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Abstract

For the site percolation model on the triangular lattice and certain generalizations

for which Cardy’s Formula has been established we acquire a power law estimate for

the rate of convergence of the crossing probabilities to Cardy’s Formula.

1 Introduction

Starting with the work [15] and continuing in: [6], [7], [18] [11], [4], [5], the validity

of Cardy’s formula [8] – which describes the limit of crossing probabilities for certain

percolation models – and the subsequent consequence of an SLE6 description for the

associated limiting explorer process has been well established. The purpose of this work

is to provide some preliminary quantitative estimates. Similar work along these lines

has already appeared in [3] (also see [13]) in the context of the so–called loop erased

random walk for both the observable and the process itself. Here, our attention will

be confined to the percolation observable as embodied by Cardy’s formula for crossing

probabilities.

While in the case of the loop erased random walk, estimates on the observable

can be reduced to certain Green’s function estimates, in the case of percolation the

observables are not so readily amenable. Instead of Green’s functions, we shall have

to consider the Cauchy integral representation of the complexified crossing probability

functions, as first introduced in [15]. As demonstrated in [15] (see also [2] and [11]) these
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functions converge to conformal maps from the domain under consideration – where

the percolation process takes place – to the equilateral triangle. Thus, a combination

of some analyticity property and considerations of boundary value should, in principal,

yield a rate of convergence.

However, the associated procedure requires a few domain deformations, each of

which must be demonstrated to be “small”, in a suitable sense. While such consid-

erations are not important for very regular domains (which we will not quantify) in

order to consider general domains, a more robust framework for quantification is called

for. For this purpose, we shall introduce a procedure where all portions of the domain

are explored via percolation crossing problems. This yields a multi–scale sequence of

neighborhoods around each boundary point where the nature of the boundary irregu-

larities determines the sequence of successive scales. Thus, ultimately, we are permitted

to measure the distances between regions by counting the number of neighborhoods

which separate them. This procedure is akin to the approach of Harris [12] in his study

of the critical state at a time when detailed information about the nature of the state

was unavailable.

Ultimately we establish a power law estimate (in mesh size) for the rate of conver-

gence in any domain with boundary dimension less than two. (For a precise statement

see the Main Theorem below.) As may or may not be clear to the reader at this point

the hard quantifications must be done via percolation estimates – as is perhaps not

surprising since we cannot easily utilize continuum estimates before having reached the

continuum in the first place. The plausibility of a power law estimate then follows from

the fact that most a priori percolation estimates are of this form.

Finally, we should mention, it has come to our attention (via reference no. 83 in [16]

and also a seminar abstract) that similar results have been announced by Mendelson,

Nachmias, Sheffield, Watson; however, at the time of this present paper, we know of

no other definitive writings on this subject.
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2 Preliminaries

2.1 The Models Under Consideration

We will be considering critical percolation models in the plane. However in contrast

to the generality professed in [4], [5] – where, essentially, “all” that was required was

a proof of Cardy’s formula, here the mechanism of how Cardy’s formula is established

will come into play. Thus, we must restrict attention to the triangular site percolation

problem considered in [15] and the generalization provided in [11]. These models can

all be expressed in terms of random colorings (and sometimes double colorings) of

hexagons. As is traditional, the competing colors are designated by blue and yellow.

We remind the reader that criticality implies that there are non–trivial (bounded

away from 0 and 1) bounds on crossings of squares in both blue and yellow and that via

the so–called Russo–Seymour–Welsh estimates, these generate scale–invariant bounds

on crossings of longer rectangles.

2.2 The Observable

Consider a fixed domain Ω ⊂ C that is a conformal rectangle with marked points (or

prime ends) A, B, C and D which, as written, are in cyclic order. We let Ωn denote the

lattice approximation at scale ε = n−1 to the domain Ω. The details of the construction

of Ωn – especially concerning boundary values and explorer processes – are somewhat

tedious and have been described e.g., in [5] §3 & §4 and [4] §4.2. For present purposes,

it is sufficient to know that Ωn consists of the maximal union of lattice hexagons –

of diameter 1/n – whose closures lie entirely inside Ω; we sometimes refer to this as

the canonical approximation. We shall also have occasions later to use discrete interior

approximating domains which are a subset of Ωn. Moreover, boundary segments can

be appropriately colored and lattice points An – Dn can be selected. We consider

percolation problems in Ωn.

The pertinent object to consider is a crossing probability: Performing percolation

on Ωn, we ask for the crossing probability – say in yellow – from (An, Bn) to (Cn, Dn).

Below we list various facts, definitions and notations related to the observable that

will be used throughout this work. In some of what follows, we temporarily neglect
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attention to the marked point An and regard Ωn with the three remaining marked

points as a conformal triangle.

◦ Let us recall the functions introduced in [15], here denoted by SB, SC , SD where

e.g., SB(z) with z ∈ Ωn a lattice point, is the probability of a yellow crossing from

(Dn, Bn) to (Bn, Cn) separating z from (Cn, Dn). Note that it is implicitly un-

derstood that the SB, SC , SD–functions are defined on the discrete level; to avoid

clutter, we suppress the n index for these functions. Moreover, we will denote the

underlying events associated to these functions by SB, SC , SD, respectively.

◦ It is the case that the functions SB, SC , SD are invariant under color switching:

these models exhibit color switching symmetry (see [15] and [11]). While it is not

essential to the arguments in this work, we sometimes may take liberties regarding

whether we are considering a yellow or blue version of these functions.

◦ It is also easy to see that e.g., SB has boundary value 0 on (Cn, Dn) and 1 at

the point Bn. Moreover, the complexified function Sn = SB + τSC + τ2SD,

with τ = e2πi/3, converges to the conformal map to the equilateral triangle with

vertices at 1, τ, τ2, which we denote by T. (See [15], [2], [5].)

◦ For finite n, we shall refer to the object Sn(z) as the Carleson–Cardy–Smirnov

function and sometimes abbreviated CCS–function.

◦ We will use Hn : Ωn → T to denote the unique conformal map which sends

(Bn, Cn, Dn) to (1, τ, τ2). Similarly, H : Ω → T is the corresponding conformal

map of the continuum domain.

◦ With An reinstated, we will denote by Cn the crossing probability of the conformal

rectangle Ωn and C∞ its limit in the domain Ω; i.e., Cardy’s Formula in the

limiting domain.

◦ Since SC(An) ≡ 0,

Sn(An) = SB(An) + τ2SD(An) = [SB(An)− 1

2
SD(An)]− i

√
3

2
SD(An).

Now we recall (or observe) that Cn can be realized as SD(An) and so from the pre-

vious display, Cn = 2√
3
· Im[Sn(An)]. Since it is already known that Sn converges

to H (see [15], [2], [5]) it is also the case that C∞ = 2√
3
· Im[H(A)]. Therefore to
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establish a rate of convergence of Cn to C∞, it is sufficient to show that there is

some ψ > 0 such that

|Sn(An)−H(A)| . n−ψ;

◦ The functions Sn are not discrete analytic but they do have discrete analytic

properties. (See [15], [2] and [11].) In particular, this is exhibited by the fact that

the contour integral around some discrete contour Γn behaves like the length of

Γn times n to some negative power. Also, the functions Sn are Hölder continuous

with estimates which are uniform for large n. For details we refer the reader to

Definition 4.1.

Our goal in this work is to acquire the following theorem on the rate of convergence

of the finite volume crossing probability, Cn, to its limiting value:

Main Theorem. Let Ω be a domain and Ωn its canonical discretization. Consider the

site percolation model or the models introduced in [11] on the domain Ωn. In the case

of the latter we also impose the assumption that the boundary Minkowski dimension is

less than 2 (in the former, this is not necessary). Let Cn be described as before. Then

there exists some ψ > 0 such that Cn converges to its limit with the estimate

|Cn − C∞| . n−ψ,

provided n ≥ n0(Ω) is sufficiently large and the symbol . is described with precision in

Notation 2.1 below.

Notation 2.1 In the above and throughout this work, we will be describing asymptotic

behaviors of various quantities as a function of small or large parameters (usually n

in one form or another). The relation X . Y relating two functions X and Y of

large or small parameters (below denoted by M and m, respectively) means there exists

a constant c which is of order unity independent of m and M such that for all M

sufficiently large and/or m sufficiently small X(m,M) ≤ c · Y (m,M).

Remark 2.2. The restrictions on the boundary Minkowski dimension for the models

in [11] is not explicitly important in this work and will only be implicitly assumed as

it was needed in order to establish convergence to Cardy’s Formula.
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Remark 2.3. It would seem that complementary lower bounds of the sort presented

in the Main Theorem are actually not possible. For example, in the triangular site

model, the crossing probabilities for particular shapes are identically 1
2 independently

of n.

We end this preliminary section with some notations and conventions: (i) the nota-

tion dist(·, ·) denotes the usual Euclidean distance while the notation dsup(·, ·) denotes

the sup–norm distance between curves; (ii) we will make use of both macroscopic and

microscopic units, with the former corresponding to an ε→ 0 approximation and the

latter corresponding to n → ∞, thereby measuring distances relative to the size of a

hexagon. Thus, n = ε−1 – while analytical quantities are naturally in macroscopic

units, it is at times convenient to use microscopic units when performing percolation

constructions; (iii) we will use a1, a2, . . . to number the powers of n appearing in the

statements of lemmas, theorems, etc. Constants used in the course of a proof are

considered temporary and duly forgotten after the Halmos box.

3 Proof of the Main Theorem

Our strategy for the proof of the Main Theorem is as follows: recall that Hn is the

conformal map from Ωn to T (the “standard” equilateral triangle) so that Bn, Cn, Dn

map to the three corresponding vertices, where it is reiterated that Cn corresponds to a

boundary value of Sn. Thus it is enough to uniformly estimate the difference between

Sn and Hn and then the difference between Hn and H.

Foremost, the discrete domain may itself be a bit too rough so we will actually be

working with an approximation to Ωn which will be denoted by Ω�n (see Proposition

3.2). Now, on Ω�n , we have the function S�n associated with the corresponding perco-

lation problem on this domain and, similarly, the conformal map H�n : Ω�n → T. Via

careful consideration of physical (i.e., Euclidean) distances and distortion under the

conformal map, we will be able to show that both |Sn(An)−S�n (A�n )| (for an appropri-

ately chosen A�n ∈ ∂Ω�n ) and |H(A)−H�n (A�n )| are suitably small (see Theorem 3.3).

Thus we are reduced to proving a power law estimate for the domain Ω�n .

Towards this goal, we introduce the Cauchy–integral extension of S�n , which we

6



denote by F�n , so that

F�n (z) :=
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ.

Now by using the Hölder continuity properties and the approximate discrete ana-

lyticity properties of the Sn’s, we can show that, barring the immediate vicinity of the

boundary, the difference between F�n and S�n is power law small (see Lemma 3.5). It

follows then that in an even smaller domain, Ω♦
n , which can be realized as the inverse

image of a uniformly shrunken version of T, the function F�n is in fact conformal and

thus it is uniformly close to H♦
n , which is the conformal map from Ω♦

n to T (see Lemma

3.9).

Now for z ∈ Ω�n the dichotomy we have introduced is not atypical: on the one hand

F�n (z) is manifestly analytic but does not necessarily embody the function S�n of current

interest. On the other hand, S�n (z) has the desired boundary values – at least on ∂Ω�n

– but is, ostensibly, lacking in analyticity properties. Already the approximate discrete

analyticity properties permits us to compare F�n to S�n in Ω♦
n . In order to return to

the domain Ω�n , we require some control on the “distance” between Ω♦
n and Ω�n (not

to mention a suitable choice of some point A♦
n ∈ ∂Ω♦

n as an approximation to A). It

is indeed the case that if Ω♦
n is close to Ω�n in the physical (i.e., Hausdorff) distance,

then the proof can be quickly completed by using distortion estimates and/or Hölder

continuity of the S function. However, such information translates into an estimate on

the continuity properties of the inverse of F�n , which is not a priori accessible (and,

strictly speaking, not always true).

Further thought reveals that we in fact require the domain Ω♦
n to be close to Ω�n in

both the conformal sense and in the sense of “percolation” – which can be understood

as being measured via local crossing probabilities. While with a deliberate choice of a

point on the boundary corresponding to A we may be able to ensure that either one

or the other of the two criteria can be satisfied, it is not readily demonstrable that

both can be simultaneously satisfied without some additional detailed considerations;

it is for this reason that we will introduce and utilize the notion of Harris systems (see

Theorem 3.10) in order to quantify the distances between Ω♦
n and Ω�n .

The Harris systems are collections of concentric annular segments of various scales

centered on points of ∂Ω�n and heading towards some “central region” of Ω�n ; they

are constructed so that uniform estimates are available for both the traversing of each
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segment and the existence of an obstructing “circuit” (in dual colors). This leads to

a natural choice of A♦
n : it is a point on ∂Ω♦

n which is in the Harris system of A�n .

Consequently, the distance between A�n and A♦
n – and other such pairs as well – can

be measured vis a counting of Harris segments (see Lemma 3.12).

Specifically, we will make use of another auxiliary point, A♦n , which is also in the

Harris system stationed at A�n , chosen so that it is inside the domain Ω♦
n . The task

of providing an estimate for |S�n (A♦n ) − S�n (A�n )| (and thus also |F�n (A♦n ) − S�n (A�n )|)

is immediately accomplished by the existence of suitably many Harris segments sur-

rounding both A�n and A♦n (see Proposition 3.15). Also, considering n to be fixed,

the domain Ω�n can be approximated at scales N−1 � n−1 and the estimates derived

from the Harris systems remain uniform in N as N tends to infinity (corresponding

to “continuum percolation” on Ω�n ) thus also immediately implying an estimate for

|H�n (A�n )−H�n (A♦n )| (see Proposition 3.14).

At this point what remains to be established is an estimate relating the conformal

map H♦
n , which is defined by percolation at scale n via F�n , and H�n , the “original”

conformal map. It is here that we shall invoke a Marchenko theorem for the triangle T

(see Lemma 3.16): indeed, again considering Ω�n to be a fixed domain and performing

percolation at scales N−1 � n−1, we have by convergence to Cardy’s Formula that

S�n,N (s) → H�n (s) as N → ∞, for all s ∈ ∂Ω♦
n . The inherent scale invariance of the

Harris systems permits us to establish that in fact S�n,N (s) is close to ∂T, uniformly

in N (see Lemma 3.18) and thus, H�n (∂Ω♦
n ) is close to ∂T (in fact in the supremum

norm). Armed with this input, the relevant Marchenko theorem applied at the point

A♦n immediately gives that H�n (A♦n )−H♦
n (A♦n ) is suitably small.

The technical components relating to the Cauchy–integral estimate and the con-

struction of the Harris systems are relegated to Section 4 and Section 5, respectively.

As for the rest, we will divide the proof of the main theorem into three subsections,

corresponding to:

(i) the regularization of the boundary (introduction of Ω�n ) and showing that crossing

probabilities are close for the domains Ω�n ,Ωn & Ω;

(ii) the construction of the Cauchy–integral F�n and the construction of the domain

Ω♦
n ;
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(iii) the establishment of the remaining estimates needed to show that the domains

Ω♦
n and Ω�n are suitably close, by using the Harris systems of neighborhoods.

3.1 Regularization of Boundary Length

We now introduce the domain Ω�n ⊆ Ωn. The primary purpose of this domain is to

reduce the boundary length of the domain that need be considered.

Definition 3.1. Let 1 > a1 > 0 and consider a square grid whose elements are squares

of (approximately) microscopic size na1 and let Ω�n denote the union of all (hexagons

within the) squares of this grid that are entirely within the original domain Ω.

We have:

Proposition 3.2 Let Ω ⊆ C be a domain with boundary Minkowski dimension less

than 1 + α′ with α′ ∈ [0, 1], which we write as M(∂Ω) < 1 + α for any α > α′. Then

the domain Ω�n satisfies Ω�n ⊆ Ωn and

|∂Ω�n | . nα(1−a1).

Proof. Since M(∂Ω) < 1 + α we have (for all n sufficiently large) that the number of

boxes required to cover ∂Ω is essentially bounded from above by (n1−a1)1+α which is

then multiplied by 1
n(1−a1) , the size of the box (in macroscopic units). The fact that

Ω�n ⊆ Ωn is self–evident.

