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Abstract We establish convergence to SLE6 of the Exploration Processes for the correlated
bond-triangular type models studied by two of us in an earlier work (Chayes and Lei in Rev.
Math. Phys. 19:511–565, 2007). This (rigorously) establishes that these models are in the
same universality class as the standard site percolation model on the triangular lattice. In the
context of these models, the result is proven for all domains with boundary Minkowski di-
mension less than two. Moreover, the proof of convergence applies in the context of general
critical 2D percolation models and for general domains, under the stipulation that Cardy’s
Formula can be established for domains in this generality.

Keywords Universality · Conformal invariance · Percolation · Cardy’s formula

1 Introduction

In recent years, the scaling behavior of critical 2D percolation systems have been the subject
of attention. While the results proved in this note amount to a statement concerning the
scaling limit of the specific percolation models defined in [9], the purpose of this work is
actually three-fold:

1. Following the framework described in [20], we provide a general proof that (the law
of) the “interface” of essentially any critical 2D percolation model converges to SLE6,
whenever Cardy’s Formula can be verified.
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2. Rigorous extraction of Cardy’s Formula for general domains—including slit domains,
given interior analyticity of the Cardy–Carleson functions; this includes clarification of
the necessary discretization schemes.

3. Finally, we provide a generalization of Cardy’s Formula to an extended class of domains
for the specific class of models described in [9], and also establish additional “typical”
(critical) percolation properties which are required, in accord with (1) and (2) above.

We accomplish (1) and (3) in the current installment of this work; item (2) will be tended
to in a separate (companion) note [3]. As a result we have, in complete accordance with the
ideology espoused since the 1960s, demonstrated a non-trivial example of universality: Via
the common continuum limit, various aspects of the long distance behavior for the models
defined in [9] are asymptotically identical to those of the critical triangular site percolation
model.

It is already well-known that site percolation on the 2D triangular lattice satisfies the
requisite “typical” critical properties and has limiting crossing probabilities (in conformal
rectangles) given by Cardy’s Formula [19]. In [6, 7] an elaborate proof of convergence to
SLE6 has been detailed, and it is possible that the proof therein applies in more generality
than claimed. However, the present approach more clearly categorizes the requisite proper-
ties and estimates and is therefore readily applicable to a variety of systems. More precisely,
our proof applies in the general context of any critical 2D percolation model satisfying the
following properties:

• Russo–Seymour–Welsh (RSW) theory: Uniform estimates for probabilities of crossings
(of either type) on all scales plus the ability to stitch smaller crossings together without
substantial degradation of the estimates—FKG-type inequalities.

• A self-replicating definition of an Exploration Process and a class of admissible domains
with the property that this class is preserved under the operation of deleting the beginning
of a typical explorer path in an admissible domain.

• The validity of Cardy’s Formula for the above-mentioned admissible domains.
• BK-type inequalities whereby probabilities of separated path type events can be estimated

in terms of the individual probabilities.
• Explicit (“superuniversal”) “bounds” on full-space multiple colored five-arm events and

half-space multiple colored three-arm events: The probability of observing disjoint cross-
ings of an annulus with aspect ratio a is, on all scales, bounded above by a constant times
a−2.

The rest of this paper is organized as follows: In Sect. 2, we assemble the necessary ingre-
dients into the proof of convergence to SLE6 (providing some minor proofs of an analytical
nature along the way). These ingredients amount to a number of technical lemmas, a few
of which require a sustained effort and whose proofs are provided in Sect. 3 (and, for one
of them, a result imported from [3]). Finally, Sect. 4 is devoted to shoring up the required
properties of the models defined in [9] to the appropriate level for the program in Sect. 2.

