clear that the free energy is only lowered if we

couple the first and last sites (with strength J1) which, as mentioned earlier, restores

the finite system to the effective status of the bulk. Now for fixed mk±1 ≤ µ, the free

energy associated with the kth site (c.f. Eq.(2.23)) is, as a function of mk,

−S(mk)− [
1

2
βJ0m

2
k + βJ1mkmk+1 + βJ1mkmk−1]

where here, if k is an endpoint, we adhere to the notation of periodic boundary

conditions. From the above equation, it is obvious, that, as far as mk is concerned

the free energy is minimized when mk±1 take on the maximum possible value. Thus,

the associated mean–field equation for mk is

R(mk) = κbmk + (1− κ)bµ (2.25)

where R(x) = Arctanhx = x + 1
3
x3 + . . . and κ = J0/(J0 + 2J1). We now show that

for µ < m(β), the solution of Eq.(2.25) actually exceeds µ. Thus the constrained free
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energy is (still) decreasing at mk = µ implying (with the addition of the couplings

between 1 & L) that all magnetizations should saturate the constraint.

To make good on the above, let θ = θ(µ) denote the solution to Eq.(2.25)

R(θ) = κbµ+ (1− κ)bθ. (2.26)

Since it is assumed that µ < m(β) we have that

R(µ) < µ = κbµ+ (1− κ)bµ. (2.27)

Subtracting, we have R(µ)− (1− κ)µ ≤ R(θ)− (1− κ)θ.

Here and only here we make the “large L” assumption. In particular, it is stipu-

lated that L is so large that (1−κ)b < 1. In that case the function R(x)− (1−κ)x is

monotone and the preceeding inequality obtained from Eqs.(2.26) and (2.27) imply

θ(µ) > µ.

Thus, under the above constraint, the free energy of the system is greater than

Lϕβ(µ) which in turn is always in excess of the expansion to quadratic order (in µ):

Lφβ(µ) > −1

2
[a|λ0|+ gL−2]µ2 (2.28)

This will be contrasted with an estimate of the free energy which is achieved by a

calculation up to quartic order (notwithstanding that the details of certain numerical

coefficients are unimportant). Here we use the lowest eigenfunction of the Laplacian:

mk = ε sin[
kπ

L+ 1
]

with ε unknown (but small). Collecting all quadratic terms we find

Φβ;L(m) = ε2 ×

[
1

2

∑
k

m2
k −

b

2

∑
k

m2
k −

a

2

∑
k

mk∆mk +O(ε2)

]

= −ε
2

2
[1 + |λ0|a+

g

L2
− 1− |λ0|a]

∑
k

m2
k +O(ε4)

= −1

4
ε2(L+ 1)

g

L2
+O(ε4). (2.29)

Meanwhile, the quartic order is simply

1

12
ε4
∑
k

m4
k =

1

2
ε4(L+ 1)
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So, to leading order in g/L2 the free energy is (less than) −1
4
(L + 1)g2/L4. Thus, it

is seen that the actual magnetization at the midpoint exceeds µ̃? which satisfies

1

2

g2

L2
[1 +O(gL−2]

1

a|λ0|+ g/L2
= [µ̃?L]2 (2.30)

which amounts to the claimed statement.

3 Discrete layered systems above a bulk

3.1 Quantities of interest, conventions

We let V (x) denote the potential energy of attraction to the plate as a function the

distance from the plate. In range of interest, V ≤ 0 and is monotone increasing.

The binding energy for the Lth layer will be denoted by cL and is defined by

cL = V (a0L) + µagH (3.1)

where a0 is the spacing between (centers of) layers and µa is the atomic mass.

It is observed that since V goes to zero, the cL will eventually change sign. It

seems clear that the maximum possible layer thickness is precisely where this happens

and so we define:

Definition 3.1 The quantity L0 is defined as

L0 = max{L | cL ≤ 0} (3.2)

A formal proof of the sentence preceding this definition will emerge when we have

stated the criterion for the equilibrium layer thickness.

The physical setup that we are modeling envisions that the material in each layer

must be removed from the bulk at a free energy cost of f(β) (per area) for each layer.

For L layers, this is offset by FL(β) (the layer free energy at the stated couplings) plus

the total energetic gain for binding – including the gravitational cost – here denoted

by CL:

CL =
L∑
J=0

cJ . (3.3)
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Thus, the gain – or cost depending on sign – for L layers will be

DL = FL(β) + βCL − Lf(β) (3.4)

The equilibrium layer thickness is determined by the minimizer of DL:

Lβ = Argmin(DL). (3.5)

It is noted that for β = 0 (where the above holds in a limiting sense) we have

FL(β) ≡ Lf(β) (= 0) and thus the nomenclature L0 is actually appropriate. In the

context of mean–field theory, we have FL ≡ Lf(β) (= 0) down to the bulk critical

temperature which, in consequence, determines the starting point of the analysis.

3.2 Preliminary results

In this subsection, we establish basic properties of the discrete system. Our first

results concern elementary properties of Lβ:

Proposition 3.2 Consider the minimization problem as defined in and prior to

Eq.(3.5) and let L0 be as defined in Eq.(3.2) (which we tacitly assume has a non–

frivolous value, e.g., L0 ≥ 3). Then (1) For all β, Lβ ≤ L0. (2) For β ≤ βc, Lβ ≡ L0.

Finally: (3a) If |CL0| ≥ J1 then

lim
β→∞

Lβ = L0

if cL0 > 0 and, in case cL0 is exactly zero, the limit is L0 − 1.

(3b) If |CL0| < J1 then

lim
β→∞

Lβ = 0

Before our proof of Propositions 3.2 we will establish an auxiliary property of the

layered systems which we will state as a separate lemma.

Lemma 3.3 For L ≥ 2 and let m`(L) denote the maximum (midpoint) magnetiza-

tion for the system on LL. Then

φβ(m`(L)) ≥ FL+1(β)− FL(β) ≥ φβ(m`(L+ 1))

In particular then, FL+1(β)− FL(β) ≥ f(β).
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Proof. We start with the upper bound. Consider the system on LL+1 and let ` denote

the index of the midpoint(s) with the magnetization m` = m`(L+1). We shall remove

this magnetization/layer and, after recombination, use the array of magnetizations

with m` removed as a trial function for FL.

The entropy associated with this layer is just S(m`). All terms involving m` in

the energetics are

∆−E =
1

2
βJ0m

2
` + βJ1m`m`−1 + βJ1m`m`+1 (3.6)

all of which will be “lost”. There will be an energy “gain” from the coupling of the

layers `± 1 which is given by

∆+
E = βJ1m`−1m`+1. (3.7)

Consider, then Φβ;L(m′) where m′ is the equilibrium magnetization profile for LL+1

with m` deleted. Then

FL+1 = Φβ;L(m′) + ∆+
E −∆−E − S(m`). (3.8)

Let us note that

∆−E −∆+
E −

1

2
βJ0m

2
` − βJ1m

2
` = −βJ1(m`−1m`+1 +m2

` −m`m`+1 −m`m`−1)

= −βJ1(m` −m`−1)(m` −m`+1) ≤ 0 (3.9)

Since (by Theorem 2.2 and Corollary 2.3) m` may be presumed to be the maximum

magnetization on LL+1. Thus Eq.(3.8) can be replaced with the inequality

FL+1 ≥ Φβ;L(m′)− S(m`)− (
1

2
βJ0 + βJ1)m2

` (3.10)

The last two terms on the right add up to precisely φβ(m`) while Φβ;L(m′) is certainly

not smaller than FL. The lower bound has been proved.

The proof is similar for the other bound. Here working the direction L → L + 1

we will insert the maximum magnetization, m`(L) into the midpoint of the array on

LL (i.e., a repeat) thereby obtaining a trial function for FL+1. We will abbreviate

m` = m`(L) hoping this will not cause confusion with the notation from the first half

of this proof.
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The calculations are similar – albeit easier – so shall be succinct. We have that

m` ≥ m`+1. We insert the new magnetization/layer between the layers ` and ` + 1.

The result, using m̃ as notation for the so described array of L+ 1 magnetizations is

Φβ;L+1(m̃) = FL + βJ1m`m`+1 − βJ1m`m`+1 −
1

2
βJ1m`m` −

1

2
βJ0m

2
` − SI(m`)

= FL + φβ(m`). (3.11)

Thus, the right side is an upper bound on FL+1 and so and the other bound is

proved.

We pause for an additional result along these lines (which is not strictly necessary

for the up and coming and can be omitted on a preliminary reading). What follows

is a discrete concavity result concerning the free energy of layered systems:

Lemma 3.4 For the layered systems with L ≥ 2,

FL+2 − FL+1 ≤ FL+1 − FL.

Proof. We will establish that FL+2 + FL ≤ 2FL+1 by transference of a layer from

one copy of LL+1 to another thereby obtaining an upper bound on FL+2 + FL. Let `

denote the position of the maximum magnetization on LL+1. Then, transferring this

layer to the other copy of LL+1 between the `− 1st and `th layer, we obtain that the

quantity

2FL+1 − βJ1[−(m`m`+1 +m`m`+1 −m`+1m`+1) + (m2
` +m`m`+1 −m`m`+1)]

is an upper bound on FL+2 + FL. However the correction to 2FL+1 is seen to be

−βJ1(m` −m`+1)(m` −m`−1) which is not positive and the result is established.

Remark 1 The preceding is “not good news” from the analytic perspective since it

means that a sign change of the discrete derivative of DL is not a sufficient condition

for L = Lβ: this concavity of the FL’s implies that there may be several sign changes.

In particular, in the context of the large L0–theory, several local minima may be

present with the global minimizer shifting (discontinuously) as the temperature varies.

Evidently these behaviors will also manifest in the discrete systems.

17



Proof of Proposition 3.2. Let L > L0 then

FL + βCL = FL0 + (FL − FL0) + βCL0 + β

L∑
J=L0+1

cJ (3.12)

Now by (several iterations of) Lemma 3.3, FL−FL0 ≥ (L−L0)f(β) and, by definition

of L0, each cJ participating in the above sum is positive. Thus

FL + βCL − Lf(β) > FL0 + βCL0 − L0f(β) (3.13)

and hence L 6= Lβ which proves the first statement.