Next we will choose A�n , B
�
n , C

�
n , D

�
n ∈ ∂Ω�n by some procedure to be outlined below

and denote by S�n the corresponding CCS–function. Particularly, this can be done so

that the crossing probabilities do not change much:

Theorem 3.3 Let Ω�n ⊆ Ωn with marked boundary points (An, . . . , Dn) be as de-

scribed, so particularly ∂Ω�n is of distance at most n1−a1 from ∂Ωn. Then there is

an A�n as well as B�n , C�n and D�n such that the corresponding S�n satisfies, for some

a2 > 0 and for all n sufficiently large,

|Sn(An)− S�n (A�n )| . n−a2

and, moreover,

|H(A)−H�n (A�n )| . n−a2 .
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Remark 3.4. In the case that the separation between An and ∂Ωn is the order of na1

– as is usually imagined – facets of Theorem 3.3 are essentially trivial. However, the

reader is reminded that An could be deep inside a “fjord” and well separated from ∂Ω�n .

In this language, the forthcoming arguments will demonstrate that, notwithstanding,

an A�n may be chosen near the mouth of the fjord for which the above estimates hold.

Proof of Theorem 3.3. For η > 0 and a subset K ⊂ Ω we will denote by Nη(K) the

η–neighborhood of K intersected with Ω. Now let us first choose η sufficiently small

so that

[[B,C,D] ∪N4η(B) ∪N4η(D) ∪N4η(C)] ∩N4η(A) = ∅,

where [B,C,D] denotes the closed boundary segment containing the prime endsB,C,D.

Next we assume that n > n◦ where n◦ is large enough so that for all n > n◦,

An ∈ Nη(A) , . . . , Dn ∈ Nη(D). Moreover, Ω�n ∩ Nη(A) 6= ∅ and similarly for Ω�n ∩

Nη(B), . . . ,Ω�n ∩Nη(D). Then, since

0 < dist(([A,B] \Nη(A)), ([D,A] \Nη(A)))

it is assumed that for n > n◦, the above is very large compared with n−(1−a1) and

similarly for the other three marked points. Finally, consider the uniformization map

ϕ : D → Ω. Then taking n◦ larger if necessary, we assert that for all n > n◦, the

distance between ϕ−1(Nη(A)) and [ϕ−1(N4η(A))]c satisfies

dist[ϕ−1(Nη(A)), [ϕ−1(N4η(A))]c]� n−
1
2 . (3.1)

We first state:

Claim. For n > n◦,

dist(Nη(A), [Bn, Cn, Dn]) > 0.

Proof of Claim. We note that the pre–image of ∂Ωn under uniformization has the

following property: for n sufficiently large as specified above, consider the segment

ϕ−1([An, Bn]). Then starting at ϕ−1(An), once the segment enters ϕ−1(Nη(Bn)), it

must hit ϕ−1(Bn) before exiting ϕ−1(N4η(Bn)).

Indeed, supposing this were not true, then necessarily, there would be three or

more crossings of the “annular region” ϕ−1(N4η(Bn)) \ ϕ−1(Nη(Bn)). It is noted that

all such crossings – indeed all of ϕ−1(Ωn) – lies within a distance of the order n−1/2 of
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∂D. This follows by standard distortion estimates (see e.g., [14], Corollary 3.19 together

with Theorem 3.21) and the definition of canonical approximation: each point on ∂Ωn

is within distance 1/n of some point on ∂Ω. It is further noted, by the final stipulation

concerning n◦, that the separation scale of the above mentioned “annular region” is

large compared with the distance n−1/2.

Consider now a point on the “topmost” of these crossings which is well away –

compared with n−1/2 – from the lateral boundaries of the annular region and also the

pre–image of its associated hexagon. Since this point is the pre–image of one on ∂Ωn,

the hexagon in question must intersect ∂Ω and therefore its pre–image must intersect

∂D. However, in order to intersect ∂D, the pre–image of the hexagon in question must

intersect all the lower crossings, since our distortion estimate does not permit this

pre–image to leave (a lower portion of) the annular region. This necessarily implies it

passes through the interior of Ωn, which is impossible for a boundary hexagon.

The same argument also shows that once ϕ−1(∂Ωn) exits ϕ−1(N4η(Bn)), it cannot

re–enter ϕ−1(Nη(Bn)) so therefore must be headed towards ϕ−1(Cn) and certainly

cannot enter ϕ−1(Nη(A)) since

dist(ϕ−1(Nη(A)), ϕ−1([B,C,D] ∪ [N4η(B) ∪N4η(D) ∪N4η(C)])� n−1/2

by assumption (by the choice of η, it is the case that [B,C,D] ∪ [N4η(B) ∪N4η(D) ∪

N4η(C)] ⊆ [N4η(A)]c from which the previous display follows from Equation (3.1)).

Altogether we then have that dist(ϕ−1(Nη(A)), ϕ−1([Bn, Cn, Dn])) > 0, and so the

claim follows after applying ϕ.

The above claim in fact implies that there exist points Apn ∈ [An, Bn] and Agn ∈

[An, Dn] such that

dist(Apn, A
g
n) <

1

n1−a1

and

dist(Apn, ∂Ω�n ), dist(Agn, ∂Ω�n ) <
1

n1−a1
.

Indeed, consider squares of side length na1 intersecting ∂Ωn which share an edge with

∂Ω�n and have non–trivial intersection with Nη(A), then since ∂Ωn passes through

such boxes, we can unambiguously label them as either an [An, Bn], an [An, Dn] box,

or both, and by the claim there are no other possibilities. Therefore, a pair of such
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boxes of differing types must be neighbors or there is at least one single box of both

types, so we indeed have points Apn, A
g
n as claimed. Finally, by the stipulation

1

n1−a1
� dist(([A,B] \Nη(A)), ([D,A] \Nη(A)))

it is clear that these points must lie in Nη(A) since otherwise they would have a single

label: either [An, Bn] or [An, Dn]. Thus we choose A�n ∈ ∂Ω�n to be any representative

point near the (Apn, A
g
n) juncture. Now consider the scale na3 with 1 > a3 > a1. We may

surround the points Apn, A
g
n and A�n with the order of log2 n

a3−a1 disjoint concentric

annuli each of which forms a conduit between [An, Dn] and [An, Bn]. Let A denote the

event that at least one of these annuli houses a blue circuit, then we have

P(A) ≥ 1− n−a4 (3.2)

for some a4 > 0. Similar constructions may be enacted about the Bn, B
�
n ; . . . ;Dn, D

�
n

pairs leading, ultimately, to the events B, . . . ,D analogous to A with estimates on their

probabilities as in Eq.(3.2). For future reference, we denote by E the event A∩· · ·∩D.

We are now in a position to verify that |Sn(An)− S�n (A�n )| obeys the stated power

law estimate. Indeed, the C–component of both functions vanish identically while

the differences between the other two components amount to comparisons of crossing

probabilities on the “topological” rectangles [An, Bn, Cn, Dn] verses [A�n , B
�
n , C

�
n , D

�
n ].

There are two crossing events contributing to the (complex) function Sn(An) (and

similarly for S�n (A�n )) but since the arguments are identical, it is sufficient to treat one

such crossing event. Thus we denote by Kn the event of a crossing in Ωn by a blue

path between the [An, Dn] and [Bn, Cn] boundaries (the event contributing to SB(An))

and similarly for the event K�n for a blue path in Ω�n . It is sufficient to show that

|P(K�n )− P(Kn)| has an estimate of the stated form.

The greater portion of the following is rather standard in the context of 2D perco-

lation theory so we shall be succinct. Without loss of generality we may assume that

S�B(A�n ) > SB(An) since otherwise the SD functions would satisfy this inequality and

we may work with SD instead. For the ease of exposition, let us envision [An, Bn] and

[A�n , B
�
n ] as the “bottom” boundaries and the D,C pairs as being on the “top”.

Let Γ denote a crossing between [A�n , D
�
n ] and [B�n , C

�
n ] within Ω�n and let ΓK�

n
∈ K�n

denote the event that Γ is the “lowest” (meaning [A�n , B
�
n ]–most) crossing. These events
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form a disjoint partition so that P(K�n ) =
∑

Γ P(K�n | ΓK�
n

) · P(ΓK�
n

). From previous

discussions concerning Apn, A
g
n, we have that P(E) ≥ 1 − n−a4 , which we remind the

reader, means that with stated probability these crossings do not go into these corners

and hence there is “room” to construct a continuation.

Let a5 > a1 denote another constant which is less than unity (recall that in micro-

scopic units dist(∂Ω�n , ∂Ωn) ≤ na1). Then, to within tolerable error estimate (by the

Russo–Seymour–Welsh estimates) it is sufficient to consider only the crossings Γ with

right endpoint a distance in excess of na5 away from C�n and left endpoint similarly

separated from D�n .

Let ΓD and ΓC denote these left and right endpoints of Γ, respectively. Consider

a sequence of intercalated annuli starting at the scale na1 – or, if necessary, in slight

excess – and ending at scale na5 (where ostensibly they might run aground at C�n )

around ΓC . A similar sequence should be considered on the left. Focusing on the right,

it is clear that each such annulus provides a conduit between Γ and ∂Ωn that runs

through the [B�n , C
�
n ] boundary of Ω�n . Let γ̄r denote an occupied blue circuit in one

of these annuli and similarly for γ̄` on the left.

The blue circuit γ̄r must intersect Γ and, since e.g., ΓC is at least na5 away from

A�n , D
�
n , these circuits must end on the [D�n , A

�
n ] boundary so that the portion of the

circuit above Γ forms a continuation to ∂Ωn; similar results hold for ΓD and γ̄` and

the crossing continuation argument is complete. As discussed before, we may repeat

the argument for the other crossing event contributing to the S–functions, so we now

have that |Sn(An)− S�n (A�n )| ≤ n−a6 for some a6 > 0, concluding the first half of the

theorem.

The second claim of this theorem, concerning the conformal maps Hn(An) and

H�n (A�n ) in fact follows readily from the arguments of the first portion. In particular,

we claim that the estimate on the difference can be acquired by an identical sequence

of steps by the realization of the fact that the S–function for a given percolative do-

main which is the canonical approximation to a conformal rectangle converges to the

conformal map of said domain to T ([15] , [2], [5]).

Thus, while seemingly a bit peculiar, there is no reason why we may not consider

Ωn to be a fixed continuum domain and, e.g., for N ≥ n, the domain Ωn,N to be its

canonical approximation for a percolation problem at scale N−1. Similarly for Ω�n,N .
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Of course here we underscore that e.g., A�n , . . . D
�
n are regarded as fixed (continuum)

marked points which have their own canonical approximates A�n,N , . . . D
�
n,N and have

no constructive relationship between them and the approximates An,N . . . Dn,N .

It is now claimed that uniformly in N , with N ≥ n and n sufficiently large the

entirety of the previous argument can be transcribed mutatis mutantis for the perco-

lation problems on Ωn,N and Ω�n,N . Indeed, once all points were located, the seminal

ingredients all concerned (partial) circuits in (partial) annuli and/or rectangular cross-

ings of uniformly bounded aspect ratios and dimensions not smaller than n−1. All such

events enjoy uniform bounds away from 0 or 1 (as appropriate) which do not depend

on the scale and therefore apply to the percolation problems on Ωn,N and Ω�n,N We

thus may state without further ado that for all N > n (and n sufficiently large)

|Sn,N (An,N )− S�n,N (A�n,N )| ≤ 1

na2
(3.3)

and so |Hn(An)−H�n (A�n )| ≤ n−a2 as well.

Finally, since the relationship between Ωn and Ω is the same as that between Ω�n

and Ωn (both Ωn, Ω�n are inner domains obtained by the union of shapes (squares

or hexagons) of scale a power of n from Ω, Ωn, respectively) the same continuum

percolation argument as above gives the estimate that |Hn(An)−H(A)| ≤ n−a2 .

3.2 The Cauchy–Integral Extension

We will now consider the Cauchy–integral version of the function S�n . Ostensibly this

is defined on the full Ω�n however as mentioned in the introduction to this section, its

major rôle will be played on the subdomain Ω♦
n which will emerge shortly.

Lemma 3.5 Let Ω�n and S�n be as in Proposition 3.2 so that

|∂Ω�n | ≤ nα(1−a1),

where M(∂Ω) < 1 +α. For z ∈ Ω�n (with the latter regarded as a continuum object) let

F�n (z) =
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ. (3.4)

Then for a1 sufficiently close to 1 there exists some β > 0 such that for all z ∈ Ω�n

(meaning lying on edges and sites of Ω�n ) so that dist(z, ∂Ω�n ) > d1 for some d1 > 0 a
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power of n−1, ∣∣S�n (z)− F�n (z)
∣∣ . n−β.

The proof of this lemma is postponed until Section 4.2 and we remark that while

S�n is only defined on vertices of hexagons a priori, it can be easily interpolated to be

defined on all edges, as discussed in Section 4. We will now proceed to demonstrate

that F�n is conformal in a subdomain of Ω�n . Let us first define a slightly smaller

domain:

Definition 3.6. Let Ω�n be as described. Let d1 > 0 be some power of n−1, as required

by Lemma 3.5 and define, for temporary use,

Ω}n := {z ∈ Ω�n : dist(z, ∂Ω�n ) ≥ d1}.

We immediately have the following:

Proposition 3.7 For n sufficiently large, there exists some β > a3 > 0 (with β as in

Lemma 3.5) such that

dsup(F
�
n (∂Ω}n ), ∂T) . n−a3 .

Proof. Let us first re–emphasize that S�n maps ∂Ω�n to ∂T. This is in fact fairly well

known (see e.g., [2] or in [5], Theorem 5.5) but a quick summary proceeds as follows:

by construction S�n is continuous on ∂Ω�n and e.g., takes the form λτ+(1−λ)τ2 on one

of the boundary segments, where λ represents a crossing probability which increases

monotonically – and continuously – from 0 to 1 as we progress along the relevant

boundary piece. Similar statements hold for the other two boundary segments.

Now by Lemma 3.5, F�n (z) is at most the order n−β away from S�n (z) for any

z ∈ ∂Ω}n , so the curve F�n (∂Ω}n ) is in fact also that close to S�n (∂Ω}n ) in the supremum

norm. Finally, by the Hölder continuity of S�n up to ∂Ω�n (see Proposition 4.3) and

the fact that ∂Ω}n is a distance which is an inverse power of n to ∂Ω�n , it follows that

S�n (∂Ω}n ) is also close to ∂T and the stated bound emerges.

Equipped with this proposition, we can now introduce the domain Ω♦
n :

Definition 3.8. Let a4 > 0 be such that β > a3 > a4 (with a3 > 0 as in Proposition

3.7) and let us denote by

T♦ = (1− n−a4) · T

15



the uniformly shrunken version of T. Finally, let

Ω♦
n := (F�n )−1(T♦)

and denote by (B♦
n , C

♦
n , D

♦
n ) the preimage of (1− n−a4) · (1, τ, τ2) under F�n .

Lemma 3.9 Let F�n and Ω♦
n , etc., be as described. Then F�n is conformal in Ω♦

n .

Next let H♦
n : Ω♦

n −→ T be the conformal map which maps (B♦
n , C

♦
n , D

♦
n ) to (1, τ, τ2).

Then for all z ∈ Ω♦
n ,

|F�n (z)−H♦
n (z)| . n−a4 .

Proof. Let Kn := F�n (∂Ω}n ) and let us start with the following observation on the

winding of Kn:

Claim. If w ∈ T♦, then the winding of Kn around w is equal to one:

W (Kn, w) =
1

2πi

ˆ
Kn

dz

z − w
= 1.

Proof of Claim. The result is elementary and is, in essence, Rouché’s Theorem so

we shall be succinct and somewhat informal. Foremost, by continuity, the winding is

constant for any w ∈ T♦. (This is easily proved using the displayed formula and the

facts that the winding is integer valued and that Kn is rectifiable.) Clearly, since ∂T

and Kn are close in the supremum norm, it follows, by construction (for an argument

see the end of the proof of Proposition 3.7 and use the fact that F�n only differs from

H♦
n by a small scale factor) that ∂T♦ and Kn are also close in this norm.

