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Abstract

We study a nonlocal aggregation equation with degenerate diffusion, set in a periodic domain.
This equation represents the generalization to m > 1 of the McKean–Vlasov equation where
here the “diffusive” portion of the dynamics are governed by Porous medium self–interactions.
We focus primarily on m ∈ (1, 2] with particular emphasis on m = 2. In general, we establish
regularity properties and, for small interaction, exponential decay to the uniform stationary
solution. For m = 2, we obtain essentially sharp results on the rate of decay for the entire
regime up to the (sharp) transitional value of the interaction parameter.

1 Introduction

In this paper we study weak solutions of the equation:

ρt = ∆(ρm) + θLd(2−m)∇ · (ρ∇(V ∗ ρ)) in TdL × [0,∞), (1.1)

where ∗ stands for convolution, and the space domain is the d-dimension torus with scale L, defined
as TdL := [−L2 ,

L
2 ]d with periodic boundary condition. We assume that V smooth and integrable

(for precise conditions, see (V1)-(V2) in Section 3), and that θ is a positive constant. The primary
focus of this work concerns the cases m ∈ (1, 2] – especially m = 2. In addition, we remark that a
goal of interest (not always achieved) is to acquire results uniform in L for L � 1. We point out
that, in the absence of the aggregation term (i.e., when V = 0) our equation becomes the well-known
Porous medium equation (PME):

ρt −∆(ρm) = 0.

Note that, formally (and in actuality) the mass of the solution to Eq.(1.1) is preserved over time:∫
ρ(x, 0)dx =

∫
ρ(x, t)dx for all t > 0.

Without loss of generality, we can thus assume
∫
ρ(x, 0)dx = 1 and results for other normalizations

can be obtained by scaling.

In the context of biological aggregation, ρ represents the population density which locally disperses
by the diffusion term, while V is the sensing (interaction) kernel that models the long-range attrac-
tion; Eq.(1.1) is relevant for models which have been introduced by [BCM] and [TBL], and further
studied by [BCM2] and [BF]. The above equation can also be regarded as the evolution equation for
a strongly interacting fluid: The V represents the long distance component of the interaction while
short distance interactions – and entropic effects – are accounted for by the degeneracy (m > 1)
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in the diffusion term. Mathematically, the equation exhibits an interesting competition between
degenerate diffusion and nonlocal aggregation.

When V satisfies V (x) = V (−x), Eq.(1.1) is a gradient flow of the following energy with respect
to the Wasserstein metric:

Fθ(ρ) :=

∫
Td
L

1

m− 1
(ρm − ρ) +

1

2
θLd(2−m)ρ(V ∗ ρ)dx. (1.2)

Note that as m → 1, the first term in the integrand of Fθ converges to ρ log ρ which we refer to as
the m = 1 case. Using above energy structure, the existence and uniqueness properties of Eq.(1.1),
in some appropriate Sobolev space, has been obtained in [BS] (also see [S] and [BRB] for relevant
results).

Compared to the well–posedness theory based on energy methods, few results has been known for
pointwise behaviors of solutions, due to the lack of regularity estimates: the difficulty for regularity
analysis lie mainly in the fact that the solutions are not necessarily positive (i.e., strictly positive)
due to the degenerate diffusion. This is what we address in the first part of our paper. In addition,
in the non–compact setting, the plausible limiting solutions tend to be trivial; here, since mass is
conserved, even in the “worst” of cases, there is always the uniform stationary state. Most of the
rest of this work is concerned with the approach to the asymptotic state.

• Regularity properties Due to the degenerate diffusion, one cannot expect smooth solutions of
Eq.(1.1): even for (PME), Hölder regularity is optimal, as verified by the self-similar (Barenblatt)
solutions (see [V]). On the other hand, the solution of (PME) is indeed Hölder continuous (again,
see [V]), which motivates the question of Hölder regularity of the solution of our problem Eq.(1.1).

Note that, if we choose V as a mollifier approximating the Dirac delta function, formally the
nonlocal term approximates

∇ · [θLd(m−2)∇V ∗ ρ] = θLd(m−2)∇ · [ρ∇ρ] = θLd(m−2)∆(ρ2).

Therefore it is plausible that, at least when ρ is bounded from above, diffusion dominates when
m < 2 and the aggregation dominates when m > 2. Indeed we will show that, when m < 2, the
effect of the aggregation term is weak enough that it is possible to locally approximate solutions
of Eq.(1.1) with those of (PME). As a result, Hölder regularity of solutions of Eq.(1.1) for m < 2
follows. As for m ≥ 2, we show that solutions are continuous “uniformly in time”, based on the
result of Dibenedetto ([Dib]). For all m > 1, we also show that the L∞ norm of solution is uniformly
bounded from above depending on the L1 and L∞ norm of the initial data (see Theorem 2.1) which
is of independent interest.

• Asymptotic behavior Our next result, partly an application of the first result, is on the asymptotic
behavior of solutions of Eq.(1.1) in the periodic domain TdL. We work in a periodic domain because,
primarily, we are interested in finite volume problems and TdL provides the most convenient boundary
conditions. Even though asymptotic behavior for m < 2 has been studied before in various references
(e.g., [S], and presumably others) this is one of the first such result for these type of domains to
the best of the authors’ knowledge. One difficulty specific to the periodic setting is that the radial
symmetry is not preserved over time, and thus exact (non–constant) solutions – always useful in
these contexts – are not readily available. We also point out that in the case m ≥ 2, there exist
solutions which assumes zero value, possibly with compact support. Asymptotic behavior of such
solutions are, in general, an interesting and difficult question, even for radial solutions in Rd (see
[KY]).

Intuitively, one expects that when the diffusion term is “dominant” in Eq.(1.1), the solutions
would converge to the constant solution as time goes to infinity. We show that this is indeed the
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case when 1 < m < 2 and θ is sufficiently small. However, with most interactions (specifically, V
being not of positive type) there is a linear instability that sets in at some θ] = θ](m) < ∞ which
is determined by the minimal coefficient in the Fourier series of V (see Section 4). It is not hard
to show that for all m, when θ > θ], the functional in Eq.(1.2) has non–constant minimizers (and
the constant solution is not a minimizer – in fact, not even a local minimizer). However as has been
shown explicitly for m = 1 under reasonable conditions – pertinently d ≥ 2 – this “transition” occurs
at some θt < θ] [CP]. Presumably, this argument holds in great generality. It is therefore somewhat
surprising that for m = 2 the transition occurs exactly at θ = θ].

More precisely, for m = 2, we show that for θ < θ] (the subcritical case), the constant solution
is the only minimizer and is stable. Indeed we can actually show that for all bounded initial data
ρ(x, 0), the dynamical ρ(·, t) will converge to the constant solution ρ0 exponentially fast in L2-norm.
See Section 4 for detailed discussion on critical and supercritical case. When 1 < m < 2, the energy
is no longer in the form of an L2–norm, and our Fourier-transform based approach does not generate
a transitional value for θ. However, when θ is sufficiently small, similar approach used by one of the
authors in [CP] yields that the constant solution is the global minimizer. Moreover, we show when
θ is sufficiently small, the solution uniformly and exponentially converges to the constant solution.

Below we sketch an outline of our paper: In Section 2 we first give a uniform upper bound for
the weak solution to porous medium equation with a drift for m > 1, then prove Hölder continuity
of the weak solution when 1 < m < 2. In Section 3 we apply the Hölder continuity result to
a nonlocal aggregation equation. In Section 4 we use Fourier transform approach to study the
nonlocal aggregation equation when m = 2, and prove the exponential convergence of the weak
solution in the subcritical case. Analogous results for 1 < m < 2 is established in Section 5. When
1 < m < 2, for θ sufficently small, we prove there is also exponential convergence.

2 Hölder Continuity of the Solution of PME with a Drift

In this section, we study the regularity of the porous medium equation with a drift, where the drift
potential may depend on time:

ρt = ∆(ρm) +∇ · (ρ∇Φ) in Ω, (2.1)

with Neumann boundary condition on ∂Ω. Here we may assume Ω is a bounded open set in Rd,
where d ≥ 1, but all the results in this section certainly hold for periodic domain TdL as well. We
assume 1 < m < 2, the initial data ρ(x, 0) ∈ L∞(Ω) ∩ L1(Ω), the potential Φ(x, t) ∈ C(Ω × R+),
and that Φ(·, t) ∈ C2(Ω) for all t ≥ 0.