As for the second: for β ≤ βc, FL − Lf(β) ≡ 0 so DL = βCL and the minimum is

clearly at L = L0.

Finally, for any L ≥ 3, DL − DL−1 provides

DL − DL−1 = FL − FL−1 + βcL − f(β) ≤ φβ(m`)− f(β) + βcL (3.14)

Note that as β → ∞ both m(β) and m`(β) tend to one and it follows easily that

β−1|φβ(m`)− f(β)| → 0. Thus if cL < 0 then for all β sufficiently large, DL < DL−1

which implies (assuming, of course Lβ ≤ L0) that among all possible candidates

for minimizers with L ≥ 3 the best option is L0 if cL0 < 0 and L0 − 1 (since the

magnetization is never quite equal to unity) if cL0 happens to be exactly zero.

A similar, explicit calculation shows (assuming c2 < 0) that for β � 1, D2 < D1.

Thus if for β large and we find D1 < D0 ≡ 0, we are done while if D1 > 0, we are

down to a comparison of zero (AKA D0) and DL0 .

For large β asymptotics, the difference between bulk and layered free energies

is almost completely accounted for by the energetics associated with the “missing

coupling” in the layered system. In particular for L ≥ 1

FL − Lf(β) < J1βm
2 (3.15)

obtained e.g., by using mk ≡ m(β) as a trial and a similar lower bound obtained by

the reverse substitution. Hence

lim
β→∞

1

β
[FL − Lf(β)] = J1.

Thus if J1 > |CL0|, then limβ→∞ Lβ = 0 while if J1 ≤ |CL0| we acquire the above dis-

cussed options – usually L0. Note that the case of equality (again, highly “unlikely”)

we do not get Lβ → 0 in light of the strict inequality in Eq.(3.15) and the fact that

for finite β the magnetization is never quite unity.
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Remark 2 We remark that comparisons between substrate – Helium interaction

energies (of the order of many degrees) verses the relevant “coupling” energies for

superfluids (of the order of a few degrees) obviously demonstrate that the Lβ → 0

scenario is not within the realm of interest for the setups in [8] and [7]. However, a

remnant of this mathematical phenomenon will reemerge when we discuss the large L0

theory where numerical differences between parameters can be washed out by scaling

and/or, arguably, large β is never reached.

Aside from the generalities described in this section, it is apparent that whenever

L0 itself is of order unity the layered problems must be treated on a case by case basis

with the outcome depending in a complicated way on the specifics of the model. (It

also calls into question the use of mean–field theory with Ising interactions.) Moreover

it would seem that actual systems with moderate L0 would be difficult to investigate

experimentally. However (and fortunately) the experiments in [8] and [7] indicate the

need for a large L0–theory which will be the subject of the next subsection.

4 Large L0 theory

As discussed above, many disparate behaviors are possible when the initial number

of layers, L0, is of order unity. Here (and in the next section) we wish to describe

emergent behavior for systems with L0 � 1. In the current section we will discuss, on

a mathematically informal level how we arrive at the theory governing the L0 = ∞
limit and explore analytically (AKA rigorously) the asymptotic possibilities. In the

next section, we will provide the mathematical underpinnings which tie the finite but

large L0 models to this L0 =∞ limit.

4.1 Large L0 preliminaries

As will emerge in this subsection, the basis for a large L0 theory is that (at least in

the range of interest) CL ∼ L−3. Thus, we may as well assume cL has the scaling

of L−4
0 times a regular function of L/L0. This latter variable will be r. Thus, for

r ∈ (0, 1] we define c(r) via

c(r) = lim
L0→∞

L4
0 c[rL0] (4.1)
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i.e.,

cL ∼
1

L4
0

c( L
L0

). (4.2)

It is remarked that, from an alternative perspective, the large L0 theory can also be

viewed in terms of a small a0 theory which provides a modicum of justification for an

ansatz along the above lines.

We are still assuming c is increasing, let us for once and all make the stronger

assumptions that c(r) is strictly increasing on (0, 1] with c(1) = 0. (Thus, c(r) < 0

for r < 1). Also, there is no real loss in generality to assume that c is smooth on (0, 1]

but, as we shall see, it is pertinent to allow versions of c which diverge as r → 0.

Notwithstanding the supposed existence of a non–trivial limiting c(r), the limit

thinning problem may end up, in essence, to be a triviality or (worse) exhibit behavior

that is highly unlikely from a physical perspective. These possibility will be offset

by a condition we refer to as the strong wetting condition. In its initial rendition, it

has the appearance of a mathematically sufficient criterion for non–triviality which,

moreover, has as much to do with the parameters J0 and J1 of the Hamiltonian as with

c(r) itself. E.g., with fixed J0 and J1, if c0(r) satisfies the monotonicity criteria then

the system is strong wetting for c(r) = Hc0(r) for all H sufficiently large. However, as

the story plays out, something even stringer is required (at r � 1) in order to prevent

the layer from washing out altogether at low temperature parameter. (This leads to

the sharp result stated in the abstract.) Notwithstanding, the precise statement of

the strong wetting condition is somewhat arduous and will be postponed till it is

sufficiently motivated. If anxious, the reader is invited to Definition 4.3.

It turns out that under the strong(er) wetting condition, in the context of the

large but finite L0 problems, the entire thinning and recovery procedure takes place

in the temperature range provided by β − βc of the order L−2
0 . Thus we write

β − βc =
B

L2
0

1

J0 + 2J1

(4.3)

with the scaling factor of the J ’s for continued convenience. In the a / b language,

this reads b = 1 + B
L2
0

– the scaling unveiled in Proposition 2.4.

The goal of this section will be to construct and analyze the asymptotic layered

model for L0 →∞, as B ranges in [0,∞). In the large L0 limit, with the temperature

scaling as in Eq.(4.3) above, the correct scaling for the magnetization is m(β) ∼
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(β − βc)
1/2 ∼ L−1

0 ; we define M(B) = limL0→∞ L0m(β(B)). Then the well known

result is M =
√

3B. Moreover, the the free energy change (in the bulk) scales like

the fourth power of the magnetization, i.e., L−4
0 which, it is noted, is compatible with

the definition of c(r) provided by Eq.(4.1). In particular, for M ∈ R of order unity

and β(B) as described in Eq.(4.3), we make the following definitions:

ϕB(M) := lim
L0→∞

L4
0φ(L−1

0 M) (4.4)

and

fB := ϕB(M(B)). (4.5)

The results are ϕB(M) = −1
2
BM2 + 1

12
M4 and fB = −3

4
B2.

These formulae are beset with numerical coefficients which depend on the Ising na-

ture of the mean–field interaction and do not play a major rôle. Indeed, the principal

difference between the Ising and other spin–systems, at this level of approximation,

is the coefficient in front of the quartic term. Thus, for computational ease and to

demonstrate that the conclusions reached do not depend on the Ising nature of the

interaction (and to provide the reader with a familiar look) we shall replace a 3 in

the quartic coefficient with U−1. We thus get

ϕB(M) = −1

2
BM2 +

1

4
UM4 (4.6)

so that

M(B) =

√
B

U
(4.7)

resulting in

fB = −1

4

B2

U
. (4.8)

Finally, let us tend to the object of principal interest, Lβ that was defined in Eq.(3.5).

Ultimately one is interested in the rescaled version of Lβ namely

r̃B = lim
L0→∞

Lβ
L0

. (4.9)

The existence of this limit, which is not a priori obvious will be a subject of the

mathematical section and will be proved as the final result of this note (Corollary

to Proposition 5.2). In this section we will be content with the object, denoted by

an unadorned rB, which is associated with the continuum thinning model and which,

ultimately, provides the value of the limit.
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4.2 The continuum thinning model

We now turn attention to the detailed situation in the large L0 limit. We shall begin

in the discrete system and derive a certain limiting system; as is not too surprising the

result is the standard Ginzburg–Landau model appropriate for a 1D inhomogeneous

medium. We remind (and will continue to remind) the reader that the current section

is informal; rigorous details will be provided in the next section.

Starting from the mean–field equation (Eq.(2.4) in the language of Eq.(2.5)) we

have

bmk + a∆mk = Arctanh(mk) = mk +
1

3
m3
k + . . . . (4.10)

Using the appropriate scaling with L0 described previously, for x ∈ [0, 1], we define

MB(x) by

mk = L−1
0 MB(kL−1

0 )

using smooth interpolation if protocol requires. We write b = 1 + L−2
0 B and a ≈

J1
J0+2J1

=: A and obtain

mk +
1

L3
0

BMB + A
1

L3
0

M ′′
B = mk +

1

3

1

L3
0

M3
B + . . . (4.11)

so (with full justification coming later) as L0 →∞ we have

AM ′′
B +BMB − UM3

B = 0. (4.12)

where, we remind the reader, we have replaced the Ising value of 1
3

with a traditional

U .

It is noted that Eq.(4.12) is the Euler–Lagrange equation for the functional

FB(r) = inf
MB

∫ r

0

(
1

2
AM ′2

B −
1

2
BM2

B +
1

4
UM4

B)dx. (4.13)

While, from a certain perspective, it is clear that the functional on the right side of

Eq.(4.13) is the correct object for the continuum theory, a proof requires some small

effort. Indeed, we will show, in the Corollary to Theorem 5.1 and Proposition 5.2

that

FB(r) = lim
L0→∞

L3
0F[rL0] (4.14)

which is more than enough for present purposes.
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We further define C(r) eithor directly out of CL and/or as the integral of c:

C(r) =

∫ r

ε0

c(r′)dr′ (4.15)

where the lower limit indicates that some care must be taken if the divergence of c

at the origin is too strong. This subject matter will be discussed in more detail in

Subsection 4.4 and, in any case, will not usually be of direct concern till we discuss

B � 1. For the present, we will suppress the presence of cutoffs in our notation.