Let zK(t) and z♦(t), 0 ≤ t ≤ 1 denote parameterizations of Kn and ∂T♦ that

are uniformly close moving counterclockwise. For z♦, this starts and ends on the

positive real axis and we let θ♦(t) denote the evolving argument of z♦(t) (with respect

to the origin as usual): 0 ≤ θ♦(t) ≤ 2π. We similarly define θK(t): in this case,

we stipulate that |θK(0)| is as small as possible – and thus approximately zero –

but of course θK(t) evolves continuously with zK(t) and therefore ostensibly could lie

anywhere in (−∞,∞). But |z♦(t)| and |zK(t)| are both of order unity (and in particular

not small) and they are close to each other. So it follows that |θ♦(t) − θK(t)| must

be uniformly small, e.g., within some ϑ with 0 < ϑ � π for all t ∈ [0, 1]. Now, since

θ♦(1)− θ♦(0) = 2π, we have

|W (Kn, 0)− 1| =
∣∣∣∣θK(1)− θK(0)

2π
− θ♦(1)− θ♦(0)

2π

∣∣∣∣ ≤ 2ϑ

2π
� 1,
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so we are forced to conclude that W (Kn, 0) = 1 by the integer–valued property. The

preceding claim has been established.

The above implies that F�n is in fact 1-1 in Ω♦
n : from Definition 3.8 we see that a5

is chosen so that (for n sufficiently large) n−a4 is large compared with n−a3 (from the

conclusion of Proposition 3.7) so that Kn (which is clearly a continuous and possibly

self–intersecting curve) lies outside T♦. Now fix some point ξ ∈ Ω♦
n and consider the

function hξ(z) := F�n (z) − F�n (ξ). Next parametrizing ∂Ω�n := γ as γ : [0, 1] → C,

noting that F�n (ξ) ∈ T♦ and using the chain rule we have that

1 = W (Kn, F
�
n (ξ)) =

1

2πi

˛
F�
n ◦γ

1

ζ − F�n (ξ)
dζ

=
1

2πi

ˆ 1

0

(F�n )′(γ(t))γ′(t)

F�n (γ(t))− F�n (ξ)
dt =

1

2πi

˛
γ
h′ξ/hξ dz.

By the argument principle, the last quantity is equal to the number of zeros of hξ in

the region enclosed by γ, i.e., in Ω�n . The desired one–to–one property is established.

We have now that F�n |Ω♦
n

is analytic, maps Ω♦
n in a one–to–one fashion onto

T♦. Therefore F�n |Ω♦
n

is the conformal map from Ω♦
n to T♦ (mapping B♦

n , C
♦
n , D

♦
n to

(1−n−a4)·(1, τ, τ2), the corresponding vertices of T♦). Thus by uniqueness of conformal

maps we have that H♦
n = 1

1−n−a4
·
(
F�n |Ω♦

n

)
and the stated estimate immediately

follows.

3.3 Harris Systems

We will now introduce the Harris systems:

Theorem 3.10 (Harris Systems.) Let Ω�n ⊆ Ω be as described with marked boundary

points A,B,C,D ∈ ∂Ω and let z be an arbitrary point on ∂Ωn. Further, let 2∆ denote

the supremum of the side–length of all squares (oriented with the lattice axes) contained

in Ω, and let D∆ denote a square of side ∆ with the same center as a square for which

the supremum is realized.

Then there exists some Γ > 0 such that for all n ≥ n(Ω) sufficiently large, the fol-

lowing holds: around each boundary point z ∈ ∂Ω�n there is a nested sequence of at least

Γ · log n neighborhoods the boundaries of which are segments (lattice paths) separating

z from D∆. We call this sequence of neighborhoods the Harris system stationed at z.
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The regions between these cuts (inside Ω�n ) are called Harris ring fragments (or just

Harris rings).

Further, there exists some 0 < ϑ < 1/2 such that in each Harris ring, the probability

of an occupied path (in blue or yellow) separating z from D∆ is uniformly bounded from

above and below by ϑ and 1− ϑ, respectively.

Also, let J denote the the d∞–distance (see Definition 5.1) between successive seg-

ments forming a (generic) relevant Harris ring and let B > 0 be such that the probability

of a hard way crossing of a B by 1 rectangle (in both yellow and blue) is less than ϑ2.

The following properties hold:

1. for r ≡ r(ϑ) > 0 sufficiently large (particularly, 2−rJ < B) the Harris rings

can be tiled with boxes of scale 2−r · J and there is a main body of full boxes

(unobstructed) which connect the segments forming the Harris rings;

2. successive segments Y, YQ satisfy

2−rJ ≤ ‖Y ‖0 ≤ ‖Y ‖∞ ≤ 4B · J, 2−rJ ≤ ‖YQ‖0 ≤ ‖YQ‖∞ ≤ 4B · J ;

3. let a be point in the Harris systems centered at A�n such that the number of Harris

rings between a and D∆ is of order log n. Let A(a) denote the event of a blue

(or yellow) circuit surrounding both a and A�n with endpoints on [A�n , B
�
n ] and

[D�n , A
�
n ]. Then there exists some constant λ > 0 such that

P(A(a)) ≥ 1− n−λ;

Similar estimates hold at the points B�n , C
�
n , D

�
n and hence the the estimate also

holds for the intersected event, by FKG type inequalities (or just independence);

4. finally, all estimates are uniform in lattice spacing in the sense of considering Ω�n

to be a fixed domain and performing percolation at scale N−1.

Proof. The constructions required for the establishment this theorem is the content of

Section 5. That there exists at least of order log n such neighborhoods follows from

the fact that each point on ∂Ω�n is a distance at least ∆ from D∆ and so proceeding

towards D∆ in a “straight” tunnel and increasing the scale each time by the maximum

allowed while fixing the aspect ratio already leads to of order log n such neighborhoods.
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Finally, items 1 and 2 follow from Theorem 5.6 and Subsection 5.4, item 3 follows

from the above together with Lemma 5.10 and item 4 is a direct consequence of the

scale invariance of critical percolation.

Let us start with the quantification of the “distance” between the corresponding

marked points of Ω♦
n and Ω�n :

Proposition 3.11 B♦
n is in the Harris system stationed at B�n . Moreover, there

exists some κ > 0 such that there are at least κ · log n Harris rings from this Harris

system which enclose B♦
n . Similar statements hold for C♦

n , D
♦
n .

Proof. The argument that B♦
n is indeed in the Harris system stationed at B�n and the

argument that there are many Harris rings enclosing B♦
n are essentially the same.

First we have that by Lemma 3.5 and Definition 3.8 that e.g., |S�B(B♦
n )| & 1 −

n−a4 − n−β & 1 − n−a4 (recall that β > a3 > a4). On the other hand, let us consider

the “last” Harris ring separating B♦
n from B�n which forms a conduit from [D�n , B

�
n ]

and [B�n , C
�
n ], c.f., Theorem 3.10, item 3. We may enforce a long way crossing with

probability ϑ (as in Theorem 3.10) and then via a box construction and a “large scale”

crossing as in the proof of Lemma 3.12 the said crossing can be connected to [C�n , D
�
n ]

in blue, i.e., there is some V > 0 such that the latter connection occurs with probability

in excess of n−γV , if the number of Harris rings enclosing B♦
n were less than γ · log n.

Since such a blue connection renders a yellow version of the event S�B(B♦
n ) impos-

sible, we conclude that there must be more than a4/V Harris rings enclosing B♦
n , for

n sufficiently large. Similar arguments yield the result also for C♦
n , D

♦
n .

More generally, we have the following description of the distance between ∂Ω�n and

∂Ω♦
n :

Lemma 3.12 Let s ∈ ∂Ω♦
n and z ≡ z(s) the point on ∂Ω�n which is closest to s (in

the Euclidean distance). Then there exists some κ > 0 such that in the Harris system

stationed at z, there are at least κ · log n Harris rings that enclose s.

Proof. Let us denote λ := dist(s, z). First, logically speaking, we must rule out the

possibility that s is outside the Harris system stationed at z altogether: if this were

true, then it would imply that dist(s, ∂Ω�n ) = λ > 1
2∆ (since Harris circuits plug into
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∂Ω�n the point s can only be outside the Harris system at z altogether if it is “beyond”

the last Harris segment which parallels ∂D∆; see Theorem 3.10) which then readily

implies that all of the S–functions are of order unity: indeed, in this case S�B(s), S�C (s)

and S�D(s) can all be bounded from below by large scale events of order unity (consider

e.g., the crossing of a suitable annulus whose aspect ratio is order unity with s on the

boundary of the inner square and the outer square touching ∂Ω�n (from inside Ω�n )

together with yet another couple of crossings from the inner square of this annulus to

a larger rectangle which enclose all of Ω�n ) which would place s well away from the

boundary of Ω♦
n by Definition 3.8 and Lemma 3.5. Thus s is in a Harris ring of z.

If the separation – measured in number of Harris rings – between s and D∆ is not

so large, then we will show that |S�n (z)| is larger than a small inverse power of n. We

will accomplish this by constructing configurations which lead to the occurrence of all

three events corresponding to S�B , S
�
C , S

�
D with sufficiently large probability. To this

end we will make detailed use of the Harris system.

Let J denote the separation distance of the Harris segments which form the ring

containing s and let r > 0 be as given in Theorem 3.10. Now note that if the statement

of the lemma were false, then there would be abundantly many Harris rings separating

z from s. Consider the boxes of size 2−rJ which grid the ring containing s. Let us

observe that there are three cases: 1) the main type, s is contained in a full box which

is connected to the cluster which percolates through the ring (see Theorem 3.10, item

1); 2) the partial type, meaning that s is in a partial box, i.e., a box invaded by ∂Ω�n ;

3) s is in a full box which is separated from the cluster of main types of percolating

boxes by a partial box.

Let us rule out the possibility of 2) and 3). Case 2) is impossible since it implies

that dist(s, z) = dist(s, ∂Ω�n ) ≤ 2−rJ whereas s and z are separated by at least one

ring of scale at least B−1J (see Theorem 3.10, item 2) which, by the choice of B is

strictly larger (see Theorem 3.10, item 1): indeed, if s and z were in the same ring,

then with probability in excess of (some constant times) 1−n−Γ, with Γ as in Theorem

3.10, the occurrence or not of the events contributing to S�B , S
�
C , S

�
D would be the same

for both s and z (c.f., the proof of Proposition 3.15 below) but then by Lemma 3.5 and

Definition 3.8, it is the case that |S�n (z)−S�n (s)| & n−a4−n−β, which is a contradiction

if a4, β are appropriately chosen relative to Γ.
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Similar reasoning shows that 3) is also not possible: indeed, since z is the closest

point to s, z and s must lie along a straight line segment which lies in Ω�n and this

segment must pass through the partial box in question (i.e., the “bottleneck”) which

separates s from the percolating body of boxes. From previous considerations regarding

2−rJ (the scale of the boxes) versus dist(s, z), it is clear that there is a point on ∂Ω�n

within this partial box which is closer to s than z, a contradiction.

Thus, we find s in the main percolating body of boxes and, similar considerations

in fact places s in a box which is separated from ∂Ω�n (specifically the portion of ∂Ω�n

forming the blue boundary of this ring containing s) by several layers of boxes.

We shall now proceed to construct, essentially by hand, any of the events S�B(s),

S�C(s) or S�D(s) corresponding to the functions S�B , S
�
C , S

�
D, respectively, with “unac-

ceptably large” probability.

It is understood that the constructions that follow utilize the main body of boxes

percolating through a given Harris ring fragment, as detailed in Theorem 3.10, item 1.

For convenience, we will base our construction on 3× 1 bond events.

We remark, again, that arguments of this sort have appeared before, e.g., at least

as far back as [1], so we will be succinct in our descriptions. The events are described

as follows: let us assume, for ease of exposition, that three neighboring boxes form a

horizontal 3 × 1 rectangle. The bond event – in yellow – would then consist of two

disjoint left–right yellow crossing of the 3× 1 rectangle together with two disjoint top–

bottom yellow crossings in each of the outer two squares. It is seen that if a pair of

such rectangles overlap on an end–square, and the bond event occurs for both of them,

then, regardless of the orientations, there are two disjoint yellow paths which transmit

from the beginning of one to the end of the other. I.e., these “bonds” have the same

connectivity properties as the bonds of Z2 and provide us with double paths.

Starting with the square containing s we may suppose there is (or construct) a

yellow ring in the eight boxes immediately surrounding and encircling this square.

Via the bond events just described, we connect this encircling ring to the outward

boundary of the Harris annulus to which s belongs. Each of these events – which are

positively correlated – incurs a certain probabilistic cost. However, it is observed, with

emphasis, that since the relative scales of the Harris ring and the bonds used in the

construction are fixed independent of the actual scale, the cost may be bounded by a
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number independent of the actual scale.

Similarly, we may use the bonds to acquire a double path across the next (outward)

ring and the two double paths may be connected to form a continuing double path by

explicit use of a “patch” consisting of the smaller of the two bond types. Again, since

the ratio of scales of (boxes of) successive Harris rings are uniformly bounded above

and below, the probabilistic cost does not depend on actual scale. The procedure of

double crossing via bond events and patches can be continued till the boundary of D∆

is reached; thereupon, treating D∆ and its vicinity as an annulus in its own right, the

two paths can be connected to separate boundaries at an additional cost of order unity.

Now let us assume for the moment that s ∈ [B♦
n , C

♦
n ], so that by Lemma 3.5

and Definition 3.8 it is the case that S�D(s) ≤ C · (n−a4 + n−β) for some constant

C > 0, so denoting by e−V (for some V > 0) the uniform bound on the cost of one

patch and one annular crossing via the double bonds, if κ > 0 is sufficiently small

so that e−κV logn = n−κV > C · (n−a4 + n−β) then it is evidently not possible that

s ∈ [B♦
n , C

♦
n ]. By cyclically permuting the relevant B,C,D labels, the cases where

s ∈ [C♦
n , D

♦
n ], s ∈ [D♦

n , B
♦
n ] follow similarly.

The ensuing arguments will require an auxiliary point somewhat inside Ω♦
n , which

we will denote A♦n :

Definition 3.13. Let Ω�n ,Ω
♦
n , etc., be as described. Let η > 0 be a number to be

specified in Proposition 3.14. Then we let A♦n be a point in the Harris ring which is

separated from D∆ by η · log n Harris segments. Moreover, A♦n is in the center of a

main type box of this ring. Here we are referring to boxes described in Theorem 3.10,

item 1 and the meaning of main type is as in the proof of Lemma 3.12.

Proposition 3.14 There exists some η > 0 such that if A♦n is as in Definition 3.13,

then there exists some γ > 0 such that

1. |S�n (A�n )− S�n (A♦n )| . n−γ;

2. |H�n (A�n )−H�n (A♦n ) . n−γ;

In particular, with appropriate choice of γ, A♦n is strictly inside Ω♦
n .

Proof. First let us establish item 1. It is claimed that for any configuration in which

the event A(A♦n ) – of a blue circuit connecting [D�n , A
�
n ] to [A�n , B

�
n ] which surrounds
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both A�n and A♦n (as described in Theorem 3.10, item 3) – occurs, then the indicator

function of the yellow version of S�n (A�n ) is equal to that of S�n (A♦n ). Indeed, for the

S�C–component, which always vanishes for A�n , the requisite event in yellow is directly

obstructed by the blue paths of A(A♦n ). As for the rest, for either of the differences in

the B or D components to be non–zero, there must be a long yellow path separating

A�n from A♦n heading to a distant boundary, but this separating path is preempted by

the blue event A(A♦n ). We may thus conclude that

E(|IS�n (A�
n ) − IS�n (A♦n )| | A(A♦n )) = 0 (3.5)

(where I(•) denotes the indicator) which together with Lemma 3.12 and Theorem 3.10,

item 3 gives the result.

As for item 2, recalling the discussion near the end of the proof of Theorem 3.3,

we may consider Ω�n to be a fixed continuum domain and, e.g., for N ≥ n, the domain

Ω�n,N to be its canonical approximation (together with appropriate approximations for

the marked points A�n , B
�
n , etc.) for a percolation problem at scale N−1. We will

consider the corresponding CCS–functions S�n,N on the domains Ω�n,N .