Before even stating the main result, we will first prove that ρ ∈ L∞(Ω× R+). When Φ does not
depend on t, Bertch and Hilhorst in [BH] proved a uniform L∞ bound of ρ by comparing ρ with
an explicit supersolution which does not depend on t. When Φ is a function of both x and t, using
arguments similar to those in [KL], we aquire an L∞ bound for ρ which doesn’t depend on t:

Theorem 2.1. Suppose m > 1. Let ρ be the unique weak solution of Eq.(2.1) with Neumann
boundary condition, with initial data ρ(x, 0) ∈ L∞(Ω)∩L1(Ω). We assume that the potential Φ(x, t)
satisfies Φ(x, t) ∈ C(Ω × R+), and Φ(·, t) ∈ C2(Ω) for all t with uniformly bounded norm. Then
there exists M > 0, such that ‖ρ(·, t)‖L∞(Ω) ≤ M for all t, where M depends on ‖ρ(x, 0)‖L∞(Ω),
‖ρ(x, 0)‖L1(Ω), supt∈[0,∞) ‖Φ(·, t)‖C2(Ω), and m.

Proof. We begin with implementing the following scaling: Let

ρ̃(x, t) = a
1

m−1 ρ(x, at),
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where 0 < a < 1. Let us choose a sufficiently small such that

a < min
{

(
1

‖ρ(x, 0)‖L∞(Ω)
)m−1, (

c0
‖ρ(x, 0)‖L1(Ω)

)m−1,
1

‖Φ‖C2(Ω)

}
, (2.2)

where c0 is a sufficiently small constant – certainly less than 1 – depending only onm and d and whose
precise value will be determined later. By choosing a in this way, we have both ‖ρ̃(x, 0)‖L1(Ω) ≤
c0 < 1 and ‖ρ̃(x, 0)‖L∞(Ω) ≤ 1 and, moreover, that ρ̃ is a viscosity solution to the following PDE:

ρ̃t = ∆ρ̃m +∇ · (ρ̃∇Φ̃), (2.3)

where Φ̃ := aΦ. From the definition of a we know ‖Φ̃(·, t)‖C2(Ω) ≤ 1 for all t.

Our preliminary goal is to show ‖ρ̃(x, 1)‖L∞(Ω) ≤ 1; then we can take ρ̃(x, 1) as the new initial
data and iterate the argument to get a uniform bound for all time.

We will introduce another variable v, which is bigger than ρ̃ and is of order unity in Ω × [0, 1].
Let v be the viscosity solution to the following equation

vt = ∇ · (mvm−1∇v + v∇Φ̃), (2.4)

with initial data v(x, 0) = ρ̃(x, 0) + 1
2e
−1. Since v solves the same equation as ρ̃ with bigger initial

data, we can apply the comparison principle for the porous medium equation with drift, which was
established in Theorem 2.21 of [KL]. This comparison principle immediately implies v(x, t) ≥ ρ̃(x, t)
for all (x, t), hence it suffices to show ‖v(·, 1)‖L∞(Ω) ≤ 1.

One can check easily that ṽ(x, t) := [‖v(·, 0)‖L∞(Ω)]e
Kt – where K := supt∈[0,∞) ‖Φ̃(·, t)‖C2(Ω) – is

a classical supersolution to Eq.(2.4) and hence also a viscosity supersolution. Noting that the initial
data of v satisfies, for all x, 1

2e
−1 ≤ v(x, 0) ≤ 1 + 1

2e
−1, the comparison principle gives the following

upper bound for v:

‖v(·, t)‖L∞(Ω) ≤ [‖v(·, 0)‖L∞(Ω)]e
Kt ≤ (1 +

1

2
e−1)et.

Similarly we can find a classical subsolution which gives the lower bound

‖v(·, t)‖L∞(Ω) ≥ [‖v(·, 0)‖L∞(Ω)]e
−Kt ≥ 1

2
e−1e−t.

Combining the two inequalities above, we have

v(x, t) ∈ [
1

2
e−2, e+

1

2
] for all x ∈ Ω, t ∈ [0, 1].

We would like to refine the estimate above and get a better estimate at t = 1. By treating the
diffusion coefficients mvm−1 in Eq.(2.4) as an a priori function, – which we denote by b(x, t) – then
we may say that v solves a linear equation of divergence form, where the diffusion coefficient is of
(the order of) size unity:

vt = ∇ · (b(x, t)∇v + v∇Φ̃), (2.5)

where b(x, t) := mvm−1(x, t) ∈ [m( 1
2e
−2)m−1,m(e+ 1

2 )m−1] for all x ∈ Ω, t ∈ [0, 1].

In particular, since Eq.(2.5) is linear, we can decompose v as v1 + v2, such that v1 solves Eq.(2.5)
with initial data v1(x, 0) = ρ̃(x, 0), and v2 solves Eq.(2.5) with initial data v2(x, 0) = 1

2e
−1. We

claim that v1(x, 1) and v2(x, 1) are both bounded by 1
2 , for all x ∈ Ω.

For v1, first note that due to the divergence form of Eq.(2.5), the L1 norm of v1 is conserved,
i.e. ‖v1(·, 1)‖L1(Ω) = c0. Since b is bounded above and below away from zero, then by [LSU] (see
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Theorem 10.1, pp. 204), v1(·, 1) is Hölder continuous, where the Hölder exponent and coefficient do
not depend on c0, as long as c0 < 1. So if we choose c0 to be sufficiently small, we have v1(x, 1) < 1

2
for all x ∈ Ω.

For v2, we can directly evaluate the necessary L∞ bounds:

sup
x
v2(x, 1) ≤ e‖∆Φ̃‖∞ sup

x
v2(x, 0) ≤ e 1

2
e−1 =

1

2

(where again, on the basis of continuity, we may now talk about the supremum).

Combining the two estimates together, we have supx v(x, 1) ≤ 1, which implies supx ρ̃(x, 1) ≤ 1
from our discussion above. Also, for 0 < t < 1 we have ρ(x, t) ≤ v(x, t) ≤ e+ 1/2. Then by treating
ρ̃(x, 1) as initial data and iterating the same argument, we get supx ρ̃(x, t) ≤ e+ 1/2 for all t, i.e.,

ρ(x, t) ≤ (e+
1

2
)a−

1
m−1 for all x ∈ Ω, t ≥ 0.

Now plugging in the definition of a in the above and the bound becomes

ρ(x, t) ≤ (e+
1

2
) max

{
‖ρ(x, 0)‖L∞(Ω),

‖ρ(x, 0)‖L1(Ω)

c0
, ‖Φ‖

1
m−1

C2(Ω)

}
in Ω× [0,∞).

Remark 2.2. In the statement of Theorem 2.1, we assumed that Ω is a bounded open set, with
Neumann boundary conditions. The same proof also applies to Dirichlet boundary condition. In-
deed, the L∞ bound we obtained is independent with the size of Ω, and the same proof works as
well when Ω = Rd. However, ostensibly, the L∞ norm of ρ should be of the order L−d and, even if
true in the initial data, we cannot establish that this order is preserved at later times.

Since ρ(x, t) is uniformly bounded for all (x, t), DiBenedetto has shown in [Dib] that ρ(·, t) is
continuous uniformly in t:

Theorem 2.3 ([Dib]). For any m > 1, let ρ be the weak solution to Eq.(2.1) with initial data
ρ(x, 0) ∈ L∞(Ω) ∩ L1(Ω). Let the potential Φ(x, t) satisfy Φ(x, t) ∈ C(Ω × R), Φ(·, t) ∈ C2(Ω) for
all t, moreover supt ‖Φ(·, t)‖C2(Ω)] < ∞. Then for all τ > 0, ρ(x, t) is uniformly continuous in
Ω× [τ,∞), and the continuity is uniform in x and t.

Now we want to show when 1 < m < 2, for all τ > 0, ρ(x, t) is uniformly Hölder continuous in
space and time in Ω× [τ,∞). Our main theorem of this section is stated as following:

Theorem 2.4. Let 1 < m < 2. Let ρ be a viscosity solution of Eq.(2.1), with initial data ρ(x, 0).
We make the following assumptions on ρ(·, 0) and Φ:

1. ‖ρ(·, 0)‖∞ ≤M1 and
∫

Ω
ρ(x, 0)dx ≤M1.

2. Φ(x, t) ∈ C(Ω× R), and ‖Φ(·, t)‖C2(Ω) ≤M2 for some M2 > 0 for all t ≥ 0.

Then for any 0 < τ < ∞, u is Hölder continuous in Ω × [τ,∞), where the Hölder exponent and
coefficient depends on τ,m, d,M1 and M2.

Proof. To prove the Hölder continuity of ρ, our goal is to show that for any (x0, t0) ∈ Ω× [τ,∞),

oscB(x0,a2)×[t0,t0+a4]ρ ≤ Caγ (2.6)
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for some C, γ > 0 not depending on a, for a satisfying 0 < a < min{
2−m

2c
,
√
τ} (where c is a

constant to be determined soon).