Thus, we obtain the continuum version of the layering problem:

DB(r) = C(r) + FB(r)− rfB

and then

rB = Argmin(DB(r)). (4.16)

In light of the upper and lower bounds that were proved in the discrete context

in Proposition 3.3, it “must” be the case that

∂FB
∂r

= ϕB(M`(r, B)).

where M`(r, B) denotes the value of the minimizer for the functional in Eq.(4.13)

evaluated at the midpoint. This turns out to be the case and later (Corollary 4.2) will

be derived on the basis of the functional alone. With the above in mind, a derivative

condition which is a necessary but not sufficient condition for the determination of

rB reads:

c(rB) + ϕB(M`(r, B)) = fB.

The principal result of this section is contained in the up and coming theorem. It is

remarked that the forthcoming is completely rigorous under the assumption that var-

ious functions are “smooth enough” to employ classical analysis. A primary objective

of Section 5 is to demonstrate that the classical solution obtained here is indeed the

only mathematical possibility and indeed minimizes the functional in Eq.(4.13).

Theorem 4.1 Let M`(r, B) denote the magnetization at the midpoint of the rescaled

system on [0, r]. Then under the assumption that the functional defined in Eq.(4.13)

has a classical minimizer, the following holds:
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There is a function µ`(Q) taking values in [0, 1) with argument Q in [0,∞) – and

the ` for decoration – such that

M`(r, B) = [µ`(A
−1r2B)]M(B)

Moreover, µ`(Q) has the properties

• µ`(Q) is monotone nondecreasing.

• µ` ≡ 0 for Q ≤ π2; µ` > 0 for Q > π2.

• µ` → 1 as Q→∞. In particular, µ`(Q) ∼ 1− e−
√
Q/2 for large Q.

Remark 3 Our analysis of Eq.(4.12) will provide the proof of the above stated

theorem. Much of what is to follow, not to mention the up and coming Lemma 4.7

could (we presume) be gleaned from the vast ancient literature on the subject of

elliptic functions. However, this might only supply marginal insight into the problem

at hand and, in any case, our proofs are elementary.

Proof. The proof comes from the investigation of the functional defined on the right

hand side of Eq.(4.13). The first step is to write this functional in dimensionless form:

For y ∈ [0, 1] let µ(y) be defined by

MB(x) = Mµ(x
r
). (4.17)

Then the integrand in Eq.(4.13) reads

A
B

U

1

r2

(
1

2
(µ′)2 − 1

2

Br2

A
µ2 +

1

4

Br2

A
µ4

)
where the argument of µ is still x/r and the integration is on [0, r] (so we will gain a

further factor of r from the change of variables). We arrive at

FB(r) =
AB

rU
inf
µ

∫ 1

0

1

2
(µ′)2 − 1

2
Qµ2 +

1

4
Qµ4dx

=:
AB

rU
inf
µ

∫ 1

0

LQ(µ)dx (4.18)

where

Q :=
Br2

A
.
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The object of interest in Theorem 4.1 is just

µ`(Q) := µ(Q; 1
2
).

The proof of the first claim is the continuum version of the proof for the corre-

sponding result in the discrete model. We shall be brief. The continuum analog of

the eigenvalue condition – sometimes known as the Poincaré inequality – here reads∫ 1

0

(µ′)2dx ≥ π2

∫ 1

0

µ2dx

(which, in this context, is derived pretty much the same way as for the discrete

systems). Thus for Q ≤ π2 the functional is minimized by µ ≡ 0. Moreover, sim-

ilar reasoning shows that in this region, there is no non–trivial solution, formal or

otherwise, to the Euler–Lagrange equation:

µ′′ +Qµ(1− µ2) = 0. (4.19)

Thus the first half of the second item is proved.

Using the trial function ε sin πx; ε � 1 it is seen that for Q > π2, FB(r) cor-

responds to non–trivial minimizers (or “near–minimizers”). Existence of a genuine

minimizing solution will follow, actually, by quadrature, which ultimately proves the

second half of the second statement.

Let us start by consideration of trial minimizers which, without loss of generality,

are assumed to have piecewise continuous first derivative. The first observation is that

in any such trial minimizer, the function may as well be symmetric with vanishing

derivative at the mid–point. Symmetry follows immediately: If µ is a trial function

suppose, e.g., that ∫ 1
2

0

LQ(µ)dx ≤
∫ 1

1
2

LQ(µ)dx

then by replacing the right half of µ with its reflection from the left, we get a trial

function of caliber at least as good as µ. Next, we show by similar means that in any

trial function – symmetric or otherwise – the midpoint derivative may as well vanish

(or the trial minimizer can be improved). For simplicity, we argue the symmetric

case. Indeed, suppose that |µ′(x)| → α > 0 as x→ 1
2
. Let ε > 0 denote a sufficiently
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small number and let us consider the effect of replacing µ(x) by µ(1
2
−ε) in the region

1
2
− ε ≤ x ≤ 1

2
+ ε. It may be assumed that, for ε small, in this region,

c1(ε)α ≤ µ′(x) ≤ c2(ε)α

with c1, c2 → 1 as ε ↓ 0. Therefore, the benefit to the functional from cutting out the

derivative term is at least, in absolute value,

1

2
(c1α)2 · 2ε.

On the other hand, there will be “loss” to the functional because, presumably, µ

has been deprived of taking on optimal values in this region. Now the change in µ

between x = 1
2
− ε and x = 1

2
is at most c2αε. If PQ denotes the maximum value

of the derivative of 1
2
Qµ2 − 1

4
Qµ4, 0 ≤ µ ≤ 1 it is seen that the loss is at most, in

absolute value,

(PQc2αε) · 2ε.

Clearly, for ε sufficiently small, the benefits outweigh the losses. Thus, under the

assumption of a classical minimizer, we may presume that its derivative vanishes at

the midpoint.

Now, the differential (Euler–Lagrange) equation equation displayed earlier admits

the invariant
1

2

(
dµ

dx

)2

+
1

2
Qµ2 − 1

4
Qµ4 = const.

On the basis of the preceding, we may identify the constant with value of the func-

tional when the derivative vanishes:

1

2

(
dµ

dx

)2

+
1

2
Qµ2 − 1

4
Qµ4 =

1

2
Qµ2

` −
1

4
Qµ4

`

where µ` = µ(1
2
). It is noted, perhaps coincidentally, that the invarient of interest,

namely −Q[1
2
µ2
` − 1

4
µ4
` ] is the crucial item governing the rate that the free energy of

the layer changes with the layer thickness.

In any case, we write the above(
dµ

dx

)2

= Q(µ2
` − µ2)[1− 1

2
(µ2

` + µ2)] (4.20)
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The preceding equation is actually true but trivial if Q ≤ π2. To avoid further

provisos, let us assume for the midrange future that Q > π2 where by the trial

function analysis discussed after Eq.(4.19), all quantities in Eq.(4.20) are non–trivial.

(The relevant claims in the statement of this theorem at the point Q = π2 will follow,

from both sides, by continuity.)

We now obtain an implicit expression for µ, namely∫ µ(x)

0

dµ?

(µ2
` − µ2

?)
1
2 [1− 1

2
(µ2

` + µ2
?)]

1
2

=
√
Qx, (4.21)

0 ≤ x ≤ 1
2
. And the above can be used to derive the following identity for µ`:∫ µ`

0

dµ?

(µ2
` − µ2

?)
1
2 [1− 1

2
(µ2

` + µ2
?)]

1
2

=
1

2

√
Q : (4.22)

These two equations (executed in reverse order) actually define the function µ(x)

as unfolds below. In particular, let us first show that the relationship in Eq.(4.22)

defines a function µ`(Q) for Q ∈ [π2,∞) with values in [0, 1).

To this end, It is convenient to rid the integral of the µ` dependence in the upper

limit. We substitute

µ = µ` sin θ

and Eq.(4.22) now reads∫ π
2

0

dθ

[1− 1
2
µ2
`(1 + sin2 θ)]

1
2

=
1

2

√
Q. (4.23)

This form manifestly defines the inverse function, the “forward” function µ`(Q) with

the stated properties follows if we can demonstrate (strict) monotonicity and verify

the ranges. These are immediate.

It is noted from Eq.(4.23) that µ` < 1 implies Q < ∞ with divergence of Q as

µ` ↑ 1. Moreover, µ` = 0 certainly implies that Q = π2. Finally, letting µ
(1)
` > µ

(2)
` –

both in the specified range – it is seen by inspection that Q(µ
(1)
` ) > Q(µ

(2)
` ).

Thus far we have established the existence of µ`(Q) in [π2,∞) – which we may

extend to “identically zero” in [0, π2]. In the latter range, µ(x) is just zero and in the

former, it is given implicitly by Eq.(4.21). The remainder of item 2 and all of item

1 in the statement of this theorem has been proved. (Moreover, we now have some

knowledge of the minimizing magnetization profile.)
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We turn to item 3 which we establish by elementary asymptotic analysis of

Eq.(4.23). Writing 1−µ2
` = εQ and transforming θ → π

2
−φ we re–express Eq.(4.23):∫ π

2

0

dφ

(εQ + 1
2
(1− εQ) sin2 φ)

1
2

=
1

2

√
Q. (4.24)

Using q2 =
2εQ

1−εQ
, the above amounts to∫ π

2

0

dφ

(q2 + sin2 φ)
1
2

=

(
2

1− εQ

) 1
2 1

2

√
Q =

1

µ`

√
Q

2
. (4.25)

Let Iq denote the left side. We would like to replace the sin2 φ with φ2 – which

certainly provides a lower bound:

Iq ≥
∫ π

2

0

dφ

(q2 + φ2)
1
2

= sinh−1 π

2

1

q
(4.26)

and which further implies the bound

1− µ` ≥ K1 exp−
(
Q

2

) 1
2

(4.27)

with K1 a constant independent of Q. So, defining

Eq = Iq −
∫ π

2

0

dφ

(q2 + φ2)
1
2

(4.28)

we get an opposite bound of the form in Eq.(4.27) if we can show that Eq is bounded

by a constant of order unity independent of q. Subtracting out:

Eq =

∫ π
2

0

φ2 − sin2 φ

(q2 + φ2)
1
2 (q2 + sin2 φ)

1
2 [(q2 + φ2)

1
2 + (q2 + sin2 φ)

1
2 ]
. (4.29)

In the numerator we may replace:

φ2 − sin2 φ ≤ 1

3
φ4 (4.30)

and in the denominator, we may again replace sinφ with φ and set q = 0 with the

result:

Eq ≤
∫ π

2

0

1
3
φ4

2(φ2)
3
2

dφ =
1

6

∫ π
2

0

φdφ (4.31)

which establishes an opposite bound of the form in Eq.(4.27). All claims have been

established.
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Corollary 4.2 The derivative of FB(r) with respect to r is, in fact given by the free

energy function evaluated at the midpoint, ϕB(M`(r, B)).