Let us now argue that the arguments for item 1 persist, uniformly, for all N suf-

ficiently large. First, it is emphasized that all the results follow from the occurrence

of paths in each Harris ring, which has probability uniformly bounded from below.

We claim that this remains the case for percolation performed at scale N−1. Indeed,

while the scales of the Harris rings were constructed existentially to ensure uniform

bounds on crossings at scale n−1, it is recalled that these rings are gridded by boxes of

scale 2−r relative to the rings themselves (see Theorem 3.10, item 1). Thence, using

uniform probability crossings in squares/rectangles, etc., the necessary crossings can

be constructed by hand as in e.g., the proof of Lemma 3.12.

For the last statement, we invoke an argument similar to that in the proof of Lemma

3.12. Recapitulating the construction, we acquire a lower bound on the probability of

occurrence of any of the events associated with the S–functions for A♦n . Finally, since

S�n is close to F�n by Lemma 3.5 the latter of which is used to define ∂Ω♦
n , with

appropriate choice of power of n, A♦n can be placed in the interior of Ω♦
n .

Proposition 3.15 There exists some a5 > 0 such that

|F�n (A♦n )− S�n (A�n )| ≤ n−a5 .
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Proof. This follows immediately from Proposition 3.14, item 1 and Lemma 3.5.

Finally, we will need a result concerning the conformal maps H♦
n and H�n . First we

state a distortion estimate:

Lemma 3.16 Let ε > 0 and let K ⊆ T be a domain whose boundary is a Jordan curve

such that the sup–norm distance between ∂K and ∂T is less than ε. We consider K to

be a conformal triangle with some marked points KB,KC ,KD such that |KB − 1| < ε,

|KC − τ | < ε, |KD − τ2| < ε, and let gK denote the conformal map from K to T

mapping (KB,KC ,KD) to (1, τ, τ2). Then for z ∈ K it is the case that

|gK(z)− z| . [ε · log(1/ε)]1/3.

Proof. The result for the disk (without the power of 1/3) is a classical result going back

to Marchenko (for a statement see [17], Section 3) and of course, we can transfer our

hypotheses to the disk by applying a conformal map φ, which maps T to the unit disk

such that φ(0) = 0. The map φ does not increase the distances, because it is smooth

up to the boundary everywhere but at 1, τ , and τ2, where it behaves locally like ε3,

which in fact only decreases the distances.

We are almost in a position to directly apply Marchenko’s Theorem except for a few

caveats. First of all Marchenko’s Theorem requires a certain geometric condition on

the tortuosity of the boundary of K, which is manifestly satisfied under the assumption

that ∂K and the boundary of the triangle are close in the sup–norm distance.

Secondly, Marchenko’s Theorem is stated for some map fK with fK(0) = 0 and

f ′K(0) > 0, and we have a possibly different normalization. Specifically, we have some

map GK : φ(K) → D so that φ−1 ◦ GK ◦ φ = gK , so it suffices to check that GK has

approximately the correct normalizations (indeed, the conformal self–map of the unit

disc mapping a point a to the origin takes the form eiθ ·
(
z−a
1−āz

)
).

Since φ(0) = 0 and 1+τ +τ2 = 0 it is the case that φ−1((1− ε) ·φ(KB +KC +KD))

is close to 0 and also close to w := φ−1((1−ε) ·φ(KB))+φ−1((1−ε) ·φ(KC))+φ−1((1−

ε) · φ(KD)); since it is also the case that gK(KB) + gK(KC) + gK(KD) is close to 0,

we have that GK(w) is close to 0. So we now have that GK(z) is close to some eiθz

for some fixed θ. But since φ(KB) is close to φ(1), and so z0 := φ−1((1− ε)φ(KB)) is

close to both 1 and e−iθGK(1), it follows that |eiθ − 1| . ε · log(1/ε).
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Finally, in transferring the result back to the triangle, the behavior near the vertices

of the triangle requires us to replace the distances by their cube roots.

Remark 3.17. We remark that for our purposes, we can in fact avoid the fractional

power: indeed, we shall only use this result at the point A♦n , which we remind the

reader is chosen to be in the Harris system stationed at A�n and by Lemma 5.10 we

may assert that it is within a fixed small neighborhood of A�n and therefore outside

fixed neighborhoods of the other marked points.

Lemma 3.18 There exists some a6 > 0 such that for all n sufficiently large,

|H♦
n (A♦n )−H�n (A♦n )| . n−a6 .

Proof. Denoting byGn the conformal map mappingH�n (Ω♦
n ) to T with (H�n (B♦

n ), H�n (C♦
n ),

H�n (D♦
n )) mapping to (1, τ, τ2), we have by uniqueness of conformal maps that

H♦
n = Gn ◦H�n .

The stated result will follow from Lemma 3.16, and in order to utilize this lemma, we

need to verify that (H�n (B♦
n ), H�n (C♦

n ), H�n (D♦
n )) is close to (1, τ, τ2) and to show that

the sup–norm distance between ∂[H�n (∂Ω♦
n )] and ∂T is less than n−γ for some γ > 0.

The first statement is a direct consequence of Proposition 3.11: since O(log n) Harris

rings surround both B♦
n and B�n , by an argument as in the proof of Proposition 3.14,

their S�n values differ by an inverse power of n and the result follows since S�n (B�n ) ≡ 1;

similar arguments yield the result for C♦
n , D

♦
n .

As for the second statement, first we have by Lemma 3.5 and Lemma 3.9 that the

distance between ∂[S�n (∂Ω♦
n )] and ∂T is less than (some constant times) n−a4 + n−β;

we emphasize that here we in fact have closeness in the sup–norm since both lemmas

yield pointwise estimates. Next, as near the end of the proof of Theorem 3.3, we may

consider Ω�n to be a fixed continuum domain and, e.g., for N ≥ n, the domain Ω�n,N

to be its canonical approximation (together with appropriate approximations for the

marked points A�n , B
�
n , etc.) for a percolation problem at scale N−1. We will consider

the corresponding CCS–functions S�n,N on the domains Ω�n,N .

We claim that there exists some γ > 0 such that uniformly in N for N sufficiently

large, the sup–norm distance between ∂[S�n,N (∂Ω♦
n )] and ∂T is less than n−γ . Indeed,
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from Lemma 3.12, we know that for each point s on ∂Ω♦
n , there are κ · log n Harris

rings stationed at z(s) which separate it from the central region D∆. While by fiat

S�n,N=n(∂Ω♦
n ) is close to ∂T, we shall reprove this using the Harris systems since we

require an estimate which is uniform in N . We start with the following observation

concerning the central region D∆:

Claim. For n sufficiently large, with probability of order unity independent of n,

there are monochrome percolative connections between D∆ and any or all of the three

boundary segments.

Proof of Claim. Consider the domain Ω with marked points B,C,D, viewed as a

conformal triangle. It is recalled that D∆ is roughly half the size of the largest circle

which can be fit into Ω. Let us focus on two of the three marked points, say B and D.

We now mark two boundary points on D∆ and denote them by b and d and consider

two disjoint curves which join B to b and D to d, thereby forming a conformal rectangle.

Since the aspect ratio of said rectangle is fixed, it therefore follows, by convergence to

Cardy’s Formula, that for n sufficiently large, there is a uniform lower bound on the

discrete realization of the desired connection. Similar arguments apply to the other

two boundary segments.

Claim. Consider s ∈ ∂Ω♦
n and the Harris system stationed at z(s) ∈ ∂Ω�n , as in

Lemma 3.12) which, without loss of generality, we assume to be in [B�n , D
�
n ]. Then

there exists some fixed constant Υ < ∞ such that all but Υ of the Harris segments

have at least one endpoint on [B�n , D
�
n ] and either accomplishes SD or SB for both s

and z(s) or have both endpoints on [B�n , D
�
n ]. Similar statements hold if z belongs to

the other boundary segments.

Proof of Claim. Let us first rule out the possibility that too many Harris segments have

endpoints on [B�n , C
�
n , D

�
n ]. It is noted that each Harris segment of this type in fact

separates all of [B�n , D
�
n ] from D∆. Thus, if there are say Υ such Harris segments, then

the probability of a connection between D∆ and [B�n , D
�
n ] would be less than (1−ϑ)Υ,

with ϑ > 0 as in Theorem 3.10. It follows from the previous claim that Υ cannot scale

with n.
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Finally, if there are too many Harris segments with one endpoint on [B�n , D
�
n ],

but accomplishes neither S�B nor S�D, then necessarily the other endpoint must be

on [B�n , C
�
n ] or [C�n , D

�
n ] in such a way that the Harris segment separates D∆ from

[B�n , C
�
n ] or [C�n , D

�
n ]. The same reasoning as in the above paragraph then implies

that this also cannot occur “too often”.

We also note that there cannot be Harris segments of conflicting “corner types”

since the Harris segments are topologically ordered and cannot intersect one another.

We can now acquire the needed conclusion that the Harris rings themselves force

S�n,N (s) to be close to ∂T. The essence of the argument can be captured by the

(redundant) case N = n, so let us proceed. Consider then s ∈ ∂Ω♦
n and the Harris

system stationed at z(s) ∈ ∂Ω�n as above which, without loss of generality, we assume

to be in [B�n , D
�
n ]. Then we claim that |S�n (z(s)) − S�n (s)| . n−κ. Indeed, from the

previous claim, the possible landing locations for “most” of the Harris segments are

very limited and in all cases (including the possibility of a “mixed” case) conditioned

on the existence of paths in the appropriate color in the Harris segments, the indicator

functions of all S�n –events are the same for both s and z(s).

Let us now argue that the above argument persists, uniformly, for all N sufficiently

large. First, it is emphasized that all arguments follow from the occurrence of paths in

each Harris ring, which has probability uniformly bounded from below. We claim that

this remains the case for percolation performed at scale N−1. Indeed, we reiterate,

these rings are gridded by boxes of scale 2−r relative to the rings themselves (see

Theorem 3.10) and using uniform probability of crossings in squares/rectangles, etc.,

which is characteristic of critical 2D percolation problems, the necessary crossings can

be constructed by hand as in e.g., the proof of Lemma 3.12.

Now by convergence to Cardy’s Formula (or rather, the statement that the CCS–

function converges uniformly on compact sets to the conformal map to T) it is the case

that S�n,N (s)→ H�n (s). Uniformity in s follows from the fact that Ω♦
n ⊆ Ω�n is a fixed

(for n fixed) compact set, c.f., Section 5 in [5]. We conclude therefore that each point

on ∂Ω♦
n maps to a point sufficiently close to ∂T, and since ∂[H�n (∂Ω♦

n )] is a curve, it

easily follows that the Hausdorff distance is small.

However, we require the stronger statement that the relevant objects are close in
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the sup–norm. We will now strengthen the above arguments to acquire this conclusion.

Let us define the set of all points which are chosen as the z(s) (the closest point to s)

for some s in 〈∂Ω♦
n 〉N (the approximation to ∂Ω♦

n at scale N−1):

ZN := {z ∈ ∂Ω�n,N | ∃s ∈ 〈∂Ω♦
n 〉N , z = z(s)}.

Let us first observe that a priori ZN is a discrete set of points on ∂T which we may

consider to be a curve by linear interpolation. For simplicity let us consider the portion

of ∂T corresponding to the [C,D] boundary, i.e., the vertical segment connecting τ and

τ2. Let us focus attention on S�n,N ([C�n,N , D
�
n,N ] ∩ ZN ). By monotonicity of crossing

probabilities, it is the case that these points are ordered along the vertical segment.

Now our contention is that there are no substantial gaps between successive points:

Claim. Let ν > 0 be such that n−ν � n−κ, where κ as above is such that |S�n,N (s)−

S�n,N (z(s))| . n−κ. Then for all N > n, it is the case that the maximum separation

between successive points of S�n,N ([C�n,N , D
�
n,N ] ∩ ZN ) is less than n−ν .

Proof of Claim. Suppose there are two points x1, x2 ∈ [C�n,N , D
�
n,N ] ∩ ZN say with

S�n,N (x1) below S�n,N (x2) separated by a gap in excess of n−ν . Let us denote by s1, s2 ∈

〈∂Ω♦
n 〉N the points corresponding to x1, x2, respectively. Next consider the 1

4 · n
−ν

neighborhoods of S�n,N (s1) and S�n,N (s2) and consider the points “between” s1 and s2

(there must be points between s1 and s2 since |Sn,N (s1) − Sn,N (s2)| & n−ν − n−κ

so if they were neighbors, then their S�n,N values for n sufficiently large would be

unacceptably large relative to the above inequality).

If these points all have S�n,N–value which lie in the 1
4 ·n

−ν neighborhoods described

above, then there would be a neighboring pair whose S�n,N values are separated by

1
2 · n

−ν , which would again be unacceptably large. We conclude therefore that there

exists some point between s1 and s2 with S�n,N value outside these neighborhoods and

therefore a point in ZN whose S�n,N value lies between those of x1 and x2. This is a

contradiction.

Finally, let us describe the parametrization. Let us denote by UN the number of

points in ZN then we may parametrize say the vertical portion of ∂T by having, for

t = j, the curve on the jth site of ZN , linearly interpolating for the non–integer times.

Similarly, we parametrize the corresponding portion of S�n,N (〈∂Ω♦
n 〉N , so that pairs of
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points at integer times correspond to their s, z(s) pair. The above claim then implies

that with this parametrization, the two curves are within n−ν at all times. We have

verified that S�n,N (〈∂Ω♦
n 〉N ) is sup–norm close to ∂T, uniformly in N .

The stated result now follows from Lemma 3.16.

Proof of the Main Theorem. The required power law estimate for the rate of con-

vergence of crossing probabilities now follows by concatenating the various theorems,

propositions and lemmas we have established. Let us temporarily use the notation

A ∼ B to mean that A and B differ by an inverse power of n.

Starting with Sn(An), we have that Sn(An) ∼ S�n (A�n ) by Theorem 3.3; S�n (A�n ) ∼

S�n (A♦n ) by Proposition 3.14, item 1; S�n (A♦n ) ∼ F�n (A♦n ) by Lemma 3.5; F�n (A♦n ) ∼

H♦
n (A♦n ) by Lemma 3.9; H♦

n (A♦n ) ∼ H�n (A♦n ) by Lemma 3.18; H�n (A♦n ) ∼ H�n (A�n ) by

Proposition 3.14, item 2; finally, H�n (A�n ) ∼ H(A) by Theorem 3.3.

4 σ–Holomorphicity

The main goal in this section is to establish the so–called Cauchy integral estimates

which is one of the more technical aspects required for the proof of Lemma 3.5. We will

address such issues in somewhat more generality than strictly necessary by extracting

the two properties of functions of the type Sn(z) which are of relevance: i) Hölder

continuity and ii) that their discrete (closed) contour integrals are asymptotically zero

as the lattice spacing tends to zero. As for the latter, it should be remarked that the

details of how our particular Sn(z) exhibits its cancelations on the microscopic scale

can be directly employed to provide the Cauchy–integral estimates.

4.1 (σ, ρ)–Holomorphicity

As a starting point – and also to fix notation – let us review the concept of a discrete

holomorphic function on a hexagonal lattice. Let Hε denote the hexagonal lattice at

scale ε, i.e., the length of the sides of each hexagon is ε, so we envision ε = n−1, where

the hexagons are oriented horizontally (i.e., two of the sides are parallel to the x–axis).

For now, let Λε denote any collection of hexagons and Q : Λε → C a function on the
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vertices of Λε. For each pair of adjacent vertices in Λε let us linearly interpolate Q on

the edges (so that in particular, Q as a function on edges when integrated with respect

to arc length yields the average of the values of Q at the two endpoints):

Then we say that Q is discrete holomorphic on Λε if for any hexagon hε ∈ Λε

with vertices (v1, . . . v6) – in counterclockwise order with v1 the leftmost of the

lowest two – the following holds:

0 =

(
Q(v1) +Q(v2)

2
+ · · ·+ ei

5
3
π · Q(v6) +Q(v1)

2

)
= ε−1 ·

˛
∂hε

Q dz.