Bearing in mind that we want to zoom in on the profile and look at the oscillation in a small
neighborhood, it makes sense to start with a parabolic scaling with scaling factor a. Let

ρ̃(x, t) := ρ(ax, a2t+ (t0 − a2))), (2.7)

and our goal Eq.(2.6) would transform into

oscB(
x0
a ,a)×[1,1+a2]ρ̃ ≤ Caγ . (2.8)

Here ρ̃(x, t) is defined in the domain Ω̃× [0,∞), where Ω̃ := {x ∈ Rd : ax ∈ Ω}. and, it is noted, the
early portion of the time domain had been omitted. We readily see that ρ̃ is the viscosity solution
to

ρ̃t = ∆ρ̃m +∇ · (ρ̃∇Φ̃) in Ω̃× [0,∞). (2.9)

Here, the initial data reads ρ̃(x, 0) = ρ(ax, t0 − a2), which has an a priori L∞ bound depending
on m, d,M1,M2 due to Theorem 2.1. Moreover, in the above Φ̃(x, t) := Φ(ax, a2t+ (t0 − a2))) and
hence |∇Φ̃| is bounded by aM2. We wish to compare ρ̃ with w, where w is the viscosity solution to
the porous medium equation

wt = ∆wm in Ω̃× [0,∞), (2.10)

with initial data w(·, 0) ≡ ρ̃(·, 0). Since Eq.(2.9) and Eq.(2.10) only differ by the term ∇ · (ρ̃∇Φ̃),
we would expect

|ρ̃− w| ≤ Caβ in Ω̃× [1, 2], (2.11)

for some C > 0, 0 < β < 1 depending on m, d,M1,M2.

The main part of this proof will be devoted to proving Eq.(2.11) is indeed true. Without loss
of generality, we can assume that ρ̃(x, t) is a classical solution. First, if the initial data ρ̃(x, 0) is
uniformly positive, then ρ̃(x, t) will be a classical solution for all time. This is because ρ̃ will stay
positive for any time period [0, T ] (since infΩ̃×[0,T ] ρ̃(x, t) ≥ exp(−t supt∈[0,T ] ‖∆Φ̃‖∞) infx∈Ω̃ ρ̃(x, 0)),

which implies that Eq.(2.9) is uniformly parabolic for t ∈ [0, T ] and hence the weak solution ρ̃ is
classical.

For general initial data ρ̃(x, 0), we can use approximation as follows. Let ρ̃n and wn solve Eq.(2.9)
and Eq.(2.11) respectively with initial data ρ̃(x, 0) + 2−n; n sufficiently large. As discussed above,
ρ̃n would be a sequence of classical solutions. If we can obtain |ρ̃n−wn| < Caβ for all n, (where C, β
doesn’t depend on n), then Eq.(2.11) would hold for ρ̃ and w as well, since as n → ∞, comparison
principle yields ρ̃n(x, t)↘ ρ̃ and wn(x, t)↘ w uniformly in x, t.

Note that one cannot directly compare ρ with w, due to the fact that the term ∇· (ρ̃∇Φ̃) contains
∇ρ̃ · ∇Φ̃ and hence does not have any a priori bound. In order to bound this term, it will help to
change from the density variable ρ̃ to the pressure variable ũ. Let

ũ =
m

m− 1
ρ̃m−1,

then Eq.(2.9) becomes

ũt = (m− 1)ũ∆ũ+ |∇ũ|2 +∇ũ · ∇Φ̃ + (m− 1)ũ∆Φ̃, (2.12)

which will enable us to use |∇ũ|2 plus a constant to control the term ∇ũ · ∇Φ̃: Recall that |∇Φ̃| <
aM2, which gives us the following bound

|∇ũ · ∇Φ̃| ≤ aM2|∇ũ| ≤ a[|∇ũ|2 +
1

4
(M2)2].

6



Also, due to the fact that (m− 1)ũ(x, t) ≤ C1 in Ω̃× [0, 2], (where C1, which depends on m, d,M1

and M2, is related to the L∞ bounds on ρ) we obtain

|(m− 1)ũ∆Φ̃| ≤ a2C1M2 ≤ aC1M2.

Putting the above two bounds together, and by choosing c such that c > C1M2 + (M2/2)2, ũ will
satisfy the following inequality

ũt ≥ (m− 1)ũ∆ũ+ (1− ca)|∇ũ|2 − ca for all x ∈ Ω̃, t ∈ [0, 2]. (2.13)

Note that we assumed a < (2−m)/(2c) in the beginning of the proof, we have ca < (2−m)/2.

In order to make Eq.(2.13) look similar to the porous medium equation in the pressure form, we
apply the rescaling u1 = (1− ca)ũ. Then u1 satisfies

(u1)t ≥ (m− − 1)u1∆u1 + |∇u1|2 − ca(1− ca) for all x ∈ Ω̃, t ∈ [0, 2], (2.14)

where

m− :=
m− 1

1− ca
+ 1. (hence ca < (2−m)/2 implies that 1 < m− < 2) (2.15)

Now Eq.(2.14) has the same form as the porous medium equation in the pressure form, minus an
extra constant term ca(1−ca). To take advantage of the existence and regularity results for equations
with divergence form, we change the pressure variable back to the density variable (however here
the power is m− instead of m), i.e., we define ρ1 such that

(1− ca)ũ = u1 =
m−

m− − 1
ρm
−−1

1 , (2.16)

or in other words,

ρ1 =
( m
m−

)m−
ρ̃1−ca =

( 1 + ca

1 + ca/m

)m−
ρ̃1−ca. (2.17)

Due to the positivity of ũ, we know ρ1 is positive as well. Hence when we plug Eq.(2.16) into
Eq.(2.14), after canceling a positive power of ρ1 on both sides, we obtain

(ρ1)t > ∆ρm
−

1 − ca(1− ca)ρ2−m−
1 in Ω̃× [0, 2], (2.18)

Note that the term ca(1− ca)ρ2−m−
1 has an a priori upper bound: since 2−m− > 0 and ρ1 is given

by Eq. (2.17), we have c(1− ca)ρ2−m−
1 < M , for some constant M depending on m, d,M1,M2.

Let us denote by ρ− the weak solution of

(ρ−)t = ∆(ρ−|ρ−|m
−−1)−Ma, (2.19)

with initial data the same as ρ1(x, 0), which is

ρ−(x, 0) =
( m
m−

)m−
ρ̃(x, 0)1−ca (2.20)

Since Ma ∈ Lp(Ω̃) for all p ≥ 1, the existence of weak solution of Eq.(2.19) is guaranteed by Theorem
5.7 in [V]. That theorem also gives us a comparison result that, a.e., ρ1 ≥ ρ−.

Moreover, note that the “a.e.” above can in fact be removed, since both ρ̃ and ρ− are continuous
in Ω̃ × [0, 2]: the continuity of ρ̃ is given by Theorem 2.3, and the continuity of ρ− is given by
Theorem 11.2 of [DGV]. Therefore we have the following comparison between ρ− and ρ̃:

ρ− ≤
( m
m−

)m−
ρ̃1−ca in Ω̃× [0, 2] (2.21)
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Since m/m− = 1 + O(a), and ρ̃ is bounded in Ω̃ × [0, 2], Eq.(2.21) implies that ρ̃ − ρ− ≥ −C1a,
where C1 depend on m, d,M1,M2.

Analogous to the definition to ρ−, we define ρ+ to be the weak solution of

(ρ+)t = ∆((ρ+)m
+

) +Ma, (2.22)

with initial data

ρ+(x, 0) =
( m
m+

)m+

ρ̃(x, 0)1+ca, (2.23)

where

m+ :=
m− 1

1 + ca
+ 1. (hence 1 < m+ < 2) (2.24)

Then analogous argument would lead to ρ̃− ρ+ ≤ C1a. Summarizing, we have obtained

ρ− − C1a ≤ ρ̃ ≤ ρ+ + C1a in Ω̃ ∈ [0, 2], (2.25)

where C1 depends on m, d,M1,M2.

To prove Eq.(2.11), it suffices to show |ρ± − w| ≤ O(aβ) for some β > 0, which is proved in the
following lemma.

Lemma 2.5. Let 1 < m < 2. Let w be the viscosity solution of the porous medium equation

wt = ∆wm in Ω̃× [0,∞) (2.26)

where the initial data w(x, 0) satisfies w(x, 0) = ρ̃(x, 0).