Proof. Here, it is convenient to go back to the original form with unrescaled variables.

We take from the above only the facts that (1) FB(r) can be differentiated in the

first place, (2) that for all r, the minimizing MB(x) has vanishing derivative at the

midpoint and (3) the continuity of M`(r, B). Our proof consists of the continuum

analog of Lemma 3.3. It may be assumed that Br2 > Aπ2 otherwise, the desired

result is trivial.

Using Mr,B(x) as temporary notation for the appropriate minimizing solution,

consider first the situation on [0, r + δr]. As a trial function, we may use Mr,B(x) up

to x = 1
2
r and then the constant Mr,B( r

2
) (= M`(r, B)) in the region [ r

2
≤ x ≤ r+δr

2
]

and, as for the right half, we reflect. The result is

FB(r + δr) ≤ FB(r) + δrϕB(M`(r, B)) (4.32)

and a one way bound has been established. On the other side, we can simply cut out

the region [ r
2
≤ x ≤ r+δr

2
] (and its reflection) to obtain

FB(r) ≤ FB(r + δr)−
∫ r+δr

2

r−δr
2

[
A

2
M ′ 2

r+δr,B −
B

2
M2

r+δr,B +
U

4
M4

r+δr,B]dx (4.33)

By virtue of the fact that the derivative vanishes at the midpoint, the first term in

the integral is o(δr). As for what remains, we use continuity of Mr+δr,B as a function

of x and continuity of M`(r, B) as a function of r to obtain

FB(r) ≤ FB(r + δr)− δrϕB(M`(r, B)) + o(δr) (4.34)

which completes the proof.

4.3 Evolution of thinning for strong wetting fluids

In this subsection, we commence investigation of the behavior of rB for 0 ≤ B <∞.

First off, we can no longer postpone a precise formulation of the of strong wet-

ting condition. Mathematically, this condition is initially seen to be sufficient (but

apparently not necessary) to insure that “something interesting happens” as the tem-

perature parameter evolves. But it turns out – as will be demonstrated later – a
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stronger condition along these lines is actually required to ensure that the layer does

not dwindle away at low temperatures. (Discussion of various scenarios which can

occur without the strong wetting condition are postponed to the next subsection.)

Under this criterion of strong wetting it will be readily demonstrated that the thin-

ning process will inevitably experience discontinuities: either in rB itself or (“gener-

ically unlikely”) in its derivative. Indeed the discontinuity will occur as soon as the

current layer is not in the high temperature phase. Moreover, in the present context,

the first such discontinuity necessarily implies that a turning point has been reached.

Specifically: once rB corresponds to a film thickness that is in the low temperature

phase (or critical state) then, at least for a while thereafter, rB is increasing.

These two points are not necessarily tied together and will be treated separately.

In particular, the existence of the discontinuities appears to be quite robust. By con-

trast, the occurrence of thickening subsequent to non–trivial thermodynamic behavior

in the layer is a direct consequence of the close ties between the physical descriptions

of the bulk and layer problems. Indeed, if additional thermodynamic forces are incor-

porated into the layered system that are not present in the bulk, it might well be the

case that thinning will continue after the discontinuities (as is apparently the case in

the data from [8] and [7]).

We note that for temperatures just below the critical temperature (specifically,

B > 0 but less than A−1π2) the layer is always subcritical and the thinning process

follows an orderly evolution that we call free thinning. Here, rB satisfies c(rB) =

−B2/4U . Regardless of actual circumstances we shall denote the solution of the

above by r◦:

r◦ : c(r◦) = −1

4

1

U
B2. (4.35)

On the other hand, a layer of thickness r is in the low temperature phase provided

r2B ≥ Aπ2. We define, for B > Aπ2, the critical thickness r? as the exact thickness

for a layer which, if present, is just entering the low temperature phase:

r? : Br2
? = Aπ2.

We formulate the condition of strong wetting in terms of these quantities:

Definition 4.3 Consider the continuum thinning problem as described. Then the

system is said to satisfy the strong wetting condition if for some B,

r?(B) = r◦(B).
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Remark 4 We remark that the above does not require any coincidence of parameters

and could be replaced by r?(B) ≤ r◦(B) for some B. Indeed r◦ starts out “ahead”

(meaning smaller) at B = Aπ2 and either r? catches up at some point or it does not.

Since both evolve continuously, the former implies the statement in the definition.

It is noted that for any fixed c(r) as described, the system satisfies strong wetting

provided U is sufficiently large and/or A is sufficiently small. Similarly, strong wetting

is achieved if c is multiplied by a large “interaction strength” parameter.

On the other hand, a strong enough divergence of c(r) at r = 0 implies strong

wetting independent of these parameters. (Here, some small care must be taken to

properly define the problem using cutoffs but these matters will not concern us for

the present.) In particular, notwithstanding the appearance of the strong wetting

construction, some condition along the lines of r?(B) ≤ r◦(B) for all values of B that

are very large is, in fact, required in order for the continuum model to have sensible

large B behavior. As previously promised, these matters will be discussed in the next

subsection.

Interestingly enough, the critical potential for guaranteed strong wetting (and

sensible large B behavior) is c(r) ∼ r−4 namely the behavior associated with the

mean–field – d ≥ 4 – Van der Waals interaction. Later we provide a sharp value for

the coefficient which separates “sensible” from “nonsensible” large B behavior.

Since we have assumed c(r) is smooth and increasing this means that when rB = r◦
then rB is smooth and decreasing. Our first result, which hardly requires a proof, is

that the initial free thinning epoch extends somewhat beyond B = Aπ2

Proposition 4.4 Consider the continuum thinning problem as described in Eq.(4.16)

and let

BT = sup{B | rB′ = r◦ for all B′ < B}.

Then BT = Aπ2 + ϑ for some ϑ > 0.

Proof. For ease of exposition, we will argue from the integrated form of all relevant

quantities. We employ C(r) and FB(r) as defined and we recall rB is the minimizer

of C(r) + FB(r) − rfB. For B ≤ Aπ2, FB(r) vanishes identically and so, obviously

rB satisfies Eq.(4.35). Now consider B = Aπ2 + δB with δB � 1. Then, as r varies,

the only portion of C(r) + FB(r)− rfB that is effected is the region 1 ≥ r ≥ 1− δr
with δr ∼ 1

2
δB/Aπ2 as δB → 0. Under the assumption of strict monotonicity of c(r)
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and continuity of FB(r), (which, anyway, scales like δB) for δB sufficiently small, this

region is well past the region of the minimum and not strong enough to dispute the

free thinning candidate for rB and the result follows.

Of course the strong wetting condition ensures that the initial epoch of free thin-

ning must eventually come to a close. Let us denote by r• the (largest) mutual value:

r• = min{r◦(B) | r◦ ≤ r?} = max{r?(B) | r? ≤ r◦}.

Analysis of the circumstances under the purported condition rB = r• lead, inevitably

to the conclusion that there must be discontinuities.

Theorem 4.5 Consider the continuum thinning problem as described and suppose

the system satisfies the strong wetting condition. Then the initial epoch of thinning is

entirely the process of free thinning; i.e., the layer begins to re–thicken after B = BT .

Moreover, since r′B < 0 for B < BT and r′B ≥ 0 for B & BT there is always a

discontinuity in the derivative at B = BT . Moreover, at B = BT , it is generic that

rB is discontinuous (with positive jump).

Proof of Theorem 4.5. Let us entertain the possibility that the free thinning occurs

till the layer thickness is down to r•. Denoting by B• the parameter value where this

would occur, let us increase B : B• → B•+δB which causes the change r : r• → r•+δr

with δB, |δr| � 1. Then, to lowest order, δr and δB are related by(
c′ +

∂ϕB(M`)

∂r

)
δr =

(
f ′B −

∂ϕB(M`)

∂B

)
δB (4.36)

where all arguments are evaluated at (r•, B•). The above formula must be taken

cum grano salis; certainly it is valid if δr > 0 but for δr < 0 it is only true under

the auspices that |δr| is not too large compared with δB. This fine point need not

concern us since all relevant circumstances concerns the event that δr is positive.

This (first) claim is the following: regardless of the right side of Eq.(4.36), we claim

that if coefficient of δr is negative, then at B = B•, the free energy is minimized at an

r > r•. Indeed, supposing this quantity to be negative we would lower the free energy

by simply increasing r above r•. Moreover, it is claimed that generically, either sign is

possible. Since it turns out that this is not entirely obvious, a separate proposition to

this effect will be provided immediately subsequent to the present proof. However, for
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future reference, we remark that by this reasoning, whenever r = rB, non–negativity

of this quantity must follow:

c′(rB) +

[
∂ϕB(M`)

∂r

]
(rB ,B)

≥ 0. (4.37)

Back to the problem at hand, negativity of this combination at (r•, B•) implies

that at B = B•, the free energy is minimized by an rB• > r• which, in particular,

implies a low temperature layer. Now, initially (e.g., as discussed in Proposition 4.4,

for B . π2A) the layer thickness, rB (= r◦(B)) corresponded to a high temperature

layer under free thinning. By the time circumstances have permitted the opportunity

to make the transition continuously through a critical layer it is apparently already

in a low temperature layer. It follows that at the (existential) point BT – which is

evidently less than B• – there has been a discontinuous jump of the layer thickness.