2 Conformal Invariance of the Scaling Limit

2.1 2D Percolation: Criticality and Interfaces (a Brief Discussion)

In this subsection, we shall elucidate, to some extent, the first and second (bullet) items in
the penultimate paragraph of the introduction. For brevity—and purposes of clarity—we will
not attempt to axiomatize the relevant notions. In general, the percolation process consists
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of two competing species, conveniently denoted by “blue” and “yellow”. The condition of
criticality implies that the two species have roughly equal parity in the sense that (as far
as connectivity properties are concerned) neither specifies is dominant at large scales. In
particular, there is no percolation of either species—with probability one, all monochrome
connected clusters are finite. As it turns out, this is (more or less) equivalent to the statement
that for both species, at all scales, the probability of crossing “rectangles” of fixed ratio is
bounded above and below uniformly.

Moreover, with some notion of positive correlations for crossing type events of the same
color, we may patch together the appropriate crossings to conclude that there are scale-
invariant bounds on the existence of circuits in annuli; since Bernoulli percolation is sup-
posed to imply independence beyond some fixed scale, this also implies similar estimates for
circuits in “partial annuli” and approximate independence in disjoint layered annuli. Typi-
cally, the way such estimates are applied is as follows: There is a large outside scale and a
small inside scale separated by logarithmically many intermediate scales; the probability of
monochrome connections between the inner and outer scale is therefore a power of the ratio.
This is the basis of the so-called Russo–Seymour–Welsh (RSW) theory which will be used
throughout this work. For the standard percolation models, these concepts are discussed in
the books [10, 12] and [4]; see also Sects. 2.2 and 2.3 of [8] and the paper [11]. For the
particular model of interest in this work, such results are not quite automatic, but anyway
have been established in [9], the relevant portions of which will be cited as necessary.

In a similar spirit, let us now discuss critical interfaces for these models. (Of course,
for percolation, one can always construct an interface as described below, regardless of
whether the model is at criticality.) The general setup is as follows: For any finite connected
lattice domain, let us fix two “boundary points” a and c and impose boundary conditions
so that the portion of the boundary going from a to c one way is colored blue and the
complementary portion of the boundary is yellow. The precise lattice-mechanics depend, of
course, on the model at hand (and indeed may involve different procedures on the yellow
and blue sides). In any case, if this procedure has been implemented successfully, then in any
percolation configuration there will be an interface stretching from a to c, which separates
the blue connected component of the blue boundary from the yellow component of the
yellow boundary. The explicit construction for our model will be provided in Sect. 4.2; well
known examples include the triangular site percolation problem and the bond model on Z

2.
In the former case, the interface can be realized as boundary segments of hexagons and in
the latter, interface consists of segments which connect sites of the so-called medial lattice.

The seminal ingredient is the Domain Markov Property: The full percolation model with
the above boundary setup conditioned on an initial portion of the Exploration Process is
identical to the problem in the “slit” domain with additional (two-colored) boundary formed
by the corresponding curve segment. It seems manifest, at least for planar models, that all
2D percolation systems have this property. Whereas the preceding may seem rather vague
and discursive, what is actually needed is somewhat less and succinctly formulated: The
precise requirement is the content of (3), which is the restriction of these notions to crossing
events.

2.2 SLE: Definitions and Notations

As the title of this subsection indicates, we will briefly review the relevant notions of Löwner
evolution—mostly for the purpose of fixing notation. Let � be a domain (a simply connected
bounded open subset of C) with two boundary prime ends a and c. Let H denote the upper-
half plane of C. We can select some conformal map g0 : � → H such that g0(a) = 0 and
g0(c) = ∞.
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Definition 2.1 Let {�t }∞
t=0 be a strictly decreasing family of subdomains of � (t ∈ [0,∞))

such that �0 = �, c ∈ ⋂∞
t=0 �t and a ∈ ⋂∞

t=0 � \ �t := ⋂∞
t=0[�t ]c. Consider the family of

conformal maps gt : �t → H normalized such that gt (c) = ∞ and thus have expansion at
infinity of the form gt ◦ g−1

0 (z) = z + A(t)

z
+ o(1/z). Here A(t) is some function of t which

depends on parametrization: It is the half plane capacity of � \ �t .
Then we call {�t }∞

t=0 a Löwner chain if

1. A(t) is (strictly) increasing.

2. The sets � \ �t “grow at a single point”:
⋂

δ>0 (gt ◦ g−1
0 )[�t+δ]c \ [�t ]c is a singleton.