Let ρ− and ρ+ be the weak solutions to Eq.(2.19) and Eq.(2.22) respectively, where 0 < a <
(2−m)/(2c) is a small constant, and the initial data is given by Eq.(2.20) and Eq.(2.23). Then

|ρ± − w| ≤ Caβ in Ω̃× [1, 2], (2.27)

where C and β depends on d,m,M1,M2.

The proof of Lemma 2.5 is the content of the appendix in Section 6. Putting Lemma 2.5 and
Eq.(2.25) together, we obtain Eq.(2.11), and we will use this to (immediately) prove Eq.(2.8).

Since w solves the porous medium equation, Theorem 7.17 in [V] gives us the Hölder continuity
of w:

oscB(x,a)×[1,1+a2]w ≤ Caα, for all x ∈ Ω̃, (2.28)

where C and α depends on ‖w(·, 0)‖∞ (and hence depends on m, d,M1,M2).

By putting Eq.(2.29) and Eq.(2.11) together, we obtain

oscB(x,a)×[1,1+a2]ρ̃ ≤ Caγ , for all x ∈ Ω̃, (2.29)

where C depends on m, d,M1,M2, and γ = min{α, β} (hence also depends on m, d,M1,M2). Hence
Eq.(2.8) is proved.

Remark 2.6. For m ≥ 2, Hölder continuity of the solution to Eq.(2.1) is still open. Indeed,
concerning the present approach – which closely parallels that of [KL], [K] – when m > 2 we have
that m− = 1 + (m − 1)/(1 − ca) > 2. Hence the “inhomogeneous” term in Eq.(2.18), which is

proportional to ρ(2−m−), would actually be divergent in places where ρ → 0. This indicates that
another approach will be required.
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3 Application to Aggregation Equation with Degenerate Dif-
fusion

In the following two sections, we study Eq.(1.1) in the domain TdL, the d-dimension torus of scale
L. Here θ is a non-negative constant, and, of course, ∗ denotes convolution in TdL. We make the
following assumptions on V (x):

(V1) V (x) = V (−x) for all x ∈ TdL.

(V2) V (x) ∈ C2(TdL), with ‖V (x)‖C2(Td
L) = C for some constant C <∞.

Moreover, we have in mind V : Rd → R compactly supported with the diameter of the support
smaller than L. In particular we do not envision “wrapping” effects and

∫
Td
L
|V |dx may be regarded

as independent of L.

Our goal in this section is to show the Hölder continuity of the weak solution to Eq.(1.1) for
1 < m < 2, and uniform continuity of the weak solution when m = 2. First, we state the definition
of weak solution to Eq.(1.1) and a existence theorem from [BS].

Definition 3.1 (Weak Solution). Let m > 1, and let us assume that ρ(x, 0) is non-negative, with
ρ(x, 0) ∈ L∞(TdL) and consider a potential V that satisfies the assumptions (V1) and (V2).
A function ρ : TdL × [0, T ] → [0,∞) is a weak solution to Eq.(1.1) if ρ ∈ L∞(TdL × [0, T ]),
ρm ∈ L2(0, T,H1(TdL)) (i.e., ‖ρ(·, t)‖H1(Td

L
∈ L2(0, T )) and ρt ∈ L2(0, T,H−1(TdL)) and for all

test function φ ∈ H1(TdL), for almost all t ∈ [0, T ],

< ρt(t), φ > +

∫
Td
L

∇(ρm(t)) · ∇φ+ θLd(2−m)ρ(t)(∇V ∗ ρ(t)) · ∇φdx = 0. (3.1)

In [BS], existence and uniqueness of weak solution are proved:

Theorem 3.2 (Bertozzi-Slepčev). Let m > 1 and consider V that satisfies the assumptions (V1)
and (V2). Let ρ(x, 0) be a nonnegative function in L∞(TdL). Then the problem Eq.(1.1) has a unique
weak solution on TdL × [0, T ] for all T > 0, and furthermore ρ ∈ C(0, T, Lp(TdL)) for all p ∈ [1,∞).

By treating θLd(2−m)ρ ∗ V as an a priori potential, we can apply our results in Section 2, and
obtain L∞ bound of ρ which does not depend on T , together with uniform continuity of ρ, and
Hölder continuity of ρ for 1 < m < 2.

Theorem 3.3. Let m > 1 and consider V that satisfies the assumptions (V1) and (V2). Let
ρ(x, t) be the unique weak solution to Eq.(1.1) given by Theorem 3.2, with nonnegative initial data
ρ(x, 0) ∈ C(TdL), which satisfies

∫
Td
L
ρ(x, 0)dx = 1. Then ‖ρ(x, t)‖L∞(Td

L×[0,∞)) is bounded, where

the bound only depend on supx ρ(x, 0), θ, ‖V ‖C2 and L.

Proof. To begin with, note that Theorem 3.2 guarantees the existence and uniqueness of the weak
solution to Eq.(1.1), which we denote by by ρ. Now we treat Φ := θLd(2−m)ρ ∗ V as an a priori
potential, and we obtain the following estimate of Φ assumption (V2):

‖Φ(·, t)‖C2(Td
L) ≤ θLd(2−m)‖ρ(·, t)‖L1(Td

L)‖V ‖C2(Td
L)

≤ θLd(2−m)‖V ‖C2(Td
L)

= θLd(2−m)C for all t ≥ 0.
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We denote by ρ1 the unique weak solution to the equation

(ρ1)t = ∆ρm1 +∇ · (ρ1∇Φ) (3.2)

with initial data ρ1(·, 0) ≡ ρ(·, 0), where the existence and uniqueness is proved in [BH]. Theorem
2.1 implies supx ‖ρ1(·, t)‖ is bounded uniformly in t. Moreover, note that ρ also satisfies the weak
equation for Eq.(3.2), hence ρ must coincide with ρ1, which yields a uniform bound of ρ which
doesn’t depend on time.

Applying Theorem 2.3 to Eq.(3.2), we have the continuity of ρ uniformly in t for m > 1 – in
particular (in light of Theorem 3.5 below) for the case m = 2.

Theorem 3.4. Let m > 1 and consider V that satisfies the assumptions (V1) and (V2). Let
ρ(x, t) be the unique weak solution to Eq.(1.1) given by Theorem 3.2, with nonnegative initial data
ρ(·, 0) satisfying ‖ρ(·, 0)‖L∞(Td

L) <∞, and ‖ρ(·, 0)‖L1(Td
L) = 1. Then for any τ > 0, ρ is continuous

in TdL × [τ,∞), where the continuity is uniform in both x and t.

Proof. Follows immediately from the above reasoning, Theorem 3.3 and Theorem 2.3

Applying Theorem 2.4 to Eq.(3.2), with Φ = θLd(2−m)ρ ∗ V we have the Hölder continuity of ρ
for 1 < m < 2.

Theorem 3.5. Let 1 < m < 2 and consider V that satisfies the assumptions (V1) and (V2). Let
ρ(x, t) be the unique weak solution to Eq.(1.1) given by Theorem 3.2, with nonnegative initial data
ρ(x, 0) satisfying ‖ρ(·, 0)‖L∞(Td

L) < ∞, and ‖ρ(·, 0)‖L1(Td
L) = 1. Then for any τ > 0, u is Hölder

continuous in TdL × (τ,∞), where the Hölder exponent and coefficient depend on τ,m, d, θ, L and C
and the L∞ norm of the initial condition.

Proof. Follows immediately from the preceding reasoning, Theorem 3.3 and Theorem 2.4

4 The Case m = 2: Analysis Via Normal Modes

In this section, we will use Fourier Transform to study the PDE in Eq.(1.1), and this method works
best when m = 2. We continue to assume, without loss of generality that ‖ρ(x, 0)‖L1(Td

L) = 1,
however from the perspective of functional analysis, the homogeneity of the special case m = 2
makes even this stipulation redundant.

The dynamics in Eq.(1.1) is governed by gradient flow for the “free energy” functional

Fθ(ρ) =

∫
Td
L

ρ2 +
1

2
θρ(ρ ∗ V )dx. (4.1)

For the analysis of the functional Fθ, since we are assuming ρ(x, 0) integrates to 1, we shall denote
by P the class of probability densities on TdL which also belong to L2(TdL), i.e.