Indeed, at this point, there are coexisting minimizing layer thicknesses r+
BT

> r−BT
satisfying

[r+
BT

]2BT > π2A (low temperature layer);

[r−BT ]2BT < π2A (high temperature layer). (4.38)

It is noted that the discontinuity must go backwards; in particular, by definition, up

to and including (r−BT , BT ), the free thinning criterion is still satisfied.

In light of Proposition 4.6 below, these discontinuities are certainly generic. And

needless to say, if the preceding negativity criterion fails, it might still be the case

that at B = B•, the free energy is minimized at a larger value of r than r• due to a

(sufficiently strong) turn around of c′ + ∂ϕB
∂r

at r > r•; the scenario for these cases is

identical culminating in Eq.(4.38).

A number of interesting possibilities would ensure if the coefficient of δB in

Eq.(4.36) were (“still”) negative. However, as will be demonstrated in Lemma 4.7,

this quantity is positive. Thence, if c′ + ∂ϕB
∂r

is also positive at (r•, B•) corresponding

to an actual minimum of of C(r) + FB(r)− rfB then rB turns around and obviously

does so with derivative going discontinuously from (strictly) negative to (strictly)

positive.

Finally we turn to the case where c′ + ∂ϕB
∂r

vanishes at (r•, B•). Here one must

look at higher order terms or, if necessary, non – perturbatively to ensure that C(r)+

FB(r)− rfB is really uniquely minimized at r = r•. If not, there already has been a
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jump in rB or there is about to be a jump in rB. If so, then in light of the positivity

of f ′B −
∂ϕB
∂B

there will anyway be a turnaround of rB with a sharp singularity in the

derivative of rB at B = B+
• .

Proposition 4.6 Consider the functions c(r), r•(B), etc., as defined. Then at the

point r = r•, B = B•, the quantity

c′(r•) +
∂ϕB
∂r

(r•, B•)

can be of either sign depending on the details of c(r).

Remark 5 As the analysis below will show, the sign of the above displayed quantity

depends only on the ratio of |r′?| to |r′◦| at r = r•. Since, it is recalled, r• is the first point

of intersection of these curves, and r? is “coming from above”, it follows that |r′?(B•)| ≥
|r′◦(B•)| (with equality only marginally possible). From a mathematical perspective,

if any function r◦(B) is prescribed satisfying the constraints of monotonicity and the

correct limiting behavior r◦(B) → 1 as B → 0 then the corresponding c(r) can be

constructed. Indeed, denoting the inverse function of r◦(B) by B◦(r), we may simply

write

c(r) = −1

4

B2
◦(r)

U
.

Thus, assuming r◦(B) is smooth and (“first”) intersects r? at some point (r•, B•))

then local distortions in the vicinity of this intersection point can achieve any ratio

of |r′?|/|r′◦| in (1,∞) with only mild effect on c(r).

From a more physical perspective, suppose that r◦(B) – and hence c(r) – is im-

mutable but we allow A as a control parameter. (While the condition of ferromag-

netism puts bounds on the allowed values of A we shall ignore these fine points for the

time being.) For ease of exposition, let us suppose we have a bounded derivative for

r◦(B) at B = 0 and, say, r◦(B) vanishes at B = H (e.g., the case of a linear potential).

Then, as A → 0, B• → 0 and we will have |r′?(B•)| divergent. So, in particular, for

A sufficiently small, |r′?(B•)| � |r′◦(B•)|. Note that in this range, there have to be

multiple points of intersection between r?(B) and r◦(B) On the other hand, if A is

large, we will find r?(B) > r◦(B) for all B in [0, H]. It follows that there is an Ac
at which there a first point of intersection (and, generically, only a single point of

intersection) at which the derivatives match.
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Proof of Proposition 4.6. We write

|c(r◦)| =
1

4

B2

U

and, differentiating, we have

|c′(r◦)|
∣∣∣∣dr◦dB

∣∣∣∣ =
1

2

B

U
= |c(r◦)|

2

B
.

Thus, after just a few steps, ∣∣∣∣dcdr
∣∣∣∣ r′◦r′? |r′?| = 2

r?
B

∣∣∣∣c(r◦)r?

∣∣∣∣ .
It is noted that the combination |r′?B/r?| amounts to a logarithmic derivative of r′?
with respect to logB and is exactly 1

2
so, evaluating at (r•, B•) we arrive at

|c′(r•)| = 4
r′?
r′◦

∣∣∣∣c(r•)r•

∣∣∣∣ (4.39)

Now, let us turn attention to the free energetics. Writing

ϕB(M`(r, B) = −1

2

B2

U
[µ2
`(Q)− 1

2
µ4
`(Q)] (4.40)

(where Q = Br2/A) we have, in general,

∂ϕB
∂r

= −1

2

B2

U
(1− µ2

`)
dµ2

`

dQ

∂Q

∂r

Now it is a direct consequence of Lemma 4.7 below that the quantity K defined by

K :=
dµ2

`

dQ

∣∣∣∣
Qc

(4.41)

satisfies KQc ≥ 1. (Here, Qc = π2.) However, as can be readily verified by perturba-

tive calculations, the inequality is strict: 1 < KQc =
∫ π
0 sin2 θdθ∫ π
0 sin4 θdθ

= 4
3
. Continuing the

derivation we have ∣∣∣∣∂ϕB∂r
∣∣∣∣
(r•,B•)

=
1

2

B2

U
K · 2rBA = 4

∣∣∣∣c(r•)r•

∣∣∣∣KQc (4.42)

which is strictly greater than (but comparable to) the quantity 4|c(r•)|/r• which is the

coefficient of r′◦(B•)/r
′
?(B•) that figures into the right hand side of Eq.(4.39). Thus,

depending on the magnitude of r′◦(B•) to r′?(B•) the quantity in the display of the

statement of this proposition can indeed be of either sign.
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The key inequality alluded to earlier (which demonstrates that after free thinning

is over, thickening must commence – at least for a while) is now presented:

Lemma 4.7 Whenever r2B ≥ Aπ2,

∂

∂B
ϕB(M`(r, B)) <

∂

∂B
ϕB(M)

where, at r2B = Aπ2, the derivative is interpreted as being in the positive direction.

Proof. As discussed previously, the inequality can be verified perturbatively for r2B−
Aπ2 � 1. Furthermore for large B (and fixed r) this can be shown on the basis of

asymptotics. As for the general case, writing M`(r, B) = µ`M (with M2 = B/U) the

object to be differentiated is

−B
2

U
(
1

2
µ2
` −

1

4
µ4
`)

while on the right, it is just −1
4
B2

U
. Multiplying through by 1

A
r4 which dos not effect

the partial derivative, the left side is, to within constants, the derivative w.r.t Q of

Q2[1
2
µ2
` − 1

4
µ4
` ] – which is to be compared with d

dQ
1
4
Q2. Thus, it is enough to show

that the derivative of Q2(1− µ2
`)

2 is negative.

We go back to the implicit identity for µ`(Q): Differentiating both sides of

Eq.(4.23) w.r.t. Q yields the further identity∫ π
2

0

1 + sin2 θ

[1− 1
2
µ2
`(1 + sin2 θ)]

3
2

dθ
dµ2

`

dQ
=

1√
Q

(4.43)

Now inside the integrand,

2 > 1 + sin2 θ

and
1

1− µ2
`

>
1

[1− 1
2
µ2
`(1 + sin2 θ)

so we arrive at
2

1− µ2
`

∫ π
2

0

dθ

[1− 1
2
µ2
`(1 + sin2 θ)]

1
2

dµ2
`

dQ
≥ 1√

Q
. (4.44)

Substituting from Eq.(4.23) we conclude

Q
dµ2

`

dQ
> (1− µ2

`)

which is equivalent to the statement that d
dQ

[Q(1− µ2
`)]

2 < 0.
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4.4 Large B asymptotics and strong wetting revisited

Once the discontinuity has occurred and the recovery of the layer has begun, we

may begin to investigate the behavior at large B. Obviously if B � 1, then, for

intermediate values of r, M`(r, B) is very close to M(B) and so derivative of DB(r)

(c.f. the display prior to Theorem 4.1) is dominated by c(r) – which we have stipulated

to be strictly negative. Thus, it would seem, we drive towards r = 1.

A calculation based on this display (prior to Theorem 4.1) along with the large Q

asymptotics contained in Theorem 4.1 indicate that

rB : c(rB) � −B
2

U
exp−[r

√
2B

A
]

is anticipated. Thus, in particular if c(r) � −(1− r) as r → 1, then

rB � 1− B2

U
exp−[

√
2B

A
].

It is remarked that in the above displays, the symbol � implies the existence of upper

and lower bounds of the indicated form (for sufficiently large B) which may differ by

numerical constants.

While the preceding is certainly “true” in some sense, we now arrive at a small

embarrassment of the large L0–theory. In particular, throughout this section, we have

been attempting to minimize C(r)+FB(r)−rfB. Our next initial claim is that unless

this object is identically minus infinity (due to C(r) ≡ −∞) the layer will eventually

disappear altogether. This is notwithstanding the fact that for reasonable models the

above asymptotics will hold; evidently this is for large but not too large a value of

the inverse temperature parameter B.

A proof of the statement concerning the disappearance of the layer will follow as

an immediate corollary to the up and coming lemma. However, for the meanwhile,

let us recall that for all intents and purposes C(r) is defined by

C(r) =

∫ s

0

c(s)ds

so in essence we are asking that the above integral be divergent at the lower limit

(leading to the embarrassment: C(r) ≡ −∞).

Obviously the problem can be addressed by an elementary renormalization fea-

turing a cutoff at the lower limit. However, even with this device, we shall later show
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that, actually, a sufficiently strong divergence of c(r) is required in order to prevent

destruction of the layer as B →∞.

We shall discuss these matters shortly after we show that the finite C(0) models

indeed eventually dispense with their layers. The seminal result, which will be used

throughout, concerns the existence of an asymptotic surface energy for the existence

of a layer.