That is, the usual discrete contour integral (by this or any equivalent) definition van-

ishes. By way of contrast, we have the following mild generalization pertaining to

sequences of functions.

Definition 4.1. Let Λ ⊂ C be a simply connected domain and denote by Λε the

(interior) discretized domain given as Λε :=
⋃
hε⊂Λ hε and let (Qε : Λε → C) be a

sequence of functions defined on the vertices of Λε. Here ε is tending to zero and,

without much loss, may be taken as a discrete sequence. we say that the sequence (Qε)

is σ–holomorphic if there exist constants 0 < σ, ρ ≤ 1 such that for all ε sufficiently

small:

(i) Qε is Hölder continuous (down to the scale ε) and up to ∂Λε, in the sense

that there exists some ψ > 0 (envisioned to be small) such that 1) Qε is Hölder

continuous in the usual sense for zε, wε ∈ Λε \Nψ(∂Λ): if |zε−wε| < ψ, then |Qε(zε)−

Qε(wε)| .
(
|zε−wε|

ψ

)σ
and 2) if zε ∈ Nψ(∂Λ), then there exists some w?ε ∈ ∂Λε such

that |Qε(zε)−Qε(w?ε)| .
(
|zε−w?

ε |
ψ

)σ
.

(ii) for any simply closed lattice contour Γε,

|
˛

Γε

Q dz| = |
∑
hε∈Λ′ε

˛
∂hε

Q dz| . |Γε| · ερ, (4.1)

with Λ′ε, |Γε| denoting the region enclosed by Γε and the Euclidean length of Γε,

respectively.

Remark 4.2. (i) Obviously any sequence of discrete holomorphic functions which also

satisfy the Hölder continuity condition are σ–holomorphic.

(ii) There are of order |Γε|/ε terms in a discrete contour integration but each term

is multiplied by ε and so in cases where |Γε| = O(1) (a contour of fixed finite length)
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|Γε| need not be explicitly present on the right hand side of Equation (4.1). We have

introduced a more general definition as we shall have occasion to consider contours

whose lengths scale with ε (specifically they are discrete approximations to contours

that are not rectifiable).

(iii) From the assumption of Hölder continuity alone, we already have that |
¸
∂hε

Q dz| .

ε1+σ, but on a moment’s reflection, it is clear that this is quite far from what is nec-

essary to provide adequate estimates for the integral around contours of larger scales

that are amenable to the ε→ 0 limit.

We will now gather the necessary ingredients to establish that the (complexified)

CCS–functions are (σ, ρ)–holomorphic. The arguments here are certainly not new:

various ideas and statements needed are almost already completely contained in [15],

[11] and [5].

Proposition 4.3 Let Λ denote a conformal triangle with marked points (or prime

ends) B, C, D and let Λε denote an interior approximation (see Definition 3.1 of [5]) of

Λ with Bε, Cε, Dε the associated boundary points. Let Sε(z) denote the complex crossing

function defined on Λε. Then for all ε sufficiently small, the functions (Sε : Λε → C)

are (σ, ρ)–holomorphic for some σ, ρ > 0.

Proof. We will first establish, using some conformal mapping ideas, that Sε enjoys

Hölder continuity up to the boundary; since arguments like this already appear in [4]

and [5], we will be brief. Let us start with a pointwise statement:

Claim. Suppose we have a point A on the [D,B] boundary, then we claim that there

is some ∆? ≡ ∆?(A) (with 1� ∆? � ε) and a connected set N∆? ⊂ Λε, also contained

in the ∆? neighborhood of Aε and connected to Aε, such that the following holds: there

exists some σ > 0 such that for any z ∈ N∆? ,

|Sε(z)− Sε(Aε)| .
[
|z −Aε|

∆?

]σ
.

Proof of Claim. Let z ∈ Λε and consider the Sε(z) to be described by blue paths. Then

it is clear that if there is a yellow path starting on [Dε, Aε] and ending on [Aε, Bε] which

encircles z then events contributing to Sε(z) and Sε(Aε) occur together and there is

no contribution to |Sε(z)− Sε(Aε)|. The power (|z − Aε|/∆?)σ corresponds to having

the order of | log(|z − Aε|/∆?)| annuli (or coherent portions thereof) connecting the
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two parts of the [Dε, Bε] boundary with an independent chance of such a yellow circuit

in each segment with uniformly bounded probability. Thus the principal task is to

construct the reference scale ∆? in a manner which is uniform in ε. While the entire

issue is trivial when |A−Aε|, |B−Bε| etc., are small compared to the distance between

various relevant “points” on Λ, we remind the reader that under certain circumstances,

the separation between these points and their approximates may be spuriously large.

Thus we turn to uniformization.

To this end, let ϕ : D → Λ denote the uniformization map. Let X ′A denote a

crosscut neighborhood of ϕ−1(A) which does not contain any of the inverse images of

the marked points ϕ−1(B), . . . nor, for ε small, the inverse images of their approximates

ϕ−1(Bε), . . . but which does (for ε small) contain ϕ−1(Aε). Next we set XA := X ′A ∩

ϕ−1(Λε) so that

ϕ(XA) = ϕ(X ′A ∩ ϕ−1(Λε)).

Note that (ϕ−1
ε ◦ ϕ)(XA) is itself a crosscut neighborhood of the image of Aε since Λε

is an interior approximation; here ϕε denotes the uniformization map associated with

Λε.

Next let rΠ = rΠ(Aε) be standing notation for the square centered at Aε of side

Π. Then, for ∆? sufficiently small, it is the case that ϕ−1(r∆?) ⊂ XA and it is worth

observing that ϕ−1
ε (∂(rΠ ∩ ϕ(Xδ))) is a crosscut containing ϕ−1

ε (Aε) for all Π ≤ ∆?.

But now, it follows that there is a nested sequence of (partial) annuli, down to scale

|z −Aε|, contained inside r∆? , within each of which there is a connected monochrome

chain with uniform and independent probability separating z from Aε.

From the claim we have that corresponding to each boundary point of Λ, we

have a neighborhood ∆?(z) in which we have Hölder continuity and it is certainly

the case that ∂Λ ⊆
⋃
z∈∂ΛN∆?(z), so by compactness there exist z(1), . . . , z(k) such

that ∂Λ ⊆
⋃k
`=1N∆?(z(`)). Adding a few N∆(z)’s if necessary so that all neighborhoods

have non–trivial overlap, this implies the existence of some ψ > 0 such that Nψ(∂Λ) ⊆⋃k
`=1N∆?(z(`)) (here Nψ(∂Λ) denotes the Euclidean ψ–neighborhood of ∂Λ). In partic-

ular, ψ ≤ ∆?(z(`)), ` = 1, . . . , k, so if ε � ψ, and zε ∈ Nψ(∂Λ), then zε ∈ N∆?(z(`)) for

some ` and so |Sε(zε)−Sε(z(`)
ε )| .

(
|zε−z(`)

ε |
ψ

)σ
. For zε, wε ∈ Λε\Nψ(∂Λ), |zε−wε| < ψ,

there are clearly of the order log(|zε−wε|/ψ) annuli surrounding both zε from wε and
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we obtain |zε − wε| .
(
|zε−wε|

ψ

)σ
.

Finally, the statement concerning the behavior of discrete contour integrals of Sε

can be directly found in [15] for the triangular lattice (also c.f., discussion in [2]) and

in [11], §4.3, for the extended models.

4.2 Cauchy Integral Estimate

We will start by establishing a multiplication lemma for an actual holomorphic function

with a nearly–holomorphic function:

Lemma 4.4 Let Qε be part of a (σ, ρ)–holomorphic sequence as described in Definition

4.1. above. Let ε > 0 and suppose Γε is a discrete closed contour consisting of edges of

hexagons at scale ε. Let q(z) be a holomorphic function on Λ restricted to Λε (regarded

as a subset of C). Next let 1 � D � ε (both considered small). Then for all ε ≥ 0

sufficiently small

|
˛

Γε

q ·Qε dz| . (‖q‖∞ ·
ερ

D
+ ‖q‖C1 ·Dσ) · (|Int(Γε)|+ |Γε| ·D).

Proof. Consider a square–like grid of scale D and let Rk denote the kth such square

which has non–empty intersection with Λε. Next we let

γk := ∂(Rk ∩ Int(Γε)).

Note that γk is not necessarily a single closed contour, but each γk is a collection of

closed contours. It is observed that if F is a function, then
¸

Γε
F dz =

∑
k

¸
γk
F dz,

where by abuse of notation, as mentioned above, each term on the righthand side may

represent the sum of several contour integrals. Next let us register an estimate within

a single region bounded a γk, the utility of which will be apparent momentarily:

Claim. Let zk ∈ Rk (if Rk intersects ∂Λε then choose zk in accordance with item (i)

of the definition of σ–holomorphicity so that Hölder continuity of Q can be assumed).

Then ˛
γk

q ·Q dz = q(zk) ·
˛
γk

Q dz + Ek, (4.2)

where

|Ek| . |γk| · ‖q‖C1 ·D1+σ
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and to avoid clutter, we omit the ε subscript on the Q’s.

Proof of Claim. Let us write

Q(z) = Q(zk) + δQ(z).

Similarly, let us write

q(z) = q(zk) + δq(z).

We then have that

˛
γk

q ·Q dz − q(zk) ·
˛
γk

Q dz =

˛
γk

δQ · δq dz +Q(zk) ·
˛
γk

δq dz.

The second term on the right hand side vanishes identically by analyticity of q whereas

the integrand of the first term, by the assumed Hölder continuity of Q and analyticity

of q, can be estimated via . ‖q‖C1 ·D ·Dσ and the claim follows.

Therefore we may write

˛
Γε

q ·Q dz =
∑
k

˛
γk

q ·Q dz :=
∑
k

q(zk) ·
˛
γk

Q dz +
∑
k

Ek,

where zk is a representative point in the region Rk∩Int(Γε). We divide the error on the

righthand side into two terms, corresponding to interior boxes – which do not intersect

Γε, and boundary boxes – the complementary set.

Let us first estimate the interior boxes. Here, from the claim we have that the

integral over each such box incurs an error of ‖q‖C1 ·D2+σ since here |γk| . D. There

are of order |Int(Γε)| · D−2 interior boxes so we arrive at the estimate ‖q‖C1 · Dσ ·

|Int(Γε)|. On the other hand, for boundary boxes, the contribution to the errors from

the boundary boxes will certainly contain the original contour length |Γε|. To this we

must add .D × [the number of boundary boxes] corresponding to the “new” boundary

of the boxes themselves that we might have introduced by considering the boxes in the

first place. This is estimated as follows:

Claim. Let M(Γε, D) denote the number of boundary boxes – i.e., the number of

boxes on the grid visited by Γε. Then M . |Γε|/D.

Proof of claim. Since arguments of this sort have appeared in the literature (e.g., [4],

[9], [10]) many times, we shall be succinct: We divide the grid into 9 disjoint sublattices
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each of which indicated by its position on a 3× 3 square. Let M1, . . . ,M9 denote the

number of boxes of each type that are visited by Γε. We may assume without loss

of generality that ∀j, M1 ≥ Mj . Let us consider the coarse grained version of Γε

as a sequence of boxes on the first lattice (visited by Γε); revisits of a given box are

not recorded until/unless a different element of the sublattice has been visited in–

between. Since the distance between each visited box is more than D it follows that

corresponding to each visited box the curve Γε must “expend” at least D of its length,

i.e., |Γε| ·D ≥M1 ≥ (1/9) ·M and the claim follows.

It is specifically observed that the additional boundary length incurred is at most

comparable to the original boundary length. In any case altogether we acquire an

estimate of the order |Γε| · ‖q‖C1 ·D1+σ. We have established

|
∑
k

Ek| . ‖q‖C1 ·Dσ · (|Int(Γε)|+ |Γε| ·D).

Finally, by item ii) of (σ, ρ)–holomorphicity,

∑
k

|q(zk) ·
˛
γk

Q dz| . ‖q‖∞ · ερ · (|Int(Γε)| ·D−1 + |Γε|).

This follows from the decomposition similar to the estimation of the Ek terms with

the first term corresponding to interior boxes and the second to boundary boxes. The

lemma been established.

We can now immediately control the Cauchy integral of a (σ, ρ)–holomorphic func-

tion uniformly away from the boundary:

Corollary 4.5 Let Qε be part of a (σ, ρ)–holomorphic sequence as described in Def-

inition 4.1 above. Let Gε(z) be given as the Cauchy–integral of Qε – as in Eq.(4.4) –

over some (discrete Jordan) contour Γε. Let z denote any lattice point in Int(Γε) such

that

dist(z,Γε) ≥ d1

for some d1 > 0 and let D � ε (both considered small). Then for all ε > 0 sufficiently

small, and any d2 < d1,
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|Gε(z)−Qε(z)| = |
1

2πi

˛
Γε

(Qε(ζ)−Qε(z)) ·
1

ζ − z
dζ |

.

(
ερ

d2D
+
Dσ

d2
2

)
· (|Int(Γε)|+ |Γε| ·D) +

(
d2

d1

)σ (4.3)

Proof. This is the adaptation of standard arguments from the elementary theory of

analytic functions to the present circumstances. Let γd2 denote an approximately

circular contour that is of radius d2 and which is centered at the point z. Let Γ′ε

denote the contour Γε together with γd2 – traversed backwards – and a back and forth

traverse connecting the two. We have, by Lemma 4.4, that

| 1

2πi

˛
Γ′ε

(Qε(ζ)) · 1

ζ − z
dζ | .

(
ερ

d2D
+
Dσ

d2
2

)
· (|Int(Γε)|+ |Γε| ·D)

where, in the language of this lemma, we have used ‖q‖∞ . d−1
2 and ‖q‖C1 . d−2

2 .

Thus we write

Gε(z) =
1

2πi

˛
γd2

Qε(ζ)

ζ − z
dζ + E2

we have that |E2| is bounded by the right hand side of the penultimate display. So,

subtracting Qε(z) in the form

Qε(z) =
1

2πi

˛
γd2

Qε(z)

ζ − z
dζ

we have that

|Gε(z)−Qε(z)| . |E2|+
1

2π

˛
γd2

|Qε(z)−Qε(ζ)|
ζ − z

dζ

and the stated result follows immediately from the Hölder continuity of Qε.

By inputing information on |∂Ω�n |, the required Cauchy–integral estimate now fol-

lows:

Proof of Lemma 3.5. We first recall the statement of the lemma:

Let Ω�n and S�n be as in Proposition 3.2 so that

|∂Ω�n | ≤ nα(1−a1),

where M(∂Ω) = 1 +α. For z ∈ Ω�n (with the latter regarded as a continuum object) let

F�n (z) =
1

2πi

˛
∂Ω�

n

S�n (ζ)

ζ − z
dζ. (4.4)
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Then for a1 sufficiently close to 1 there exists 0 < β < σ, ρ such that for all z ∈ Ω�n so

that dist(z, ∂Ω�n ) > d1 for some d1 > 0 (a sublinear power of n)∣∣S�n (z)− F�n (z)
∣∣ . n−β.

By Proposition 4.3, we have that the functions S�n (z) (with ε = n−1) have the

(σ, ρ)–holomorphic property. In addition, we shall also have to keep track of a few

other powers of ε, which we now enumerate:

i) let us define b1 > 0 so that in macroscopic units we have

|∂Ω�N | ≤ ε−α(1−a1) := ε−αb1 ;

ii) let us define

d2 := εs,

for some s > 0 to be specified later;

iii) finally, we define

D := εt,

where the role of D will be the same as in the proof of Lemma 4.4 (it is the size

of a renormalized block).

Plugging into Corollary 4.5, we obtain that∣∣S�n (z)− F�n (z)
∣∣ . ( ερ

d2D
+
Dσ

d2
2

)
· (|Int(∂Ω�n )|+ |∂Ω�n | ·D) +

(
d2

d1

)σ
.
(
ερ−(s+t) + εtσ−2s

)
· (1 + ε−αb1+t) +

εsσ

dσ1

= ερ−(s+t) + ερ−s−αb1 + εtσ−2s + ε(1+σ)t−αb1−2s +
εsσ

dσ1
.