P := {f ∈ L1(TdL) ∩ L2(TdL) : ‖f‖L1(Td
L) = 1}. (4.2)

Special to the case m = 2 is that the functional Fθ(·) can be expressed in a simpler form if we
express ρ in terms of its Fourier modes. We write

ρ̂(k) =

∫
Td
L

ρ(x)e−ik·xdx

10



where k is of the form k = 2π
L ~n with ~n ∈ Zd. With these conventions we have

ρ(x) =
1

Ld

∑
k

ρ̂(k)eik·x

and, in terms of these variables, Eq.(4.1) becomes

Fθ(ρ) =
1

Ld

∑
k

|ρ̂(k)|2(1 +
1

2
θV̂ (k)). (4.3)

On the basis of Eq.(4.3), a salient value of θ emerges: We denote this value by θ], which is defined
via

[θ]]−1 :=
1

2
max
k 6=0
{|V̂ (k)|; V̂ (k) < 0}. (4.4)

Formally θ] may be designated as +∞ in case V̂ (k) ≥ 0 for all k 6= 0 – i.e. if V is (essentially)
of positive type. For the purposes of the present discussion, we shall assume otherwise. Different
values of θ separate our problem into 3 cases:

1. (subcritical) When θ < θ], we have 1 + 1
2θV̂ (k) > 0 for all k ∈ Zd, then under the restriction

ρ̂(0) = 1, it is manifest that global minimizer for Fθ(ρ) in P is the constant solution

ρ0(x) :=
1

Ld

∫
Td
L

ρ(x, 0)dx ≡ 1

Ld
. (4.5)

2. (critical) When θ = θ], we have still have 1 + 1
2θV̂ (k) ≥ 0 for all k ∈ Zd however now

there is a set K] (containing at least two elements) defined by the condition that for k ∈ K],
1 + 1

2θ
]V̂ (k) = 0. In this case the global minimizers for Fθ(ρ) in P take the form

ρ(x) = ρ0 +
∑
k∈K]

ckeik·x, (4.6)

where c−k = ck and, of course, subject to the restriction that the resultant quantity is non–
negative.

3. (supercritical) When θ > θ], we have 1+ 1
2θV̂ (k) < 0 for some k ∈ Zd. In this case the constant

solution ρ0 is not even a local minimizer of Fθ in P, let alone global minimizer.

Remark 4.1. The above – which is manifest for m = 2 – is in sharp contrast to the cases m 6= 2.
In particular, for general m there is an analogous quantity θ] given by

[θ]]−1 :=
1

m
max
k 6=0
{|V̂ (k)|; V̂ (k) < 0}

where items (1) – (3) are suggested. However, the following was shown for m = 1 and, presumably
holds for all m 6= 2: While for θ < θ], the constant solution has “some stability” (c.f. [CP] Theorem
2.11 for the case m = 1) there is a θT < θ] where global considerations come into play. In particular,
at θ = θT, there is a non–uniform minimizer for FθT(·) which is degenerate with the uniform solution.
Moreover, for θ > θT (which implies, in particular, at θ = θ]) the uniform solution is no longer a
minimizer.
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4.1 The subcritical case, when m=2

In the subcritical case, the constant solution ρ0 is the only global minimizer of Fθ in P. Our goal
in this section is to show for every non–negative initial data ρ(x, 0) ∈ L∞(TdL) which integrates to
1, the weak solution ρ(x, t) converges to ρ0 exponentially in L2(T dL) as t→∞, where ρ0 is as given
in Eq.(4.5).

By formally taking the time derivative of the free energy functional, a simple calculation indicates
that e.g., at least for classical solutions to Eq.(1.1), the free energy is always non–increasing:

d

dt
Fθ(ρ) = −

∫
Td
L

ρ
∣∣∇(

m

m− 1
ρm−1 + θLd(2−m)ρ ∗ V )

∣∣2dx. (4.7)

In [BS], it is proved that Eq.(4.7) is indeed true in the integral sense:

Lemma 4.2 (Bertozzi–Slepčev). Consider V that satisfies the assumptions (V1) and (V2). Let
ρ(x, t) be a weak solution of Eq.(1.1) in TdL × [0, T ]. Then for almost all τ ∈ [0, T ],

Fθ(ρ(·, 0))−Fθ(ρ(·, τ)) ≥
∫ τ

0

∫
Td
L

ρ|∇(
m

m− 1
ρm−1 + θLd(2−m)ρ ∗ V )|2dxdt (4.8)

Remark 4.3. Theorem 3.4 implies that ρ(·, t) is a continuous function of t, hence Fθ(ρ(·, t)) is
continuous in t as well. Therefore Eq.(4.8) indeed holds for all τ ∈ [0, T ] and, moreover, Eq.(4.7)
may be regarded as a differential inequality.

In the following lemma, we show when θ < θ], the free energy will decay to the free energy of the
global minimizer as t→∞.

Lemma 4.4. Suppose m = 2 and consider V that satisfies the assumptions (V1) and (V2).
Further suppose that θ < θ], where θ] is as given in Eq.(4.4) – including θ] =∞ if V is of positive
type. Let ρ(x, t) be the weak solution to Eq.(1.1) on [0,∞) × TdL, with non-negative initial data
ρ(x, 0) ∈ L∞(TdL) which integrates to 1. Then Fθ(ρ) → Fθ(ρ0) as t → ∞, where ρ0 is the uniform
solution (as given in Eq.(4.5)).

Proof. By Lemma 4.2, we know Fθ(ρ(t)) is a continuous and decreasing function of t, whose limit is
bounded below by Fθ(ρ0), since ρ0 is the global minimizer of Fθ in P when θ < θ]. Hence we can
send τ to infinity in Eq.(4.8), which gives∫ ∞

0

∫
Td
L

ρ|∇(2ρ+ θρ ∗ V )|2dxdt <∞. (4.9)

Then there exists an increasing sequence of time (tn)∞n=1, where limn→∞ tn =∞, such that

lim
n→∞

∫
Td
L

ρ(x, tn)|∇(2ρ(x, tn) + θρ(x, tn) ∗ V )|2dx = 0. (4.10)

To avoid clutter, in what follows, we shall abbreviate ρ(·, tn) by ρn. Recall that Theorem 2.1 gives
us a uniform bound of ‖ρn‖L∞(Rd). In addition, by [Dib], (ρn) is uniformly equicontinuous, hence
Arzelà-Ascoli Theorem enables us to find a subsequence of ρn (which we again denote by ρn for
notational simplicity), and a continuous function ρ∞, such that

lim
n→∞

‖ρn − ρ∞‖L∞(Td
L) = 0, (4.11)

12



We next claim that ‖∇ρ3/2
n ‖L2(Td

L) is bounded uniformly in n. To prove the claim, we first note that∫
Td
L

∣∣4
3
∇ρ3/2

n + ρ1/2
n ∇(θρn ∗ V )

∣∣2dx =

∫
Td
L

ρn
∣∣2∇ρn +∇(θρn ∗ V )

∣∣2dx→ 0. (4.12)

To obtain the uniform L2 bound for∇ρ3/2
n , due to the triangle inequality, it suffices to prove a uniform

L2 bound for ρ
1/2
n ∇(θρn ∗ V ), which is true since ρn is uniformly bounded in n and ‖V ‖C2(Td

L) <∞
due to (V2), hence the claim is proved.

As a consequence of the claim, we obtain weak convergence of ∇ρ3/2
n in L2 (along another sub-

sequence) And, it is clear, the limit is just ∇ρ3/2
∞ due to the uniform convergence of the (ρn).

(Moreover, this places ∇ρ3/2
∞ ∈ L2(TdL : Rd)). Thus:

∇ρ3/2
n ⇀ ∇ρ3/2

∞ as n→∞ weakly in L2(TdL : Rd). (4.13)

Let

Bn :=
4

3
∇ρ3/2

n + ρ1/2
n ∇(θρn ∗ V ).

Then Eq.(4.11) and Eq.(4.13) and an additional uniform convergence argument identifying the weak

limit of ρ
1/2
n ∇(θρn ∗ V ), implies that Bn weakly converges to B∞ in L2, where

B∞ :=
4

3
∇ρ3/2
∞ + ρ1/2

∞ ∇(θρ∞ ∗ V ).

On the other hand, recall that Eq.(4.12) gives us that Bn → 0 strongly in L2, thus we have B∞ is
indeed 0 i.e.,∫

Td
L

∣∣4
3
∇ρ3/2
∞ + ρ1/2

∞ ∇(θρ∞ ∗ V )
∣∣2dx =

∫
Td
L

ρ∞
∣∣2∇ρ∞ +∇(θρ∞ ∗ V )

∣∣2dx = 0. (4.14)

In particular, then, ∇(ρ∞+ 1
2θρ∞ ∗V ) is zero a.e. on the support of ρ∞. Now ρ∞ certainly admits

a weak derivative which, clearly, is non–zero only on the support of ρ∞. Thus, from the preceding,
we can write ∫

Td
L

∇ρ∞ · ∇(ρ∞ +
1

2
θρ∞ ∗ V )dx = 0. (4.15)

Now, we wish to express the above as a Fourier sum which requires some additional justification.
To this end we claim that ρ∞ is Lipschitz continuous – i.e., in W 1,∞(TdL) – which places both entities
in L2(TdL) and vindicates the use of explicit formulas.