Proposition 4.8 For fixed r > 0, as B →∞,

FB(r)− rfB �
A1/2B3/2

U
.

Further, the above holds even if r → 0 when B gets large provided that r2B tends to

infinity.

Proof. Recalling the form of Eq.(4.18), let us seek asymptotics on

IQ := min
µ

∫ 1

0

LQ(µ)dx.

Note that the potential term, temporarily denoted by QV (µ), saturates at µ = 1

with value 1
4
Q. Working on [0, 1

2
], we get an upper bound by using a trial function

with linear rise to µ = 1 in the region [0,∆]. I.e. µ̃(x) = x
∆

in [0,∆] with ∆ to be

determined; we will neglect any benefit from the potential portion of the functional

in this region. As a result

1

2
IQ ≤

1

2

1

∆2
×∆− (

1

2
−∆)

1

4
Q

I.e., IQ ≤ −1
4
Q + 1

∆
+ 1

2
Q∆. It is noted that the first term represents the bulk free

energy. The second term is positive and, minimizing over ∆, we find

IQ ≤ −
1

4
Q+ cl

√
Q.

with cl a constant of order unity.

We seek a complimentary upper bound. Recall that µ(x) rises monotonically in

[0, 1
2
] to its maximum value µ`(Q) < 1. For Q large, µ` is nearly one – certainly bigger

than 1
2
. Let ∆? denote the point where µ achieves 1

2
. Then

1

2
IQ ≥ −∆?QV (1

2
) +

∫ ∆?

0

1

2
(µ′)2dx− (

1

2
−∆?) · 1

4
Q.
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I.e.,

IQ ≥ −
1

4
Q+ c̃∆?Q+

∫ ∆?

0

(µ′)2dx

with c̃ > 0 a positive constant of order unity.

Now, using Jensen’s inequality,∫ ∆?

0

(µ′)2dx = ∆?

∫ ∆?

0

(µ′)2 dx

∆?
≥ ∆?

(∫ ∆?

0

µ′
dx

∆?

)2

=
1

∆?

(∫ ∆?

0

µ′dx

)2

=
1

4

1

∆?
.

Thus we learn that IQ ≥ −1
4
Q + c̃∆? + 1

4
1

∆? . This is true for the actual ∆? of the

minimizer. It is thus certainly true that

IQ ≥ −
1

4
Q+ min

∆
[c̃∆ +

1

4

1

∆
].

Minimizing, we obtain IQ ≥ −1
4
Q+ cu

√
Q.

Now it is clear from Eq.(4.18) that

FB(r)− rfB =
AB

rU
[IQ +

1

4
Q]

with Q = r2B/A. We thus have FB(r)−rfB � A1/2B3/2

U
as promised; the only proviso

being that the relevant Q go to infinity.

On the basis of the preceding it is hard (from certain perspectives) to imagine

anything besides a sharp constant in these relations. This is indeed the case – and

will actually be needed later – but for those so inclined, such a result may simply be

assumed and one may proceed directly to Corollary 4.10 below.

Lemma 4.9 There is a non–trivial κ (meaning 0 < κ <∞) such that

lim
Q→∞

[IQ +
1

4
Q]Q−1/2 = κ.

Equivalently if B → ∞ and r = r(B) (with r ≤ 1) is some function which ensures

r2B →∞ as B →∞ then

[FB(r)− rfB]B−3/2 → κ

as B →∞.
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Proof. Let r1 = r1(B) and r2 = r2(B) with r1 < r2 be two functions that satisfy the

above stated criterion. (As usual, these r’s may be thought of as fixed numbers but

more flexibility is allowed and, actually, this sort of flexibility will be required later.)

We denote the corresponding Q-values by Q1 and Q2 respectively. We may write

[FB(r2)− r2fB]− [FB(r1)− r1fB] =

∫ r2

r1

∂

∂r
[FB(r)− rfB]dr. (4.45)

The argument of the integrand is known (c.f., Corollary 4.2) to be ϕB(M`(r, B))−fB.

We may express these quantities in terms of the dimensionless objects introduced in

Theorem 4.1: M`(r, B) = M(B)[µ`(Q)] and we have that (exactly)

ϕB(M`(r, B))− fB =
1

4

B2

U
(1− µ2

`(Q))2 =:
1

4

B2

U
εQ.

Thus, so far,

[FB(r)− rfB]r2r1 =
1

4

B2

U

∫ r2

r1

εQdr

where [X(s)]s2s1 is notation for X(s2)−X(s1). We change the variable of integration

to Q: dQ = 2A−1/2B1/2Q1/2dr. Thus

1

4

B2

U

∫ r2

r1

εQdr =
A1/2B3/2

8U

∫ Q2

Q1

1

Q1/2
εQdQ. (4.46)

Since all associated Q’s are large, we may apply the asymptotics from Theorem 4.1,

item (3): εQ � e−
√

2Q. The final integral is rapidly convergent with its principal

contribution from the vicinity of the lower limit. We learn:

lim
B→∞

[FB(r2)− r2fB]− [FB(r1)− r1fB]

B−3/2
≤ lim

B→∞
const.× A

U
e−
√

2Q1 = 0. (4.47)

The combination of this result and the asymptotic statement of Proposition 4.8 (for

the non–triviality clause) imply the second statement in this lemma.

As for the first statement, we write, once again, FB(r) − rfB = AB
rU

[IQ + 1
4
Q].

Dividing both sided by B3/2A1/2

U
we learn on the basis of our first result that

[IQ +
1

4
Q]Q−1/2 → κ

as Q→∞.
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Corollary 4.10 If C(0) 6= −∞ then as B →∞, rB → 0.

Remark 6 If c(r) is a regular function, then C(0) 6= −∞ necessarily implies C(0) =

0; notwithstanding, without any additional provisos, we may imagine a δ–function

at the origin with strength C0 (with C0 < 0) Thus, C(0+) = C0 while C(0) = 0. In

these circumstances, the stated result still holds and the proof is unaffected. However,

depending on the regular part of C, in the presence of the δ–functions the large B

asymptotics may well be different – no matter how small C0. More importantly, for

large value of |C0| – or a sizable “additive” value of C(r) for r � 1 – sensible evolution

of the layer towards r = 1 will persist for correspondingly sizable values of B.

Proof. Consider the object to be minimized namely C(r) + FB(r) − rfB. For r = 0

(as opposed to 0+) this is zero according to the present assumption. Supposing that

lim sup
B→∞

= r∞ > 0.

Let Bn →∞ so as to satisfy rn → r∞ where rn := rBn . Then for n large, 1
A
r2
nBn also

gets large and the layer free energy satisfies

C(rn) + FBn(rn)− rnfBn & C(r∞) + κB3/2
n

where κ > 0 is discussed in Propositions 4.8 and Lemma 4.9. This is certainly bigger

than zero for B sufficiently large (implying that rB must converge to zero).

Remark 7 It is not hard to see that if |C(r)| < Kr for some finite K then for B

sufficiently large, rB will be identically zero. Indeed look along a sequence where r2
BB

tends to some definite limit which could be finite or infinite. If the limit is infinite,

then large Q asymptotics are applicable and we would have

C(rB) + FB(rB)− rBfB ≈ −KrB + κB3/2

so we would certainly be better of with zero. Alternatively, if r2
BB → AQ with

π2 < Q <∞ then

FB(rB)− rBfB →
AB

rU
[IQ +

1

4
Q]

(in the sense of ratios). The quantity in square brackets is strictly positive and as

is seen, its coefficient is proportional to B3/2; again we are better off with zero. If
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r2
BB tends to zero the situation is not so clear in the Q language but if anyway r2

BB

is eventually less than (or equal to) π2 then the layer term drops out of our analysis

and C(r)−rfB ≥ [−K+ 1
4
B2/U ]r and (for B large) we are again better off with zero.

By contrast, if 1
r
C(r) diverges as r → 0, – which is merely the statement that

c(r) → −∞ – then for large B we are, at worst, back to free thinning with rB = r◦
as described in Eq.(4.35). Note that this includes the case of a δ–singularity: Here,

for r > 0, C(r) = C0 + Cρ(r) (where Cρ denotes the regular piece). Obviously the

minimizer is to be found among the r > 0 options since this is certainly less than

−r 1
4
B2

U
for r small.

It is evident that systems with C(0+) > −∞ – even those that heretofore have

been demonstrated to have undergone thinning and substantive recovery in some

reasonable interval of the parameter B – will ultimately undergo reentrant thinning

behavior via another large discontinuity. And this can happen via termination of

the layer (immediate or otherwise) at finite B or ultimate disappearance via a free

thinning mechanism.

The distinction between the various modes of behavior which have been informally

elucidated above is not all too important except as a mathematical curiosity: No effect

of this sort seems to have been observed experimentally (to the authors’ knowledge)

and, back in the discrete setting, such effects do not easily occur. Foremost, there is

Proposition 3.2 which essentially guarantees that as β → ∞ Lβ must return to L0.

However, it is clear that the inequality |CL0| > J1 is inconsistent with the scaling in

Eqs. (4.1) – (4.2).

Indeed, after a bit of reflection, it is seen that this scaling is tantamount to the

assertion that

J0, J1 � V (a0L0).

Thereafter – it is presumed – the minute changes in the free energy at β & βc
ultimately augments the r.h.s. with an L−4

0 which “compensates” for the fact that

V (a0L0) ≈ c(r = 1)L−4
0 which in turn vindicates the extreme inequality in the above

display. Thus, it must be accepted that the entirety of the large L0–theory – which

notwithstanding its shortcomings is reasonably satisfactory – also amounts to a theory

for r’s which do not deviate too much from unity. At smaller values of r, the theory

(i.e., in form of the scaling of Eqs. (4.1) – (4.2)) breaks down. While this should not

effect matters near r = 1, clearly it is required that some augmented scaling of the
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attractive potential allows the behavior of V (x) at small scales to dominate B3/2 for

B � 1.