With σ fixed, the parameters s, t > 0 and d1 can be chosen so that all terms in the

above are positive powers of ε: set t = λσ, where λ ∈ (0, 1) so that σ > 1−λ
λ . This

choice of t implies that (1 + σ)t > σ > t. Now let s > 0 and b1 > 0 be sufficiently

small so that 2s < tσ and αb1 < t so altogether we have the last two terms are positive

powers of ε. Next take t and then s and b1 even smaller if necessary, we can also ensure

ρ > s + t and ρ > s + αb1. Finally, d1 can be chosen to be some power of ε so that

εs � d1.
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5 Harris Systems

5.1 Introductory remarks

For many purposes, the pertinent notion of distance – or separation – is Euclidean; in

the context of critical percolation, what is more often relevant is the logarithmic notion

of distance: how many scales separate two points. These matters are relatively simple

deep in the interior of a domain or in the presence of smooth boundaries. However, for

points in the vicinity of rough boundaries, circumstances may become complicated. For

certain continuum problems, including, in some sense, the limiting behavior of critical

percolation, there is a natural notion for a system of increasing neighborhoods about

a boundary point: the preimages under uniformization of the logarithmic sequence of

cross cuts centered about the preimage of the boundary point in question. This device

was employed implicitly and explicitly at several points in the works [4], [5]. In the

present context, we cannot so easily access the limiting behavior we are approaching.

Moreover, in order to construct such a neighborhood sequence at the discrete level, it

will be necessary to work directly with Ωn itself.

We will construct a neighborhood system for each point in ∂Ωn by inductively

exploring the entire domain via a sequence of crossing questions. Our construction

demonstrates (as is a posteriori clear from the convergence of Sn to a conformal map)

that various domain irregularities e.g., nested tunnels, which map to a small region un-

der uniformization are, in a well–quantified way, also unimportant as far as percolation

is concerned.

5.2 Preliminary Considerations

Let Ω ⊂ C be a simply connected domain with diam(Ω) < ∞ and let 2∆ denote the

supremum of the radius of all circles which are contained in Ω. Further, let D∆ denote

a circle of side ∆ with the same center as a circle for which the supremum is realized.

We will denote by Ωm some interior discretization of Ω, as before. For ω ∈ ∂Ωm we

will define a sequence of segments the boundaries of which are paths beginning and

ending on ∂Ωm. As a rule, these segments separate ω from D∆. The dimensions of

these segments will be determined by percolation crossing probabilities analogous to
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the system of annuli (of which these are fragments) investigated by Harris in [12]. We

will call the resultant objects Harris rings.

We will start with some preliminary considerations. Let S0(ω) denote the small-

est square centered at some ω ∈ ∂Ωm whose boundary is tangent to ∂D∆. We set

R0(ω) := S0(ω) ∩ Ωm; the successive topological rectangles R1(ω), . . . , Rk(ω), . . . will

be constructed via a non–trivial inductive procedure: 1) there will be deformations of

the shape of the annular segments; 2) the sizes of the smaller squares (location of the

next boundary) will be determined by percolation crossing probabilities; 3) the basic

shape will not always be a square centered at ω.

We denote an annular ring fragment by e.g., Am := [Sm−1 \ Sm] ∩ Ωm. We think

of the segment Am as having four boundary segments, forming a topological rectangle.

Part of our inductive procedure involves a coloring – i.e., a determination – of portions

of the inner and outer boundaries of Am as yellow, but the remaining boundaries,

considered blue, will be portions of ∂Ωm. Indeed, note that the boundary ∂Ωm cuts

through such a ring and thus the portion of interest (i.e., lying in Ωm) is a topological

rectangle and it is clear that there are dual crossing problems of say a yellow crossing

plugging into parts of the ring from the original annulus, which we may consider to be

the yellow boundary, and a blue crossing joining the said blue boundaries.

Key in the definition is that for some 0 < ϑ < 1/2, it will be the case that the

probability of a yellow crossing between the yellow segments of the boundaries and the

probability of a blue crossing between the blue segments of the boundaries are both in

excess of ϑ (and therefore less than 1− ϑ).

We will describe what is fully required in successive stages of increasing complexity,

but before we begin, let us dispense with some lattice details. While the definitions

and conventions which follow are certainly not immediately necessary, we have elected

to display them first since on the one hand such details are ultimately inessential but

on the other hand may serve to foreshadow what is to come.

Definition 5.1. The moral behind these definitions is that all lattice details should

be resolved in as organic a way as possible via the definition of the percolation model

of interest. The models of interest for us are hexagonal based: each model provides

some smallest independent unit (abbreviated SIU) in the sense that such a unit (a

subset of the lattice) can be stochastically configured independently and any smaller
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subset is correlated with some neighbor; in the case of hexagonal tiling the smallest

such unit is simply a hexagon whereas for the generalized models in [11] the smallest

unit can be either a single hexagon or a flower (which consist of 7 hexagons). All

notions of neighborhood, self–avoiding, etc., then should be thought of in terms of the

intrinsic definition of connectivity. (We warn the reader, however, that in the case

of the model introduced in [11], path transmissions may take place over fractions of

hexagons/flowers.)

1. unless otherwise specified x y (with x, y ∈ Ωm) means a monochrome percola-

tion connection inside Ωm from x to y;

2. we shall often use descriptions like horizontal and vertical, and this should be

understood to mean the closest lattice approximation to either a horizontal or

vertical segment (e.g., assuming hexagons are oriented so that there are two ver-

tical edges parallel to the y–axis, a horizontal segment of hexagons would just

be a consecutive string of such hexagons whereas a vertical segment of hexagons

would “zigzag”);

3. thus we envision the plane as having been coordinatized by SIU, and if x =

(x1, x2), y = (y1, y2) ∈ Ωm are SIU, we will make use of the distance

d∞(x, y) = max{|x1 − x2|, |y1 − y2|},

understood to mean e.g., if y1 = y2, then |x1−x2| is the number of hexagons/flowers

lying between x1 and x2 in the horizontal directions;

4. if Γ is a lattice segment consisting of only (approximations of) horizontal and

vertical subsegments, then ‖Γ‖∞ denotes the maximum of the total horizontal

length and the total vertical length;

5. if Γ is a lattice segment consisting of only (approximations of) horizontal and

vertical subsegments, then ‖Γ‖0 denotes the minimum of the total horizontal

length and the total vertical length;

6. if Γ is a lattice segment, the lattice k–neighborhood of Γ, denoted Nk(Γ), consists

of all hexagons that can be reached from Γ by a lattice path of length ≤ k;

7. if Γ is a lattice segment with endpoints on two points of ∂Ωm which divides ∂Ωm

into two connected components CΓ(z1) and CΓ(z2) containing points z1 and z2,
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respectively, then a successor of Γ is δNk(Γ) – by which we mean the “boundary”

of the kth lattice k–neighborhood of Γ which in the case of hexagons should be

a connected path consisting of edges of hexagons associated with the “bound-

ary”, intersected with either CΓ(z1) or CΓ(z2), so that a successor necessarily also

connects two points of ∂Ωm;

8. if Γ is a lattice segment as in the previous item, then sliding Γ in e.g., CΓ(z1)

means considering successive successors of Γ in CΓ(z1): δN1(Γ)∩CΓ(z1), δN2(Γ)∩

CΓ(z1), δN3(Γ) ∩ CΓ(z1)... where it is tacitly assumed that these neighborhoods

do not run into z1;

9. we say that e.g., a box is contiguous with some lattice segment if it is the case

that (the lattice approximation to) the boundary of the box overlaps a portion

of the lattice segment;

10. we say that e.g., a box is flush against some horizontal segment if the bottom or

top boundary of the box overlaps an end portion of the lattice segment: e.g., the

right endpoint of the segment coincides with the right end point of the bottom

boundary of the box.

Let ω ∈ ∂Ωm and note that since ∂Ωm ∩ ∂D∆ = ∅ whereas ∂D∆ has non–trivial

intersection with ∂S0(ω), we can declare the first yellow segment of the boundary,

denoted Y0, to simply be the connected component of ∂S0(ω) ∩ ∂D∆ in Ωm.

One of the properties we will require of our Harris regularization scheme is that ω

can be connected to D∆ via a sequence of boxes whose size do not increase or decrease

too fast; the boxes themselves will be comparable in size to that of the Harris segment

within which they reside. Dually, ω can be “sealed off” from D∆ by the independent

events of separating chains which have an approximately uniform probability in each

segment. Thus we envision an orientation to our constructions leading from D∆ to ω.

(Indeed, it is this orientation which permits us to choose the appropriate components

to be colored yellow at various stages of the construction.) Moreover, from these

considerations, it emerges that only the first O(log n) of these segments are relevant

for the percolation problem at hand. If Ωm has a smooth boundary this would be, in

fact, all of them; under general circumstances, the configurations in the region beyond

the first O(log n) segments has negligible impact on the percolation problem at hand.
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5.3 Preliminary Constructions

It turns out that in order to acquire the necessary quantitative control on the domain,

we in general have need for three types of constructions, which we will call the S–

construction, the Q–construction and the R–construction. We will describe them in

order as they require more and more detailed control on successive Harris segments.

The S–Construction. The starting point is the S–construction, which involves con-

centric squares centered at ω. Consider a successor square S ≡ S(ω) ⊂ S0(ω) which is

concentric with S0(ω) and consider all possible self–avoiding paths

P : ω  ∂S  Y0

such that i) P ⊆ Ωm, ii) P ∩ ∂Ωm = {ω} and iii) once P leaves S it never re–enters

S, so that the second portion of the path takes place entirely in S0 \S. We then define

the yellow segment of ∂S, denoted YS , to be the set of all exit points of all such paths

P on ∂S. We will now establish some topological properties of these yellow segments

YS .

First we claim that YS is well–defined:

Claim. All of YS belong to a single connected component in Ωm.

Proof of Claim. First it is noted that ∂Ωm may in general divide ∂S into many

components, and it is clear that Y (S) fills any such component which it has non–trivial

intersection with. Suppose then that there are two such components and containing

points z1, z2 ∈ ∂S, respectively. Consider paths P1,P2 associated with z1 and z2.

Clearly, P1 ∪P2 together with the relevant portion of Y0 form a loop inside Ωm and

because of property iii) of P1,P2, inside this loop lies the entire portion of ∂S which

connects z1 and z2; but since z1, z2 are in different components (relative to ∂Ωm) there

exist points inside the loop which are part of ∂Ωm. This necessarily implies that some

portion of the loop intersected ∂Ωm which is impossible since Y0 P1 and P2 were all,

purportedly, separate from the boundary.

Next we have the following “partial ordering” property:

Claim. Suppose YS′ is a successor to YS , then YS separates YS′ from Y0 in the sense

that every path P : YS′  Y0 inside Ωm which does not intersect ∂Ωm must pass
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through YS .

Proof of Claim. It is clear that we have some path Γ : YS′  Y0 which intersects YS ,

e.g., the latter portion of a path associated with YS . Now if the separation statement

in this claim is not true, then there exists a path Γ̃ : YS′  Y0 which is disjoint from

YS . But then the loop formed by Γ ∪ Γ̃ and the relevant portions of YS′ and Y0 must

enclose some point in ∂Ωm; this is impossible since Ωm is simply connected.

Given S, a successor square to S0, and the corresponding yellow boundary YS , the

blue boundary is defined to be the portions of ∂Ωm connecting the endpoints of Y0

and YS . The topological rectangle formed by the blue boundaries and Y0, YS will be

denoted by RS ⊂ [S0(ω) \ S(ω)] ∩ Ωm – where it is noted that the inclusion can be

strict. Finally, the size of the successor square will be selected in the following way:

we require the resulting topological rectangle R to be so that both the yellow and

blue crossing problems satisfy definitive bounds. That this can be accomplished is the

subject of the following lemma:

Lemma 5.2 (Sliding Scales.) Let S0(ω) be the square centered at some ω ∈ ∂Ωm as de-

scribed above and consider successor squares contained in S0(ω), which are generically

denoted S. Then the size of S can be adjusted so that the yellow crossing probability

satisfies

ϑ ≤ P(Y0  YS) ≤ 1− ϑ,

where 0 < ϑ < 1/2 is a definitive constant only depending on details of the percolation

model and is such that P(Y0  ω) < ϑ.

Proof. Consider the procedure of sliding S inwards starting from S0 itself one step at

a time, as described in Definition 5.1. It is clear by the separation claim concerning

S that the crossing probabilities between the relevant yellow segments monotonically

decrease. Furthermore, we may bound such a crossing probability from above by the

crossing of a full annulus: the topological rectangle R of relevance is contained in the

full annulus S0 \ S hence a crossing of the full annulus certainly implies a crossing of

R . Thus we see that these probabilities are bounded above by that of a one–arm

event which in turn can be bounded by a power of the aspect ratios. Let us enumerate

the successive sliding trials of S by S(1), S(2), . . . , etc. It is clear that for some `,

43



P(Y0  YS(`)) > 1 − ϑ while P(Y0  YS(`+1)) ≤ 1 − ϑ. Thus it is sufficient to show

that P(Y0  YS(`+1)) ≥ ϑ. By the separation claim above (see also the introductory

paragraph of Definition 5.1) if there is a requisite path at the `th level, then it is only

necessary to “attach” one more unit of yellow to achieve the desired connection up

through the (`+ 1)st level. In the independent model this occurs with probability 1/2,

while for the generalizations in [11], this occurs with some probability r > 0. Therefore,

if

ϑ <
r

1 + r
,

then we are guaranteed that P(Y0  YS(`+1)) ≥ ϑ. The stated result has been proved.

The Q–Construction. While we may envision a regularization where we inductively

perform the S–construction, yielding Y1, Y2, . . . , it turns out that this is not sufficient

to capture certain irregularities which may be present in the domain Ω – nor to achieve

our purpose. This problem manifests itself on two levels: the successive yellow regions

may be vastly different in length, as can be caused by a narrow tunnel suddenly leading

to a wide region; on a more subtle level, there are cases where the S–construction yields

consecutive yellow regions which are of comparable size but the “effective” yellow region

where the crossing would actually take place is in fact much smaller, which is again

indicative of “pinching” of ∂Ωm. In any case, the problem here is that, in essence, the

process is proceeding much too quickly. The cure is then to reduce the relevant scales

in order to slow the growth of the evolving neighborhood sequence. Geometrically this

requires a re–centering and re–sizing of the basic shape we use to construct the crossing

rectangle.

To a first approximation, a successor square is not valid for us if it is the case that

the yellow segment Yk+1 is too large or too small relative to the separation between Yk

and Yk+1, in which case we will instead consider annuli grown around some “effective

region” determined by subsegments of Yk and Yk+1. The notion of “effective regions”

is made precise in the following lemma:

Lemma 5.3 (Effective Regions.) Suppose we have successive yellow regions Yk, Yk+1

in the S–construction, which are parts of the boundary of squares Sk(ω), Sk+1(ω), where

the size of Sk+1(ω) is such that the conclusion of Lemma 5.2 is satisfied. Denote
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the separation distance between Sk and Sk+1 by Jk. Then there exists some B with

1 < B <∞ and some subsegments Y
(e+)
k ⊂ Yk, Y

(e−)
k+1 ⊂ Yk+1 with

‖Y (e+)
k ‖∞, ‖Y (e−)

k+1 ‖∞ ≤ 3B · Jk

such that all relevant crossing events are essentially determined within the rectangle

formed by the effective regions; in particular:

P(Y
(e+)
k  Y

(e−)
k+1 ) ≥ ϑ− ϑ4,

with ϑ as in Lemma 5.2.

Proof. Let us choose the constant B to be such that the hard way crossing of a B by

1 rectangle in either blue or yellow is less than ϑ2. Without loss of generality, let us

envision the segments Yk and Yk+1 to be, by and large, horizontal, with Yk lying above

Yk+1. By construction of Yk, Yk+1, it is the case that the boundary of Ωm connects

pairs of endpoints of Yk to Yk+1. Consider the path P` which is the portion of ∂Ωm

starting with the left end point of Yk proceeding to the left end point of Yk+1; similarly

consider the path Pr starting with the right end point of Yk+1 and proceeding to the

right end point of Yk. (It must be the case that P` ∩Pr = ∅ since otherwise no

yellow crossing would be possible in the region enclosed by Yk and Yk+1. Indeed, P`

and Pr are considered to be the left and right boundaries of the topological rectangle

Rk = (Sk\Sk+1)∩Ωm). Let us now define Γ` to be the straight vertical segment joining

Yk and Yk+1 which intersects the rightmost point of P` inside the region bounded by

Yk and Yk+1 and similarly define Γr for Pr.