The equation ∇ρ∞ = − 1
2θ∇(V ∗ ρ∞) valid on the support of ρ shows that in the various com-

ponents where ρ∞ is positive, it is at least C2. Indeed, in general, Hypothesis (V2) immediately
implies ‖ρ∞(x) ∗ V ‖C2(Td

L) ≤ ‖ρ∞‖L1‖V ‖C2(Td
L) so whenever ρ∞ satisfies this (m = 2 version of the

Kirkwood–Monroe) equation, we have Lipschitz continuity with uniform constant. We shall denote
this constant by κ. Now suppose that x, y ∈ TdL have ρ∞(x) and ρ∞(y) positive. Let us assume,
ostensibly, that x and y belong to different components. On the (shortest) line joining x and y, let
zx denote the first point, starting from x that is encountered on the boundary of the component of
x and similarly for zy. Then

|ρ∞(x)− ρ∞(y)| = |ρ∞(x)− ρ∞(zx) + ρ∞(zy)− ρ∞(y)|
≤ |ρ∞(x)− ρ∞(zx)|+ |ρ∞(zy)− ρ∞(y)|
≤ κ[|x− zx|+ |y − zy|] ≤ κ|x− y|; (4.16)
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the first inequality due to ρ∞(zx) = ρ∞(zy) = 0 and the last inequality because all four points lie in
order on the same line. A similar argument can be used if, e.g., ρ∞(x) is positive and ρ∞(y) is zero.

All of this establishes enough regularity to unabashedly express Eq.(4.15) in Fourier modes:

0 =
∑
k

|k|2

Ld
|ρ̂∞(k)|2(1 +

1

2
θV̂ (k)). (4.17)

By the defining property of θ] we have 1+ 1
2θV̂ (k) > 0 for all k 6= 0, thus Eq.(4.17) implies ρ̂∞(k) = 0

for all k 6= 0, i.e. ρ∞ ≡ ρ0.

Now, we may use the monotonicity in time of Fθ(ρ(t)) and we finally have

lim
t→∞

Fθ(ρ(t)) = lim
n→∞

Fθ(ρn) = Fθ(ρ∞) = Fθ(ρ0)

which is the stated claim.

By combining the above result with the uniform continuity in time, we can show the solution will
become uniformly positive after a sufficiently large time.

Corollary 4.5. Under the assumption of Lemma 4.4, we have

lim
t→∞

‖ρ(·, t)− ρ0‖L∞(Td
L) = 0,

hence there exists T > 0 depending on θ, ‖V ‖C2(Td
L) and ρ(·, 0), such that ρ(x, t) > ρ0/2 for all

x ∈ TdL, t > T .

Proof. We prove the statement in the display. Supposing that this is not the case. Then there is a
sequence of times, (τn) and points (yn) – yn ∈ TdL – and a δ > 0 such that

|ρ(yn, τn)− ρ0| > δ.

Now, going to a further subsequence, we have yn → y∞ (with y∞ ∈ TdL by compactness). But, along
yet a further subsequence, not relabeled, we have, according to the arguments of Lemma 4.4 that
ρ(·, τn) is converging uniformly and the limit must be ρ0. Thus

lim
n→∞

ρn(yn, τn) = lim
n→∞

[ρn(yn, τn)− ρn(y∞, τn)] + lim
n→∞

ρn(y∞, τn) = ρ0

in contradiction with the preceding display.

Theorem 4.6. Suppose m = 2 and θ < θ], where θ] is as given in Eq.(4.4). Consider V that satisfies
the assumptions (V1) and (V2). Let ρ(x, t) be the weak solution to Eq.(1.1) on [0,∞)× TdL, with
non–negative initial data ρ(x, 0) ∈ L∞(TdL) which integrates to 1. Then Fθ(ρ(t)) decays exponentially
to Fθ(ρ0), where the rate depend on ρ(x, 0). Moreover, ‖ρ(·, t)− ρ0‖L2(Td

L) → 0 exponentially, i.e.

0 ≤ Fθ(ρ(t))−Fθ(ρ0) ≤ C1 exp(−ρ0c
′

L2
t),

and

‖ρ(t)− ρ0‖L2(Td
L) ≤ C2 exp(−ρ0c

′

L2
t),

where c′ and C1 and C2 depend on θ, V and ρ(·, 0).
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Proof. By Lemma 4.5, there exist some T > 0 depending on θ, V and ρ(·, 0), such that ρ(x, t) > ρ0/2
for all x ∈ TdL, t > T . Then for all t2 > t1 > T , Eq.(4.8) becomes

Fθ(ρ(·, t1))−Fθ(ρ(·, t2)) ≥
∫ t2

t1

∫
Td
L

ρ0

2
|∇(2ρ+ θρ ∗ V )|2dxdt

= 2ρ0

∫ t2

t1

1

Ld

∑
k

|k|2|ρ̂(k)|2(1 +
1

2
θV̂ (k))2dt

≥ ρ0c
′
∫ t2

t1

1

Ld

∑
k 6=0

|ρ̂(k)|2(1 +
1

2
θV̂ (k))dt

= ρ0c
′
∫ t2

t1

(Fθ(ρ(·, t))−Fθ(ρ0))dt, (4.18)

where c′ = 2 mink 6=0 |k2|(1 + 1
2θV̂ (k)), which is positive when θ < θ].

In the spirit of Remark 4.3 we may regard the above as a differential inequality for g(t) :=
Fθ(ρ(·, t))−Fθ(ρ0); the inequality reads

−dg
dt
≥ ρ0c

′g(t).

This immediately integrates to yield g(t) ≤ g(T )exp{−ρ0c
′(t− T )} for t ≥ T . I.e.,

F(ρ(·, t))−F(ρ0) ≤ Ce−ρ0c
′t.

Since Fθ(ρ(·, t))− Fθ(ρ0) is comparable to ‖ρ(t)− ρ0‖L2 , we have ‖ρ(t)− ρ0‖L2 → 0 exponentially
with the same rate.

Remark 4.7. It is remarked that, via comparison to linearized theory, the above is essentially
optimal. (The results differ by a factor of two which comes from the definition of T =: T1/2. Using
Tε = sup{t > 0 | ||ρ(·, t)−ρ0||L∞(Td

L) > ερ0}, the long time asymptotic rates are actually in complete

agreement.) Moreover, while for L of order unity, the result stands: c′ – with or without an additional
factor of two – might well be optimized at a wave number of order unity. However, as L→∞, it is
clear that

min
k 6=0
|k|2(1 +

1

2
V̂ (k))→ (

2π

L
)2(1 +

1

2
V̂ (0)).

So, in particular, for large L the rate scales as L−(d+2) – a result which may be an artifact of our
normalization.

4.2 Some remarks on the supercritical case, when m = 2

When θ > θ], we have 1 + 1
2θV̂ (k0) < 0 for some k0 = 2π

L ~n0, where ~n0 ∈ Zd. In other words, at least
one of the coefficients of the free energy Eq.(4.3) is negative. In the next proposition we show that
in this case the constant solution ρ0 is not linearly stable.

Proposition 4.8. Suppose m = 2 and θ < θ], where θ] is as given in Eq.(4.4). Consider an
interaction V that satisfies the assumptions (V1) and (V2). Then the constant solution ρ0 is not
a local minimizer of the free energy Eq.(4.3) in P.
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Proof. We choose k0 = 2π
L ~n0 such that 1+ 1

2θV̂ (k0) < 0, where ~n0 ∈ Zd. We add a small pertubation
εη to the constant solution ρ0, where

η := cos(
2πn0 · x

L
).

Then

Fθ(ρ0 + εη) = Fθ(ρ0) + Ldε2(1 +
1

2
θV̂ (k0)),

which is strictly less than Fθ(ρ0) by the defining property of k0.

Remark 4.9. In fact, using the same perturbation term in the proof, we would know that when
θ > θ], any strictly positive function is not a local minimizer of the free energy Eq.(4.3).

In the supercritical case, while Eq.(4.3) immediately implies that ρ0 is not a local minimizer of Fθ
in P, it gives us little information about what is the global minimizer. The difficulty comes from
the restriction ρ(x) ≥ 0 for all x, which evidently plays an important role in the supercritical case,
since any minimizer should touch zero somewhere due to Remark 4.9. After Fourier transform, the
non-negativity of ρ actually gives us infinite numbers of restrictions, which causes the difficulty.