The relevant cure obviously requires a non–integrable divergence of c(r) as r → 0

which in turn requires some formal adjustments to the theory. Let us tend to these

preliminary matters.

We start by defining

Cε0(r) =

∫ r

ε0

c(r′)dr′

and

D[ε0]
B (r) = Cε0(r) + FB(r)− rfB.

Now it is clear that if D[ε0]
B (r) is minimized by some r

[ε0]
B > ε0 then for all ε < ε0,

r
[ε]
B = r

[ε0]
B .

Moreover (for fixed B) then for ε0 sufficiently small, r
[ε0]
B > ε0. Thus we may define

the model via the small ε0 limit and, formally,

rB = lim
ε0→0

r
[ε0]
B .

Notwithstanding, a variant of Corollary 4.10 demonstrates that in fact the diver-

gence of c must be sufficiently strong or else, as B →∞, the layer dwindles away as

B → ∞. The dividing line is precisely the mean–field version of the Van der Waals

force which – coincidentally or otherwise – is related to the strong wetting condition.

Definition 4.11 Recalling r◦ (c(r◦) = −B2/U) and r? (r? = A1/2π/
√
B) and the

strong wetting condition (r? ≥ r◦) for some B we define

(i) An η–violation (of strong wetting) if for all B sufficiently large,

η r?(B) > r◦(B).

(ii) An η–enhancement (of strong wetting) if for all B sufficiently large,

η r?(B) < r◦(B).

As is easily demonstrated, these enhancements/violations correspond to (short

distance) bounds by the mean–field Van der Waals attractive potential.
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Theorem 4.12 Consider the continuum thinning problem as described in Eq.(4.16)

but augmented with non–integrable c(r) as discussed prior to Definition 4.11. Then

there is a number v ∈ (0,∞) such that

• If c(r) has an η–violation with η < v then

lim
B→∞

rB = 0.

• If c(r) has η–enhancement then with η > v then

lim
B→∞

rB = 1.

Proof. We claim that η–enhancements/violations are equivalent to Van der Waals

bounds on c(r) for r small. Consider first the violations. We have, assuming B large

enough, r◦ < η r? so

−B
2

U
= c(r◦) ≤ c(η r?)

However η r? = η
√

A
B
π so for all r sufficiently small,

−η
4A2π4

U

1

r4
≤ c(r) (4.48)

(which, if η is small, is seen to be a “weak” Van der Waals bound since both sides

are negative). Similarly, for an enhancement, we get exactly the opposite bound as

in Eq.(4.48) for r sufficiently small. In this vein, it is remarked that the proof of the

two statements in this theorem are in essence identical after reversal of inequalities

and we will not explicitly repeat the arguments; we focus on the η–violations.

Let us assume that

lim sup
B→∞

= r̃ > 0;

we shall demonstrate that (regardless of r̃) this is impossible for η smaller than some

v to be specified. Consider instead r = r(B) satisfying Br2(B)/A = Q with Q any

fixed number of order unity (an optimal value of which will be specified later). We

will show that for η smaller than a particular value, we can produce a choice of Q

for which C(r̃) + FB(r̃) − r̃fB > C(r) + FB(r) − rfB for B sufficiently large. (By

continuity this demonstrates the stated result). First we write

C(r̃)− C(r) =

∫ s0

r

c(r)dr +

∫ r̃

s0

c(r)dr.
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The second integral is a constant independent of B (and r) and the first can be

estimated via Eq.(4.48):∫ s0

r

c(r)dr ≥ −1

3

η4A2π4

U

1

r3
+ const.

Next we use the formula in Eqs.(4.45)–(4.46) to write

[FB(r′)− r′fB + C(r′)]r̃r ≥

A2

U

1

r3

[
−1

3
(ηπ)4 +

1

8
Q3/2

∫ Q̃

Q

1

[Q′]1/2
εQ′dQ

′

]
+ const.

(4.49)

where Q̃ = [r̃]2B/A and it is remarked that the integral formula is obviously valid

even if Q < π2. We may, of course, neglect consideration of the constant term since

the principal term is multiplied by r−3 →∞. Similarly the upper limit on the integral

mat be replaced by infinity due to the rapid convergence of the integrand which easily

absorbs the multiplicative singular term (∝ B3/2 ∝ r−3). Consider, then, the quantity

Γ(Q) :=
1

8
Q3/2

∫ Q̃

Q

1

[Q′]1/2
εQ′dQ

′.

Obviously Γ(0) = 0 and Γ(Q) → 0 (rapidly) as Q → ∞. It therefore follows that

there is a maximum to this function which is achieved at a finite (and non–zero) value

Q = Q]. We denote this maximum value by Γ]; 0 < Γ] <∞. Evidently if 1
3
(ηπ)4 < Γ]

and r2B/A = Q] the left hand side of Eq.(4.49) is positive and, therefore, the large

B–minimum is near r = 0 inversely proportional to B1/2. We will call v the value of

η which saturates the bound:
1

3
π4v4 = Γ].

The argument under strong enhancement is quite similar. Supposing lim infB→∞ rB
= 0 we may again write our expression for Q assuming, if necessary along some se-

quence that the Q’s converge to some value. This value may be finite or infinite.

Under η–enhancement, for any r̃ of order unity, we obtain an inequality which is the

exact reverse of Eq.(4.49) (with different constant terms). Now if we assume that

η > v, the r = r̃ behavior is more favorable, according to free energetics, than small

r – regardless of the behavior of Q.
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Finally we will show that if the superior limit of rB is strictly positive then, in

fact, rB → 1. Indeed the sharp asymptotics provided by Lemma 4.9 (c.f., Eq.(4.47))

indicate that for all sufficiently large B, the choice r = 1 does better than any fixed

r less than 1. Thence, on the basis of “derivatives” one recovers the asymptotics

displayed at the beginning of this subsection.

Remark 8 It is noted that the mean–field Van der Waals attraction

c(r) = −γ 1

r4

is both enhancement and violation and is thus the borderline case. The theorem

applies so evidently, there is a γc such that for γ < γc the layer disappears and for

γ > γc it experiences full recovery.

Outside the realm of physics, it is therefore easy to construct models with strange

behavior. Indeed, supposing c(r) = −θ(r) 1
r4

with θ of order unity slowly varying

above and below the critical value. Clearly, such potentials are capable of producing

an infinite sequence of jumps back and forth between small minimizers and minimizers

close to one.

5 Large L0 mathematics

Our first result of this section will be a complete proof that the functional defined in

Eq.(4.13) has a unique minimizer i.e., the one which we have produced by quadrature.

(Here it will be convenient to work with the dimensionless version). Since it may be

assumed that results along these lines are well established, we will be as succinct as

possible. Moreover, several of the principal steps have already been established in the

context of and Theorem 4.1 and Corollary 4.2

Theorem 5.1 Consider the functional

FQ(µ) :=

∫ 1

0

LQ(µ)dx

(
=

∫ 1

0

[
1

2
µ′ 2 −Q1

2
µ2 +Q

1

4
µ4]dx.

)
Then FQ has the unique minimizer which is identically zero for Q ≤ π2 and given by

the implicit formulas provided in Eq.(4.21) and Eq.(4.22) for Q > π2.
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Proof. The situation for Q ≤ π2 has been discussed; let us assume that Q > π2.

We start by considering a minimizing sequence (µ[k] | k ∈ N) for the functional FQ

which, as previously mentioned, we may consider to be piecewise smooth. Since all

quantities are even, we may only consider elements that do not change sign, without

loss of generality non–negative. Since the “potential” term namely −Q
2
µ2 + Q

4
µ4 is

bounded below with bound saturating at µ = 1, it may be assumed that for all

k, 0 ≤ µ[k](x) ≤ 1. Since the potential term is finite, the “kinetic” term must

be separately finite, i.e., for each µ[k] in the sequence,
∫

(µ′[k])
2dx is bounded by a

constant independent of k. Thus, (µ[k]) is a bounded sequence in H1
0 [0, 1]. We let µ

denote the weak limit. By employing trial functions (e.g., ε sinπx; ε� 1 as discussed

shortly after Eq.(4.19)) we know that the limiting µ is non–trivial. We will show that

µ is actually a minimizer for FQ(·). First, by weakness of the convergence (AKA

lower semicontinuity)

lim
k→∞

∫ 1

0

(µ′[k])
2dx ≥

∫ 1

0

(µ′)2dx.

Further, by Sobolev embedding,
∫
µ2

[k]dx →
∫
µ2dx and, by boundedness, a similar

result applies for the forth power. Thus, indeed, µ is a genuine minimizer for the

functional. Our aim is to show that this µ is none other than the classical µQ.

We may look to the weak form of the Euler–Lagrange equation which here implies

that for any suitable test function η, the quantity

µ′η′ −Q(µ− µ3)η

integrates to zero. This necessarily implies that µ′ itself has a weak derivative (namely

+Q(µ−µ3)) which places µ in a higher Sobolev space, e.g. W 2,∞[0, 1]. But now since

µ′ ∈ W 1,∞[0, 1] the weak derivative of (µ′)2 exists and is given by 2µ′×[the weak

derivative of µ′]. Thus, in conclusion, the quantity

1

2
(µ′)2 +Q(

1

2
µ2 − 1

4
µ4)

has zero weak derivative i.e., is a.e. constant. We can now establish, essentially by

the classical arguments employed in Theorem 4.1 that µ′ vanishes at (and is small in

the neighborhood of) x = 1
2
. Indeed, suppose that in some very small neighborhood

of xε := 1
2
− ε, the function µ′ averages to Hε with H large to be specified below.

Then since the weak derivative of µ′ is bounded above (by Q) we may conclude that
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throughout (xε,
1
2
) µ′ is bounded above by H1ε and below by H2ε where H1 and H2

are large numbers comperable to H.

We will consider an alternative to µ which we denote by µ̃. Here (restricting

attention to the left half of [0, 1] and reflecting) we define µ̃ = µ for x < xε and

µ̃ ≡ µ(xε) in [xε,
1
2
]. We now show that if H is to large, µ̃ would provide a better

minimizer for the functional than µ. Indeed, the “gain” from the kinetic (derivative)

portion of the functional is at least H2
2ε

2 × ε. As for the “potential” portion of the

functional, Let us write, for x ∈ (xε,
1
2
),

µ(x) = µ(xε) + δµ(x).