We now observe that the horizontal distance between Γ` and Γr cannot exceed

B · Jk: first if Γ` were to the left of Γr, then the relevant yellow crossing probability

in Rk would be bounded from below by the easy way crossing of the B · Jk × Jk

rectangle bounded by Γ`,Γr, Yk, Yk+1 which by choice of B would exceed 1 − ϑ2, but

by Lemma 5.2, Rk is constructed so that this yellow crossing probability is at most

1− ϑ. On the other hand, if Γ` were to the right of Γr, then any yellow crossing must

traverse a horizontal distance at least B ·Jk, which by choice of B is less than ϑ2, again

contradicting the choice of ϑ as in Lemma 5.2.

Next we will extend the horizontal region defined by Γ` and Γr by an additional

B · Jk on each side. (We do this if space is available; otherwise Yk, Yk+1 are already
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comparable to Jk.) We denote the bounding vertical segments by γ`, γr, the resulting

yellow regions by Y
(e+)
k , Y

(e−)
k+1 and call the regions bounded within the effective region.

We now argue that the yellow crossing actually occurs inside the effective region, with

high “conditional” probability.

Consider the event D := {Yk  Yk+1} \ {Y
(e+)
k  Y

(e−)
k+1 }. We claim that the event

D implies the existence of both a blue and a yellow crossing of aspect ratio at least B.

First consider the case where Γ` is to the left of Γr. Here non–existence of a yellow

crossing in the effective region implies a blue crossing between some point on P` and

γr, whose probability is bounded by the hard–way crossing of a B · Jk × Jk rectangle;

finally a yellow crossing in the original Rk conditioned on such a blue crossing must

traverse horizontal distance at least B · Jk. Similarly, if Γ` is to the right of Γr, then

the occurrence of D implies a similarly long blue crossing and an even longer yellow

crossing (traversing horizontal distance at least 2B · Jk). By choice of B, we obtain

that P(D) ≤ ϑ4, and the final claimed result follows.

Let us now describe the re–centering and re–scaling procedure (going forwards):

suppose that up to step k the S–construction has been employed successivefully, i.e.,

1) the successive yellow segments are all within 3B times the separation distance; 2)

the crossing probabilities in the relevant rectangle satisfies the conclusion of Lemma

5.2. Now suppose that Yk+1 is the first yellow segment such that |Yk+1| > 3B · Jk. Let

us again envision that Yk and Yk+1 are primarily horizontal with Yk above Yk+1 and

consider the subsegment Y
(e−)
k+1 ⊆ Yk+1, γ`, γr as in the proof of Lemma 5.3; notice that

since the horizontal distance between P` and Pr (portions of ∂Ωm forming the left

and right boundaries of Rk) cannot exceed B ·Jk, γ` and γr must intersect ∂Ωm before

they reach Yk, i.e., |γ`|, |γr| ≤ B · Jk. Finally, let us consider the topological rectangle

formed by Yk, Y
(e−)
k+1 , γ`, γr together with relevant portions of ∂Ωm and define it to be

Rk+1, with yellow segment

Y k+1 := Y
(e−)
k+1 ∪ τ` ∪ τr,

where τ` ⊆ γ` is the portion of the γ` connected to Y
(e−)
k+1 before it hits ∂Ωm and

similarly for γr. First note that the probability of a yellow connection between Yk and

γ` or γr is bounded by the probability of a long way crossing of a Jk by B ·Jk rectangle
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which by choice of B (again see the proof of Lemma 5.3) is bounded above by ϑ2. Thus

from the construction of Yk+1 and Lemma 5.2 we have

P(Yk  Y k+1) ≤ P(Yk  Y
(e−)
k+1 ) + ϑ2 ≤ P(Yk  Yk+1) + ϑ2 ≤ 1− ϑ+ ϑ2.

On the other hand, the conclusion of Lemma 5.3 gives that

P(Yk  Y k+1) ≥ P(Y
(e+)
k  Y

(e−)
k+1 ) ≥ ϑ− ϑ4.

Altogether we have that

ϑ− ϑ4 ≤ P(Yk  Y k+1) ≤ (1− ϑ)− θ2.

We will consider Y k+1 to be the (k + 1)st yellow segment. In order to define Yk+2,

we consider successors Tk+2 of Y k+1 in the direction of ω (we refer to Definition 5.1

for the meaning of the direction associated to a successor of such a segment). More

precisely, as in the case of the S–construction, Y k+1 divides Ωm into two components,

CY k+1
(ω),CY k+1

(D∆), the connected component of ω and Y0, respectively; we then

say that a successor Tk+2 is in the direction of ω if it is contained in CY k+1
(ω). In

particular, this implies that any lattice walk from ω to Y k+1 must pass through Tk+2.

Let us then consider all possible lattice walks P : ω  Y k+1 such that once it enters

CY k+1
(D∆) it never leaves; the set of points on Tk+2 reached this way then constitutes

Yk+2 (see the analogous Claims in the description of the S–construction).

The relevant blue boundary as before is defined to be the portions of ∂Ωm con-

necting the endpoints of Y k+1 and Tk+2. The topological rectangle formed by the blue

boundaries and Y k+1, Yk+2 will be denoted Rk+2, where as before, we adjust how far

into CY k+1
(ω) we slide YS so that the crossing probability in RS satisfy the conclusion

of Lemma 5.2 (it is easily verified that the proposition is readily modified to accommo-

date topological rectangles formed this way, since the YS ’s are slid toward ω one step

at a time, as discussed in Definition 5.1).

Next we must address the question of effective regions in this more complicated

geometry. In this case, the separation distance Jk+1 will be measured in the sup–norm

distance: Jk+1 = d∞(Yk+1, Yk+2) and we compare ‖Y k+1‖∞ and ‖Yk+2‖∞ to Jk+1. We

again employ the quantity B (which the reader will recall is defined to be such that the

hard way crossing of a B by 1 rectangle in either blue or yellow is less than ϑ2). The
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analogues of the segments Γ` and Γr are clear: there are two disjoint portions P`,Pr of

∂Ωm which join endpoints of Yk+1 to Yk+2 and we define Γ`,Γr to be either horizontal

or vertical segments joining Y k+1 to Yk+2 which intersect the “furthest points” of P`

and Pr in the region enclosed by Y k+1 and Yk+2. We can proceed to extend Γ`,Γr in

either the horizontal or vertical direction (depending on the original orientation and in

cases where only the vertical or horizontal length – but not both – exceed 3B · Jk+1,

we can extend one of them by 2B · Jk+1 and then not extend the other) and define

the effective region accordingly. The rest of the argument proceeds as in the proof of

Lemma 5.3.

In general, we will also have to consider the case where |Yk| > 3B ·Jk, in which case

we may (under conditions to be described later) need to re–center, re–scale and proceed

backwards towards D∆. Let us record here that the topological separation statements

from the S–construction as well as the conclusions of Lemma 5.2 and Lemma 5.3 can

be adapted to the cases where the Yk’s are more general lattice segments:

Lemma 5.4 Let ω ∈ Ωm be fixed. Let Y denote a connected lattice segment connecting

two points of ∂Ωm, neither of which is ω and such that Y ∩D∆ = ∅ and P(Y  ω) < ϑ

with ϑ as in Lemma 5.2. The segment Y divides Ωm into two connected components,

CY (ω) and CY (D∆), the connected components of ω and D∆, respectively. Then

i) successors of Y in CY (ω) and CY (D∆) are ordered in the sense that if e.g., YQ

is a successor of Y then any path P : ω  Y which does not intersect ∂Ωm must pass

through YQ and similarly for successors in CY (D∆);

ii) the analogue of Lemma 5.2 remains valid: successively sliding Y in CY (ω), it is

possible to adjust the location of the successor YQ so that the yellow crossing probability

satisfies

ϑ ≤ P(Y  YQ) ≤ 1− ϑ;

iii) the analogue of Lemma 5.3 remains valid: suppose YQ is a successor of Y

and let J := d∞(Y, YQ). Then there exists some 1 < B < ∞ and some subsegments

Y (e) ⊂ Y, Y (e)
Q ⊂ YQ with

‖Y (e)‖∞, ‖Y (e)
Q ‖∞ ≤ 3B · J

such that all relevant crossing events are determined within the rectangle R with bound-

aries Y, YQ, the relevant portions of ∂Ωm, the analogues of τr, τ` (for Y ) and τQr , τQ,`
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(for YQ) as described above: defining Y := Y (e)∪ [τr ∪ τ`] and Y Q := Y
(e)
Q ∪ [τQ,`∪ τQ,r]

to be the relevant yellow segments, we have

ϑ− ϑ4 ≤ P(Y  Y Q) ≤ (1− ϑ) + ϑ2.

We have similar results if YQ is a successor of Y in CY (D∆) if Y is such that

P(Y  D∆) > 1− ϑ.

Proof. It is clear from the paragraphs preceding the statement of the lemma that

these statements, borrowed from Lemma 5.3, continue to hold for general polygonal

segments. Particularly note that the procedures are symmetric in Y and YQ.

The R–Construction. Our objectives will eventually be achieved by establishing the

existence of monochrome percolation connections between e.g., (the vicinity of) ω and

the central region D∆. This will be accomplished by showing that there is a sequence

of contiguous (see Definition 5.1) boxes leading from ω to D∆ such that each successive

box has comparable scale.

Suppose now that we are in the setting of Lemma 5.4, iii): Y , Y Q are legitimate

yellow segments after taking into account the effective region and renormalizing so that

‖Y ‖∞ ≤ 3B · J, ‖Y Q‖∞ ≤ 3B · J with J = d∞(Y , Y Q). Let us tile the region enclosed

by Y , Y Q (which we will denote by R) by boxes of size 2−r · J with some r > 0, then:

Claim. There exists some fixed r ≡ r(ϑ) > 0 independent of the particulars of the

region such that there is a connection between Y and YQ via boxes of size 2−r ·J . Here

by connection we mean that successive boxes share a side and no box is intersected by

∂Ωm, as discussed in Definition 5.1.

Proof of Claim. Suppose no such connection exists for some particular r. Then nec-

essarily there exists a box R∗ of size 2−r · J inside R such that P` ∩ R∗ 6= ∅ and

Pr∩R∗ 6= ∅ (here again P` and Pr denote the two pieces of ∂Ωm (“left” and “right”)

forming the blue boundary of the topological rectangle R formed by Y , Y Q and ∂Ωm).

Consider the r−1 annuli around R∗ of doubling sizes: 2−rJ × [2, 4, . . . , 2r]. In each

such annulus, by weak scale invariance of critical percolation, a blue circuit indepen-

dently exists with probability at least some λ ≡ λ(ϑ) > 0 and each such blue circuit,
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intersected with Ωm, will connect Pr to P` thereby preventing the possibility of a

yellow connection between Y and Y Q. Thus,

P(Y  Y Q) ≤ (1− λ)r < ϑ− ϑ4,

if r is chosen sufficiently large depending on ϑ, contradicting Lemma 5.4, iii).

Remark 5.5. Up to adding or deleting one layer of boxes (which at most introduces

some fixed constants into our estimates) we may – and will – assume that the renor-

malized boxes are flush against Y , Y Q (see Definition 5.1).

Next consider the layer of boxes of scale 2−rJ contiguous with Y Q. By the previous

claim it is the case that there exists at least one such box which can be connected to

Y via boxes which are unobstructed by ∂Ωm; let Y
(b)
Q ⊆ Y Q denote the portion of Y Q

consisting of sides of such boxes (intersected with Y Q) which can be connected back

to Y . Let us first observe:

Claim. Y
(b)
Q is connected.

Proof of Claim. Let C denote one connected component of Y Q which can be connected

to Y via boxes. First suppose that C does not share an endpoint with Y Q: in this case

on both sides of C the boundary ∂Ωm comes within 2−rJ of Y Q, but then no box of

2−rJ can connected C to Y , a contradiction.

It follows then that C shares at least one endpoint with Y Q, say the “left” endpoint

(i.e., an endpoint of P`) so that ∂Ωm comes within 2−rJ of Y Q immediately to the

“right” of the “left” endpoint of C : if this is accomplished by P`, then C itself cannot

be connected to Y by boxes, whereas if this is accomplished by Pr, then certainly

no portion of Y Q to the right of C can be connected to Y via boxes (of scale 2−rJ).

We are forced to conclude that there can only be one such component and so Y
(b)
Q is

connected.

Our next claim is that far as a yellow connection to Y is concerned, it is sufficient

to consider the subsegment Y
(b)
Q , up to a very small change in the crossing probability:

Claim. Let Y
(b)
Q be as above, then

P(Y  Y
(b)
Q ) ≥ ϑ− 2ϑ4.
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Proof of Claim. If Y
(b)
Q = Y Q then there is nothing prove. Otherwise, as in the proof

of the previous claim, let us assume that Y
(b)
Q shares its left endpoint with that of Y Q

and Pr intersects the box, again denoted by R∗, of scale 2−rJ immediately to the

right (endpoint) of Y
(b)
Q . Consider again the r − 1 annuli around R∗ formed about

R∗. Then, just as in the proof of the penultimate claim, by the standard (“Russo–

Seymour–Welsh”) estimates we see that the existence of a blue circuit (independently)

in each of these annuli has probability in excess of some λ ≡ λ(ϑ) > 0. Any one of

these, together with Pr, certainly seals off the region to the right of Y
(b)
Q from Y and

so

P(Y  [Y Q \ Y
(b)
Q ]) ≤ (1− λ)r.

Choosing, if necessary, the quantity r to be even larger than previously required, we

can ensure that (1− λ)r ≤ ϑ4.

Finally, we replace the yellow segment Y Q by Y
(b)
Q together with portions of ∂R∗

so that it joins up with Pr; we will denote this portion of ∂R∗ by ζQ and note that

clearly ‖ζQ‖∞ . 2−rJ and P(Y  ζQ) ≤ ϑ4, by the same arguments as in the proof of

the previous claim.

We summarize the result of all our preliminary constructions in this subsection in

the following theorem:

Theorem 5.6 Let ω ∈ ∂Ωm be fixed. Let Y denote a connected lattice segment

connecting two points of ∂Ωm, neither of which is ω and such that Y ∩ D∆ = ∅ and

P(Y  ω) < ϑ, with 0 < ϑ < 1/2 as in Lemmas 5.2, 5.4. Successively sliding Y

in CY (ω), suppose that the successor YQ is such that the yellow crossing probability

satisfies

ϑ ≤ P(Y  YQ) ≤ 1− ϑ,

with ϑ as given in Lemmas 5.2, 5.4, ii). Next let B > 0 be such that the probability

of a hard way crossing of a B by 1 rectangle (in both yellow and blue) is less than

ϑ2 and Y := Y (e) ∪ [τr ∪ τ`], Y Q := Y
(e)
Q ∪ [τQ,` ∪ τQ,r] be as in Lemma 5.4, iii) and

J := d∞(Y, YQ).

Then for r ≡ r(ϑ) > 0 sufficiently large (particularly, 2−r � B−1) there are further

connected subsegments Y
(b) ⊆ Y , Y

(b)
Q ⊆ Y Q and small segments ζ, ζQ connected to
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Y
(b)
, Y

(b)
Q , respectively, whose lengths are of order 2−rJ , such that

Ŷ := Y
(b) ∪ ζ, ŶQ := Y

(b)
Q ∪ ζQ

are lattice segments which connect two points of ∂Ωm and P(Y  ζQ) ≤ ϑ4,P(YQ  

ζ) ≤ ϑ4 so that

i) ϑ− 3ϑ4 ≤ P(Ŷ  ŶQ) ≤ (1− ϑ) + ϑ2 + 2ϑ4;

ii) all of Y
(b)
Q can be connected to (all of) Y

(b)
via boxes of size 2−rJ completely

unobstructed by ∂Ωm;

iii) it is the case that

2−rJ ≤ ‖Ŷ ‖0 ≤ ‖Ŷ ‖∞ ≤ 4B · J, 2−rJ ≤ ‖ŶQ‖0 ≤ ‖ŶQ‖∞ ≤ 4B · J.