5 Exponential decay for 1 < m < 2 and weak interaction

In this section, we continue our study of Eq.(1.1) with m ∈ (1, 2) and here we will assume that θ
is “small”. Unfortunately, θ will not be uniformly small in volume. In particular, we shall require
θLd(2−m) to be a small number of order unity and, under these conditions we shall acquire all the
results of the previous section. We claim that without additional (physics based) assumptions – in
particular H–stability of the interaction – the above condition is essentially optimal. Specifically,
our cornerstone result of a unique stationary state does not hold for non–H–stable interactions when
θLd(2−m) is a sufficiently large number of order unity. However, from an æsthetic perspective, this
uniqueness result is the sole instance where θLd(2−m) must be considered small. In the aftermath of
Proposition 5.1 and its corollary, we will only require θ itself to be a small quantity.

We start with a priliminary result (which is, actually, just a quantitative version of the argument
used in Lemma 4.4 in the vicinity of Eq.(4.16)).

Proposition 5.1. Consider an interaction V that satisfies the assumptions (V1) and (V2). Let

ε0 := θLd(2−m)

be a sufficiently small number of order unity. Let ρ denote any solution to the Kirkwood–Monroe
equations which here read, whenever ρ > 0,

∇ρm−1 = −ε0
m− 1

m
ρ ∗ ∇V

and let
R := ‖ρ‖L∞(Td

L).

Then if ε0 is a small number of order unity then R is also a small number of order unity (if L is
large). In particular,

R ≤ κ4 max{[ε0]
d

d(m−1)+1 , L−d}
with κ4 a constant of order unity.
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Proof. From the mean–field equations,

|∇ρm−1| ≤ m− 1

m
ε0

∫
Td
L

|∇V (x− y)|ρ(y)dy ≤ m− 1

m
‖V ‖C1

ε0 =: κ1ε0.

Let x0 mark the spot where ρ achieves R. Then, for all x,

ρm−1(x) ≥ Rm−1 − κ1ε0|x− x0|.

Thus, if r is the length scale of the region about x0 where ρm−1 exceeds, a.e., 1
2R

m−1 we have

r ≥ Rm−1

2κ1ε0

provided the right hand side does not exceed L. Otherwise, obviously, r = L. Since ρ integrates to
unity we have, assuming r < L,

1 =

∫
Td
L

ρdx ≥ κ2r
dR ≥ κ2

Rd(m−1)+1

(2κ1ε0)d
=:

1

κd3

1

εd0
Rd(m−1)+1

(with κ2 a geometric constant of order unity) and otherwise we acquire the mundane bound. After
a small step, the stated bound is obtained with an appropriate definition of κ4.

With the above in hand, we can establish that ρ0 is the unique stationary solution. We start with

Corollary 5.2. Under the conditions stated in Proposition 5.1, if ε0 is sufficiently small – but of
order unity independent of L – the unique solution to the mean–field equations is ρ = ρ0.

Proof. From the mean–field equation, we may write

0 =

∫
Td
L

∇ρ · ∇(ρm−1 + ε0
m− 1

m
ρ ∗ V )dx.

By recapitulating the Lipchitz continuity that was featured in the vicinity of Eq.(4.16) we have full
justification to manipulate classically under the integral. Letting Rε0 denote the upper bound on
the L∞ norm of ρ that was featured in Proposition 5.1. Then, pointwise a.e. on the support of ρ,

∇ρ · ∇ρm−1 =
m− 1

ρ2−m |∇ρ|
2 ≥ m− 1

R2−m
ε0

|∇ρ|2

since, we remind the reader, 2−m > 0. In other words,

0 ≥
∫
Td
L

1

R2−m
ε0

|∇ρ|2 +
ε0

m
∇ρ · ∇(ρ ∗ V )dx.

We can again go to Fourier modes and the above reads

0 ≥
∑
k 6=0

k2|ρ̂(k)|2[
1

R2−m
ε0

+
ε0

m
V̂ (k)].

For ε0 sufficiently small (but of order unity independent of L) the coefficient of |ρ̂(k)|2 is positive
for all terms so the later must vanish identically. The desired result is proved.
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Based on the fact that ρ0 is the unique stationary solution, in the next lemma we prove that ρ(·, t)
will converge to ρ0 uniformly, (but not with a quantitative estimate on the rate.)

Lemma 5.3. Suppose the conclusions in Corollary 5.2 are satisfied. Let ρ(x, t) be the weak solution
to Eq.(1.1) on [0,∞) × TdL, with non-negative initial data ρ(x, 0) ∈ L∞(TdL) which integrates to 1.
Then supx |ρ(·, t)− ρ0| → 0 as t→∞.

Proof. This is more or less identical to the proof of Corollary 4.5 based on Lemma 4.4 so we shall
be succinct. Assuming the result false, we could find a sequence of times tn → ∞ and points
xn → x∞ ∈ TdL such that ρ(·, tn) converges uniformly and yet |ρ(xn, τn)− ρ0| > δ. So, denoting by
ρ∞(·) the uniform limit, we would have |ρ∞(x∞)− ρ0| > δ.

Hence, since ρ∞ is continuous, it is definitively not equal to ρ0. However, any subsequential limit
must satisfy the mean–field equation and by Corollary 5.2 this is uniquely ρ0 in contradiction with
the preceding. This completes the proof.

In the next lemma, we show that once ρ and ρ0 becomes comparable, Fθ(ρ)−Fθ(ρ0) also becomes
comparable with Ld(2−m)‖ρ− ρ0‖L2(Td

L). Indeed, as alluded to earlier, this will be proved under the

weaker assumption that θ – not θLd(m−2) – is small. We start with:

Lemma 5.4. Suppose that θ > 0 is sufficiently small (but of order unity independent of L). Let ρ
be such that ‖ρ− ρ0‖Td

L
< 1

2ρ0. Then we have

αLd(2−m)‖ρ− ρ0‖2L2(Td
L) ≤ Fθ(ρ)−Fθ(ρ0) ≤ βLd(2−m)‖ρ− ρ0‖2L2(Td

L) (5.1)

for some α, β > 0 of order unity.

Proof. First, by any number of methods we have∫
Td
L×Td

L

ρ(x)ρ(y)V (x− y)dxdy ≥ −KV ‖ρ− ρ0‖2L2(Td
L);

e.g., we may take, using the Fourier decomposition, KV = [θ]]−1. Similarly for a corresponding
upper bound with a positive constant. Let us turn to the entropic–like terms.

Writing ρ = ρ0(1 + η), our assumption implies that |η| ≤ 1
2 . From this it is easy to verify that,

pointwise,

(1 + η)m ≥ 1 +mη +
m(m− 1)

2
(
2

3
)2−mη2 := 1 +mη + aη2,

and for the other direction we have

(1 + η)m ≤ 1 +mη +
m(m− 1)

2
(3)2−mη2 := 1 +mη + bη2.

Thence ρm − ρm0 = ρm0 [(1 + η)m − 1] = ρm0 [(1 + η)m − 1−mη +mη] ≥ ρm0 [mη + aη2]. So∫
Td
L

(ρm − ρm0 )dx ≥ aρm0 ‖η‖2L2(Td
L) = aLd(2−m)‖ρ− ρ0‖2L2(Td

L),

and similarly we have ∫
Td
L

(ρm − ρm0 )dx ≤ bLd(2−m)‖ρ− ρ0‖2L2(Td
L).

Combining this with the bounds on the energy term, the stated claim has been established.
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Finally, in the next theorem, we prove that the free energy decays exponentially to its minimum
value.

Theorem 5.5. Suppose the conclusions acquired in Corollary 5.2 are satisfied and suppose that θ is
a sufficiently small number which is of the order of unity. Let ρ(x, t) be the weak solution to Eq.(1.1)
on [0,∞)×TdL, with non-negative initial data ρ(x, 0) ∈ L∞(TdL) which integrates to 1. Then Fθ(ρ(t))
decays exponentially to Fθ(ρ0). More precisely,

F(ρ(·, t))−F(ρ0) ≤ C1e−ρ
m−1
0 c′t (5.2)

for various constants c′ and C1. Similarly for the L2–norm of (ρ− ρ0) with a different prefactor.