Then for all such x, δµ is bounded above by ε2H1. Now, the derivative with respect

to argument of the potential term – i.e., −Q
2
µ2 + Q

4
µ4 which we temporarily denote

by V (µ) – is always smaller in magnitude than 1
2
Q. Thence in (xε,

1
2
),

|V (µ)− V (µ̃)| = |V (µ(xε) + δµ)− V (µ(xε))| ≤
1

2
Qε2H1.

Thus the potential loss is no more than 1
2
Qε3H1 which is much smaller thanH2

2ε
3 if

H is large. Thus, evidently for some mild value of c we must have |µ′(x)| < c|1
2
− x|

for a.e. x. In particular, the derivative “vanishes” (e.g., in the sense of the Lebesgue

average) at x = 1
2
. We may identify the a.e. constant value of 1

2
(µ′)2 +Q(1

2
µ2 − 1

4
µ4)

with the value of Q(1
2
µ2 − 1

4
µ4) at the midpoint. In particular then Eq.(4.20) indeed

holds a.e. on [0, 1]. The production of the unique classical solution now follows the

derivations in Eq.(4.21) and Eq.(4.22) and we have established that our minimizer is

the (classical) µQ.

Proposition 5.2 Let m
[L]
k = m

[L]
k (β) denote the solution to Eq.(4.10) for 1 ≤ k ≤ L

where L = [rL0] with L0 serving to define the temperature parameter B and r ∈ [0, 1]

fixed. We define for x ∈ [0, 1] of the form x(L+ 1) = integer,

M
[L]

r2B(x) := Lm
[L]
x(L+1)(β)

where the relation between β and B is given in Eq.(4.3). For general x ∈ [0, 1] we

define M
[L]
B (x) via linear interpolation. Then, for any p < ∞, M

[L]

r2B(x) converges

strongly in W 1,p to the unique non–trivial (if applicable) function associated with FQ

(as described in Eq.(4.17)).
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Proof. We start with the observation (from Theorem 2.1 item 4) that for every x and

B, M
[L]
B (x) is essentially bounded by M(B) (=

√
3B), i.e., for any λ > 1,

M
[L]
B (x) < λM(B)

for all L sufficiently large. Thus (M
[L]
B (x)) is a sequence of bounded functions on [0, 1]

and we may extract a subsequence which converges, weakly e.g., in L2[0, 1]. We will

denote the weak limit by M?
B(x); our aim is to show that this M?

B(x) is MB(x), the

solution to Eq.(4.12), whose properties were elucidated in Theorem 4.1.

To this end, we note that Eq.(4.12) is in fact satisfied in weak form by M?
B(x).

Let η(x) denote an infinitely differentiable function on [−ε, 1 + ε] for some small ε

and, for appropriate integer k, let ηk := η( k
L

). Then, multiplying Eq.(4.10) by ηk and

summing we have (with the superscript [L] suppressed)

L+1∑
k=0

aηk∆mk =
L+1∑
k=0

(Arctanh(mk)− bmk)ηk. (5.1)

We may sum by parts:
L+1∑
k=0

aηk∆mk =
L+1∑
k=0

amk∆ηk

(where we have used that mk is identically zero outside L). Now, multiplying by

L3 and replacing sums by integrals (which only procures an error that vanishes as

L→∞)∫ 1

0

AM
[L]
B (x)η′′(x)dx =

∫ 1

0

(−BM [L]
B (x) +

1

3
(M

[L]
B )3)η(x)dx+ o( 1

L
) (5.2)

where the error term also accounts for the expansion of the arctangent. Now the

above equation does not immediately imply that the weak form of Eq.(4.12) is satisfied

by the limiting M
[L]
B (x) because we have no guarantee of the convergence (weak or

otherwise) of (M
[L]
B )3. For this reason and in order to be able to identify the limit, we

shall seek bounds on the gradients of the mk. (We remark that the former motivation

can be satiated by somewhat easier means than the forthcoming but we must still

handle the latter.) We shall argue somewhat informally since a similar derivation has

already been presented in the context of the continuum model. In the forthcoming,

while we will be working on the lattice – L still finite, we will rescale L to the unit
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interval. Thus e.g., when we speak of the ε–neighborhood of the midpoint, we are

actually describing the order of εL sites.

We claim a linear bound on ∇m[L]
k in the direction away from the midpoint.

Specifically for s ∈ (0, 1
2
) there is a finite H = H(a, b) such that for all L sufficiently

large,

∇m[L]
ks
< Hsmb

1

L

where ks is the closest point further than Ls lattice sites from the midpoint and, we

remind the reader mb is the bulk magnetization.

Suppose, then that this is this is violated: I.e., for a large H – the specifics of

which will be clarified below – the above is an equality for some s ∈ (0, 1
2
). Now

on account of Theorem 2.2 item (ii) (that the Laplacian is negative) this actually

represents an upper bound on the magnitude of the gradient in the s–neighborhood of

the midpoint. Our first contention is that at the midpoint (and therefore throughout

the neighborhood) the derivative will still be of this order if H� B. Indeed for k, k′

in L, we may use the mean–field equation (Eq.(2.4)) to obtain

|∇m[L]
k −∇m

[L]
k′ | ≤

1

a

j=k′∑
j=k

|Arctanh(m
[L]
j )− bm[L]

j | (5.3)

Now each m
[L]
j is less than mb (by Theorem 2.1 item (4)) so bm

[L]
j ≥ Arctanh(m

[L]
j )

and thus bm
[L]
j −Arctanh(m

[L]
j ) ≤ (b− 1)m

[L]
j ≤ (b− 1)mb. Thus for k − k′ ≤ sL the

most the derivative could fall is (b− 1)mbsL = BmbsL
−1 so now (assuming B � H)

we have that at the midpoint (and throughout the s–neighborhood)

|∇m[L]
` | ≥

H′smb

L
(5.4)

with a complimentary upper bound.

We shall first show that this is impossible (for H too large) on the basis of free

energetics. Indeed, considering a “small” ε–neighborhood of the midpoint, it is seen

that by replacing the ostensibly minimizing magnetization profile with its value at kε
throughout this neighborhood, there is a lowering of the “kinetic” portion of the free

energy at least as large as

H2
1ε

2m2
b

1

L2
× 2εL ∼ H2ε3m2

b

L
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The calculation for the “potential” term is surprisingly similar. Let us write, for

kε ≤ k ≤ `, the magnetization as mk = mkε + δmk where, for convenience, we have

temporarily dropped the [L] superscript. Then, according the the gradient upper

bound,

δmk ≤
Hεmb

L
· εL = Hε2mb. (5.5)

Now the potential term in the discreet free energy functional is simply−1
2
bm2

k−SI(mk)

which is temporarily denoted by Ωb(mk). Then, for each k in the ε–neighborhood of

the midpoint, the raise in the free energy after the truncation at k = kε is no more

than

max
0≤m≤mb

[Ω′b(m)]δmk ≤ max
0≤m≤mb

[Ω′b(m)]Hε2mb.

But Ω′b(m) is exactly bm − Arctanh(m) which, in the range of interest is not more

than (b− 1)mb. Thus the potential loss is no more, in magnitude, then

Hε2mb · (b− 1)mb · 2εL ∼
Hε3m2

b

L

By (informal) comparison with the “kinetic benefit” a few displays above, it is clear

that H cannot be too large; and, in addition there must be an actual linear bound

(with a not too large H) on ∇m[L]
k of the form in the display just before Eq.(5.3).

Recalling that M
[L]
B (x) was defined by linear interpolation, this means that the

(weak) derivative, (M
[L]
B )′(x) – which is piecewise constant – is essentially bounded.

Thus, going to a further subsequence if necessary, it may be assumed that (M
[L]
B ) is

converging to M
[L]
B weakly in W 1,p for any finite p. Whence (again by the Sobolev

embedding theorem) M
[L]
B itself converges strongly in Lp and the weak version of

Eq.(4.12) is indeed satisfied by M?
B(x).

In the context of Theorem 5.1, we know that for r2B ≤ Aπ2 the only solution

is MB ≡ 0; here we are fine. For r2B > Aπ2, weak solutions include the unique

non–trivial minimizer associated with the functional FQ as well as the trivial solu-

tion. We must rule out the latter. This is accomplished by invoking Proposition 2.4

which, in the current language bounds M
[L]
B (x = 1

2
) below strictly away from zero

uniformly in L for all L sufficiently large (whenever B > Aπ2). This midpoint bound

together with the (uniform) bound on the weak derivative establishes that M?
B(x)

indeed corresponds to the non–trivial solution in the regime B > Aπ2.

Finally, we refer back to Eq.(5.2) which, along with the uniform bound (below

by zero and above by M(B)) on M
[L]
B (x)) implies the existence of a bounded (weak)
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second derivative. Thus, the weak convergence can be promoted to the space W 2,p

which implies strong convergence in W 1,p

Corollary 5.3 FB(r) is given by

FB(r) = lim
L0→∞

L3
0F[rL0]. (5.6)

Moreover

lim
L0→∞

Lβ
L0

= rB

Proof. The object L3
0FL is, in accord with Eq.(5.2) the appropriate free energy func-

tional for the continuum model “evaluated at” M
[L]
B (x). (It is emphasized that the

error terms involve expansions of the entropy term and do not involve gradients of

M
[L]
B (x). Thus, with the uniform bonds on M

[L]
B (x) these disappear in the large L0

without need for further discussion.) Using the strong W 1,p convergence of M
[L]
B (x)

to the minimizer of the appropriate continuum free energy functional, the first result

follows.

The second item follows from the first: If it is imagined (e.g., along a subsequence)

that Lβ/L0 is converging to something other than rB then, on the basis of the above,

Lβ would not minimize DL – associated with the L0 model – for L0 sufficiently large.
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