Similar statements hold if YQ is a successor of Y in CY (D∆) provided Y is such

that P(Y  D∆) < ϑ.

Proof. The statements hold for both ŶQ and Ŷ since the constructions and claims are

clearly symmetric in Y and YQ so for item i) we simply add in the error incurred when

applying the claims also to Y ; item ii) follows immediately from the previous claims.

Finally, as for item iii) the upper bounds follow immediately from Lemma 5.4, iii) since

clearly ‖Ŷ ‖∞ ≤ ‖Y ‖∞ + ‖ζ‖∞ ≤ 4B · J (since ‖ζ‖∞ . 2−rJ which is certainly less

than BJ) and similarly for ‖ŶQ‖∞ and the lower bounds are direct consequences of

item ii).

Remark 5.7. Recall that the goal is to ensure box connections all the way from

Y0 ⊆ ∂D∆ to the vicinity of ω. This boils down to the requirement that the conclusions

of Theorem 5.6 hold for all successive yellow segments and since both constructions

could possibly change both a lattice segment Y and its successor YQ, the final inductive

procedure will have to entail 1) modifying two successive yellow segments in one step

and 2) “backwards” constructions. These additions will be featured in the forthcoming

section.

5.4 The Full Construction

Let Y0 := ∂S0(ω) ∩ ∂D∆ be as described before. If P(Yk  ω) ≥ ϑ for any k, then

stop. Otherwise the base case is the construction (by successively performing the
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S,Q,R–constructions) of the yellow segments Ŷ0 and Ŷ1 (both of which are lattice

segments connecting two points of ∂Ωm and Y1 is a successor of Y0 in CY0(ω)) so that

the conclusions of Theorem 5.6 (items i), ii), iii)) are satisfied.

We will inductively construct

P0 ≡ Ŷ0, P1 ≡ Ŷ1, . . . , Pk−1 ≡ Ŷk−1, Tk ≡ Ŷk

so that

1) the conclusions of Theorem 5.6 hold for Pk−1 and Tk;

2) the conclusions of Theorem 5.6, i), iii) hold for successive segments P`, P`+1,

0 ≤ ` < k − 1 and the conclusion of Theorem 5.6, ii) holds with the possibility of

connections via boxes of size 1
2 · 2

−rJ`.

(The second item is on account of a small detail which will become clear when we

perform the inductive step.) Here the letter P denotes what is considered a perma-

nent yellow segment whereas T denotes temporary and subject to re–construction as

described in the Q–construction and R–construction sections in the previous subsec-

tion. As before we will denote by J` the separation between successive yellow regions:

J` = d∞(P`, P`+1).

We next define Tk+1 to be a successor of Tk in CTk(ω) constructed so that the

conclusion of Lemma 5.4 ii) on crossing probabilities (upper and lower bound by ϑ, 1−ϑ)

is satisfied. We note immediately that this definition of Tk+1 implies that Theorem 5.6,

item i) for Tk and Tk+1 is automatically satisfied. If it is the case that all the conclusions

of Theorem 5.6 are satisfied for Yk and Yk+1 then we set Pk ≡ Tk, Pk+1 ≡ Tk+1 and

continue.

Otherwise, if the cause for failure is only the violation of Theorem 5.6, item ii)

(i.e., the availability of box connections from Tk to Tk+1) then we may carry out the

modifications detailed in the R–construction section for Tk+1 to yield T̂k+1 and set

Pk ≡ Tk, Pk+1 ≡ T̂k+1 and continue. (Indeed, by the inductive hypothesis, we already

have the appropriate box connections up to Tk.)

We are left with the case that Tk, Tk+1 violate Theorem 5.6, item iii). Here we

will have to re–center and re–scale (as described in the S–construction section) and

possibly have to proceed backwards towards Pk−1 (i.e., towards Y0). More precisely,

by the choice of r (so that 2−r < B) it cannot be the case that the lower bounds
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are violated so we must have either ‖Tk+1‖∞ > 3B · Jk or ‖Tk‖∞ > 3B · Jk (or

both). Here a backwards construction towards Pk−1 may be required (especially now

if ‖Tk‖∞ > 3B · Jk) since the effective region T
(e+)
k may be much smaller than Tk (and

hence Jk−1) implying that more yellow segments are needed between Tk+1 and Pk−1

so that successive yellow segments have lengths which do not exceed their separation

by too much.

In any case, consider the topological rectangle Rk formed by the effective regions

T
(e+)
k , T

(e−)
k+1 as in Lemma 5.4, iii)) and the corresponding T̂

(e+)
k , T̂

(e−)
k+1 after performing

the R–construction, so that the conclusions of Theorem 5.6 hold for T̂
(e+)
k , T̂

(e−)
k+1 . If it

is the case that the conclusions of Theorem 5.6 also hold for Pk−1, T̂
(e+)
k then we set

Pk ≡ T̂
(e+)
k , Pk+1 ≡ T̂

(e−)
k+1 and continue.

Otherwise, it must be the case that ‖T̂ (e+)
k ‖0 < 2−rJk−1 so that there cannot be

a legitimate box connection from Pk−1 to T̂
(e+)
k . Let us now perform the backwards

construction. First set Q̂1 := T̂
(e+)
k and construct sliding Harris rings starting at this

scale going towards Pk−1: consider successive successors of Q1 in CQ1(D∆) and perform

the S,Q,R–constructions to yield Q̂3, . . . , Q̂`+2 so that the conclusions of Theorem 5.6

hold for successive Q̂’s (here successors have larger index) where the index ` is defined

by the fact that Q̂`+2 lies in the region enclosed by Pk−1 and Pk−2. We claim that ` is

well–defined and finite:

Claim. It is the case that ‖Q̂l‖0 ≥ 2−rJk−1 for 2 ≤ l ≤ `+ 1 and therefore ` <∞.

Proof of Claim. It is sufficient to observe that Q̂2, . . . , Q̂`+2 all lie strictly in the region

determined by Pk−1, T
(e+)
k ⊆ Tk and relevant portions of ∂Ωm and so if the stated

bounds were violated, then ∂Ωm comes closer than 2−rJk−1 to itself, contradicting

the inductive hypothesis that there is a box connection with boxes of scale 2−rJk−1

between Pk−1 and Tk.

Finally letting J
(Q)
l := d∞(Q̂l, Q̂l+1), we have by Theorem 5.6, iii) that J

(Q)
l ≥

‖Ql‖0
4B ≥ 2−r

4B · Jk−1, for 1 ≤ l ≤ `, which directly implies that `− 1 ≤ 4B · 2r <∞.

Next we observe that this is sufficient for us to return to level k − 2 and hence the

induction is complete:

Claim. Q̂`+2 can be connected to Pk−2 by boxes of scale 1
2 · 2

−rJk−2 without being

obstructed by ∂Ωm.
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Proof of Claim. First note that by the same argument as in the previous claim, since

Q̂`+1 lies in the region determined by Pk−1, Pk−2, it is the case that ‖Q̂`+2‖0 ≥ 2−rJk−2.

By the inductive hypothesis we already have boxes of scale 2−rJk−1 connecting back

to Pk−2 so depending on the location of Q̂`+2 cutting down the scale of some of these

boxes by half if necessary, we have the required connection.

Finally we re–index so that Pk ≡ Q̂`, Pk+1 ≡ Q̂`−1, . . . , Pk+` ≡ Q̂1, Tk+`+1 ≡ T̂
(e−)
k+1 .

The induction can now be continued towards ω, starting with Pk+`, Tk+`+1, provided

that P(Tk+`+1  ω) < ϑ – otherwise we stop.

Remark 5.8. Let us record for later purposes that we may have gone two Q’s and

one rectangle too far in our backwards construction. Indeed, consider the crossing

probability in the topological rectangle with yellow boundaries formed by Q̂` and Pk−1:

by fiat, the blue crossing probability would be too large and the yellow too small.

Thus, as far as circuit events are concerned, we may bound the crossing probability

from above by crossing of this rectangle (and then the next circuit event would be a

crossing in the region formed by Pk−1, Pk−2). On the other hand, as far as crossing

events (say from the vicinity of ω to D∆) are concerned, we will require crossings in

the rectangles formed by Q̂`, Q̂`+1, then the rectangle formed by Q̂`+1, Q̂`+2 and finally

the rectangle formed by Q̂`+2, Pk−2.

Finally, note that this discrepancy cannot occur too many times since for each

“backwards” (towards D∆) construction there is at least one “forward” (towards ω)

construction: if the induction stops at some PL, then there are L− 1 rings around ω,

and we may bound the probability of ω being sealed into ∂Ωm by say constructing blue

circuits in at least (L− 1)/2 of these rings.

5.5 Consequences and Refinements

We will now establish some consequences and properties of the the procedure described

in the previous subsections. First let us define some terminology:

Definition 5.9. Let Ω ⊂ C be a bounded, simply connected domain and Ωm some

interior discretization of Ω. For ω ∈ Ωm, consider the inductive construction as de-

scribed, yielding P1, P2, etc., until the crossing probability criterion between ω and the
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last P` is less than ϑ indicating that we have approximately reached the unit scale.

We will refer to the the topological rectangles formed by successive P`’s as Harris

rings and the amalgamated system of these segments around ω the Harris system

stationed at ω.

For our purposes we will also need to show that for n sufficiently large, for the

marked point corresponding to A, the relevant Harris segments have endpoints lying

in the anticipated boundary regions:

Lemma 5.10 Let Ω ⊆ C be a bounded simply connected domain with marked boundary

prime ends A,B,C,D ∈ ∂Ω (in counterclockwise order) and suppose Ωm is an interior

approximation to Ω with Am, Bm, Cm, Dm ∈ ∂Ωm approximating A,B,C,D. Consider

the hexagonal tiling problem studied in [15] or the flower models introduced in [11] (in

which case we assume the Minkowski dimension of ∂Ω is less than 2) and the Harris

system stationed at Am. Then there is a number vA such that for all m sufficiently

large, all but vA of the Harris segments are conduits from [Dm, Am] to [Am, Bm]. More

precisely, under uniformization, there exists some η > 0 such that all but vA = vA(η)

of these segments begin and end in the η–neighborhood of the pre–image of A.

Proof. Let ϕ : D→ Ω be the uniformization map with ϕ(0) = z0 for some z0 ∈ D∆ and

let ζA, ζB, ζC , ζD denote the pre–images of A,B,C,D, respectively. Let η > 0 denote

any number smaller than e.g., half the distance separating any of these pre–images. Let

Nη(ζA) denote the η–neighborhood of A and let {rd, rb} denote the pair Nη(ζA) ∩ ∂D

with rd in between ζA and ζD and rb between ζA and ζB. Similarly, about the point

ζC we have Nη(ζA) ∩ ∂D := {sd, sb}.

We denote by Gd the continuum crossing probability from [ζA, rd] to [sd, ζC ] (with

(D; ζA, ζC , sd, rd) regarded as a conformal rectangle) and similarly Gb for the continuum

crossing probability from [rb, ζA] to [ζC , sb]. It is manifestly clear that these are non–

zero since all relevant cross ratios are finite.

Now consider Ω as a conformal polygon with (corresponding) marked points (or

prime ends) A,Rb, B, Sb, . . . Rd and Ωm with marked boundary points Am, . . . Rbm the

relevant discrete approximation. It is emphasized, perhaps unnecessarily, that this

is just Ωm with A,B,C,D and with four additional boundary points marked and

added in. It follows by conformal invariance and convergence to Cardy’s formula that
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the probability of a crossing in Ωm from [Rbm , Am] to [Cm, Sbm ] converges to Gb and

similarly for the crossings from [Am, Rdm ] to [Sdm , Cm].

We shall need an additional construct, denoted by Φm which is best described as the

intersection of three events: (i) a yellow connection between ∂D∆ and [Rdm , Sdm ], (ii)

a similar connection between ∂D∆ and [Rbm , Sbm ] and (iii) a yellow circuit in Ωm \D∆.

It is observed that the intersection of these three events certainly implies a crossing

between [Rdm , Sdm ] and [Rbm , Sbm ].

It is noted that item (iii) has probability uniformly bounded from below since D∆

is contained in a circle twice its size. As for the other two, we must return to the

continuum problem in D. Let E ⊂ D denote the preimage of D∆ under uniformization

with corresponding evenly spaced boundary points p1, p2, p3 and p4. Let us pick an

adjacent pair of points – conveniently assumed to be p1 and p2 – which may be envi-

sioned as approximately facing the [sd, rd] segment of ∂D. We now connect rd and p1

with a smooth curve in D and similarly for sd and p2. It is seen that these two lines

along with the [sd, rd] portion of ∂D and the [p1, p2] portion of E are the boundaries

of a conformal rectangle. We let Ld denote the continuum crossing probability from

[p1, p2] to [sd, rd] within the specified rectangle.

We perform a similar construct involving p3, p4, sb and rb and denote by Lb the

corresponding continuum crossing probability. Thus, as was the case above, in the

corresponding subsets of Ωm, it is the case that as m→∞, the probability of observing

yellow crossings of the type corresponding to the aforementioned crossings in (i) and

(ii) tend to Ld and Lb, respectively. (While of no essential consequence, we might

mention that at the discrete level, the relevant portions of ∂D∆ may be defined to

coincide with the inner approximations of the subdomains we have just considered.)

Let us call Gm the intersection of all these events: Φm and the pair of [Rbm , Rdm ] 

[Sbm , Sdm ] crossings (corresponding to Gb and Gb). Then we have, uniformly in m for

m sufficiently large,

P(Gm) ≥ σ

for some σ = σ(η) > 0.

We next make the following claim:

Claim. Consider the event that there is blue path beginning and ending on ∂Ωm that
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seperates Am from D∆. Then, if the event Gm also occurs, it must be the case that

(modulo orientation) the path begins on [Rbm , Am] and ends on [Am, Rdm ].

Proof of Claim. To avoid clutter, we will temporarily dispense with all m–subscripts.

Note that since we have divided the boundary into six segments, there are 1
2 · 6 · 7 = 21

cases to consider and, therefore, twenty to eliminate. Let us enumerate the cases:

◦ A crossing from [C,A] to [Rb, Sb] or from [A,C] to [Sd, Rd] (5 cases): each pos-

sibility is prevented by (at least) one of the yellow crossings between the segments in

[Rd, Rb] and [Sb, Sd].

◦ Corner cases, e.g., [C, Sd] to [Sd, Rd] (4 cases): recalling that the blue path must

separate D∆ and A, these are obstructed by the yellow circuit about D∆ which is

connected to the opposite R·S boundary, which in this example corresponds to [Rb, Sb].

(We note that these circuits are constructed precisely to prevent the possibility of

connections “sneaking” through D∆.)

◦ An [Rd, Rb] segment connected to a [Sb, Sd] segment (4 cases): these are prevented

by the yellow crossing from [Sd, Rd] to [Rb, Sb].

◦ Diagonal (same to same) paths, e.g., [C, Sd] to [C, Sd] (6 cases): recalling the

separation clause, these are obstructed by the connection of the circuit around D∆ and

its connection to whichever – or both – R ·S segment which is not where the blue path

begins and ends. In this example this corresponds to both [Sd, Rd] and [Rb, Sb].

◦ Finally, [Sd, C] to [C, Sb]: this is the same as the previous case.

The claim is proved.

With the above in hand, the rest of the proof of this lemma is immediate. Let v′A

denote the number of Harris segments in the system stationed at Am which do not

begin on [Rbm , A] and end on [A,Rdm ]. (I.e., the twenty cases treated above.) Letting

Bm denote the event of a blue circuit of the type described in the claim, we have

1− σ ≥ 1− P(Gm) ≥ P(Bm) ≥ 1− (1− ϑ)v
′
A

which necessarily implies v′A is bounded above (independently of m) by the ratio

log σ/ log(1 − ϑ). Clearly, v′A ≥ vA as in the statement of the lemma so the result

has been established.
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