Proof. According to Lemma 5.3, there exist some T > 0 depending on θ, L, V and ρ(·, 0), such that
|ρ(x, t)− ρ0| < 1

2ρ0 for all x ∈ TdL, t > T . Then for all t2 > t1 > T , we manipulate the integrand on
the right hand side of Eq.(4.8) – the lower bound on Fθ(ρ(·, t1))−Fθ(ρ(·, t2)):∫

Td
L

ρ|∇ m

m− 1
ρm−1 + θLd(2−m)∇ρ ∗ V |2dx ≥∫

Td
L

ρ

[
1

2
|∇ m

m− 1
ρm−1|2 − |θLd(2−m)∇ρ ∗ V |2

]
dx

=

∫
Td
L

[
1

2
m2ρ2m−3|∇ρ|2 − ρθ2L2d(2−m)|∇(ρ ∗ V )|2

]
dx

≥
∫
Td
L

[
gρ2m−3

0 |∇ρ|2 − 3

2
ρ0θ

2L2d(2−m)|∇(ρ ∗ V )|2
]
dx (5.3)

where the value of g – which is always of order unity – depends on whether 2m − 3 is positive or
not. Note that all terms are proportional to ρ2m−3

0 = ρm−1
0 Ld(2−m).

Going to Fourier modes, the final (spatial) integral in the above string becomes

ρm−1
0 Ld(2−m) · 1

Ld

∑
k

k2|ρ̂(k)|2[g − 3

2
θ2|V̂ (k)|2]

where, for sufficiently small θ, we may assert that the summand is positive.

We thus have

Fθ(ρ(·, t1))−Fθ(ρ(·, t2)) ≥

ρm−1
0 βc′

∫ t2

t1

∫
Td
L

Ld(2−m)(ρ− ρ0)2dxdt ≥ ρm−1
0 c′

∫ t2

t1

[Fθ(ρ(·, t))−Fθ(ρ0)]dt (5.4)

where in the above, β is the constant from Lemma 5.4 which has been conveniently absorbed into
the definition of c′:

c′β := min
k 6=0

[k2(g − 3

2
θ2|V̂ (k)|2)]

and in the final step we have used Lemma 5.4.

Note that Eq.(5.4) has the same form as Eq.(4.18) therefore we can again treat it as a differential
inequality as in the proof of Theorem 4.6. We obtain that

F(ρ(·, t))−F(ρ0) ≤ C1e−ρ
m−1
0 c′t.

A further application of Lemma 5.4 implies a similar result for the L2–norm of (ρ − ρ0) and the
proof is finished.
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Remark 5.6. Here as in the case m = 2, when L is large, c′ ∝ L−2 and we have the large L scaling
of the rate proportional to L−(2+d(m−1)) in agreement with a perturbative analysis. However in
this case, our arguments do not provide agreement with the constant of proportionality. We also
note that by Theorem 2.4 we have that ρ(·, t) is uniformly Hölder continuous in space and time
for all t ≥ T , where the Hölder coefficient and exponent depends on θ, L and V . Thus we can
bound, the L∞–norm of ρ− ρ0 by some power of its L2–norm. Hence the exponential convergence
of ‖ρ − ρ0‖L2(Td

L) implies the exponential convergence of ‖ρ − ρ0‖L∞(Td
L). However a bound along

these lines is “even more” non–optimal since the two norms should, presumably, differ by a factor
of Ld.

6 Appendix: Proof of Lemma 2.5

Proof of Lemma 2.5. We will do the comparison between ρ− and w first; the comparison between
ρ+ and w can be done in the same way.

First note that w also satisfies Eq.(2.9) with Φ ≡ 0, therefore the inequality Eq.(2.25) also hold
for w, namely

w − ρ− ≥ −C1a, (6.1)

where C1 depends on m, d,M1,M2.

We define f := w − ρ−, and our goal is to obtain an upper bound for f . More precisely, we want
to show there exists some constant C and β depending on m, d,M1,M2, such that f(x, t) ≤ Caβ in
Ω̃× [1, 2].

Our strategy is as following. First, we claim that

g(T ) := sup
y∈Ω̃

∫
B(y,1)∩Ω̃

f(x, T )dx < C0a for all T ∈ [0, 2], (6.2)

where C0 depends on m, d,M1,M2. We will prove this claim momentarily. Once we have the
claim, we know the space integral of f(x, t) in any unit ball is of order a, for 0 < t < 2. To get
f(x, t) ≤ O(aβ) for t ∈ [1, 2], it suffices to show f is Hölder continuous in space with exponent and
constant that are uniform in time for all t ∈ [1, 2], which is indeed true, since Theorem 11.2 of [DGV]
guarantees this uniform Hölder continuity of ρ− and w for t ∈ [1, 2].

Now it suffices to prove our claim. It is proved by writing both equations in weak form, choosing
an appropriate test function and applying the Gronwall inequality. By writing both Eq.(2.19) and
Eq.(2.26) in weak form and subtracting the two equations, we arrive at∫

Ω̃

f(x, T )ϕ(x)dx︸ ︷︷ ︸
I1

=

∫
Ω̃

f(x, 0)ϕ(x)dx︸ ︷︷ ︸
I2

+

∫ T

0

∫
Ω̃

(
wm − ρ−|ρ−|m

−−1
)
∆ϕ(x) +Maϕ(x) dx︸ ︷︷ ︸

I3

dt, (6.3)

where ϕ ∈ C∞0 (Ω̃) is a test function chosen as follows. For a fixed T > 0, there exists z ∈ Ω̃, such
that the maximum of

∫
B(y,1)∩Ω̃

f(x, T )dx is achieved at z. We then define

ϕ(x) := µ ∗ hz(x),

where µ is a standard mollifier supported in B(0, 1
10 ), and

hz(x) :=


1− |x− z|2/2 for |x− z| ≤ 1

(|x− z| − 2)2/2 for 1 < |x− z| ≤ 2

0 for |x− z| > 2

(6.4)
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For such ϕ, we have 0 < ϕ < 1, inside the ball B(z, 1) and
∫

Ω̃
ϕdx < |B(z, 3)| < 6d.

To estimate I1, note that ϕ(x) ≥ 1/3 in B(z, 1), and f(x, T ) + C1a ≥ 0 in Ω̃, which implies

I1 =

∫
Ω̃

(f(x, T ) + C1a)ϕ(x)dx−
∫

Ω̃

C1aϕ(x)dx

≥ 1

3

∫
B(z,1)∩Ω̃

(f(x, T ) + C1a)dx− 6dC1a

≥ g(T )

3
− 6dC1a.

For I2, since f(x, 0) = ( m
m− )m

−
ρ̃(x, 0)1−ca − ρ̃(x, 0), we would obtain f(x, 0) < C2a, where C2

depends on m, ‖ρ̃(·, 0)‖∞ and c, (hence depends on m, d,M1,M2), which yields

I2 ≤ C2a

∫
Ω̃

ϕ(x)dx ≤ 6dC2a.

Now we start to estimate I3. Due to the definition of m− in Eq. (2.15), we have m− − m ≤
2(m − 1)ca. Also, we can derive some a priori bound of ρ−(x, t) and w(x, t) for t ∈ [1, 2], which
depend on m, d,M1,M2. Then we have∣∣∣wm − ρ−|ρ−|m−−1

∣∣∣ ≤ C3|w − ρ−|+ C4a in Ω̃× [0, 2],

where C3, C4 depends on m, d,M1,M2. Together with the fact that |∆ϕ| is bounded, in particular
by d, in B(z, 3) and vanishes outside of B(z, 3), we obtain the following bound for I3:

I3 ≤
∫

Ω̃

(C3|f |+ C4a)|∆ϕ|+Maϕdx

≤ dC3

∫
B(z,3)∩Ω̃

|f(x, t)|dx+ 6d(dC4 +M)a

≤ dC3

cd∑
i=1

∫
B(z+xi,1)∩Ω̃

|f(x, t)|dx+ 6d(dC4 +M)a, (6.5)

where in the last inequality we denote by cd the number such that B(0, 3) can be covered by cd
numbers of balls of radius 1, centered at x1, . . . xcd respectively. Note that cd is a constant only
depending on d.

Finally, we wish to control
∫
B(z+xi,1)∩Ω̃

|f |dx. Note that f ≥ −C1a implies |f | ≤ f + 2C1a, which

yields ∫
B(z+xi,1)∩Ω̃

|f(x, t)|dx ≤
∫
B(z+xi,1)∩Ω̃

fdx+ 2d2C1a

≤ g(t) + 2d+1C1a

Plugging it into Eq.(6.5), we obtain

I3 ≤ dC3cdg(t) + (dC3cd2
d+1C1 + 6ddC4 + 6dM)a

By putting estimates of I1, I2, I3 together, we have

g(T ) ≤ C5

∫ T

0

g(t)dt+ C6a for T ∈ [0, 2]
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where C5, C6 only depend onm, d,M1,M2. And for initial data, we have g(0) ≤ |B(0, 1)| supx f(x, 0) ≤
2dC2a. By Gronwall inequality, we have g(T ) ≤ C0a for all T ∈ [0, 2], where C0 only depends on
m, d,M1,M2, hence our claim Eq.(6.2) is proved.
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