If {�t } is a Löwner chain, then we can reparameterize time so that A(t) is equal to 2t .
Then the corresponding gt ’s satisfy the following celebrated Löwner equation:

∂tgt (z) = 2

gt (z) − λt

,

where λt = gt (γ (t)) is a real function and is called the driving function of �t . In general,
we will refer to the above parameterizations of a curve via its capacity as the Löwner para-
meterization.

Let us now describe the geometric objects we will be interested in: We call γ a crosscut
in � from a to c if it is the preimage of a non-self-crossing curve from 0 to ∞ in H under g0.
Note that γ is allowed to touch itself but not to cross itself. We define �t to be the connected
component of � \γ[0,t] containing c. It is not difficult to see that �t is a Löwner chain if and
only if the following two conditions are satisfied for every t > 0:

(L1) γt ∈ �t−ε , ∀ε > 0 and
(L2) ∃δn → 0, ∀ε > 0, γt−δn ∈ �t−δn−ε .

If γ satisfies (L1) and (L2), then we say that γ is a Löwner curve. Under these conditions
we can, as before, reparametrize γ so that the maps gt ’s satisfy the Löwner equation. We
note that the solution of the Löwner equation for any initial conformal map g0 : � → H and
any continuous real function λ(t) defines a Löwner chain, but not necessarily a curve (see
[15] for a complete discussion).

Finally, if we take the very special function λt = B(κt), where B(t) is one-dimension
Brownian motion started at zero, then the corresponding random Löwner chain is called the
Stochastic (or Schramm) Löwner Evolution with parameter κ , SLEκ . We will be particularly
interested in the case κ = 6.

2.3 Statement of the Main Theorem and Lemmas

We start with a bounded and connected domain � ⊂ C. We will sometimes assume that �

has “boundary dimension” M(∂�) < 2. Here M(S) denotes the (upper) Minkowski dimen-
sion of the set S which, as usual, is defined as

M(S) = lim sup
ϑ→0

log N (ϑ)

log(1/ϑ)
,

where N (ϑ) is the number of boxes of side length ϑ needed to cover the set. We will tile
� with the discrete lattice of interest (which may require detail, c.f. Sect. 4.2 and, espe-
cially, the discussion in [3]) at scale ε > 0 and denote the resulting object by �ε . Critical
percolation is then performed in �ε , with ε tending to zero.
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While the principal result of this note has more general applicability, for simplicity let us
state it for the particular model under consideration:

Main Theorem Let � be as described above with M(∂�) < 2, let �ε be some suitable
discretization (see [3] for discussions and results) and consider the percolation model de-
scribed in [9] (see Sect. 4.1). Let a and c denote two prime ends at the boundary of � and
let us set the boundary conditions on �ε in such a way that the Exploration Process, as
defined in Sect. 4.2, runs between a and c. Let με be the probability measure on random
curves induced by the Exploration Process on �ε , and let us endow the space of curves with
the appropriate weighted sup-norm metric as described in Definition 3.12. Then,

με =⇒
L

μ0,

where μ0 has the law of chordal SLE6 from a to c.

We remark that while the above statement appears to require a number of “future
specifics”, these are merely technicalities. The central requisites are captured in the items
listed in the penultimate paragraph of the introduction and will be detailed as the proof of
the Main Theorem unfolds. (In particular, here and throughout, the requirement M(∂�) < 2
is for the specific benefit of the model defined in [9].)

The key ingredient which will be used in the proof of the Main Theorem is Cardy’s
Formula:

Lemma 2.2 (Cardy’s Formula) Let (�,a, b, c, d) be a conformal rectangle—that is to say,
a domain with boundary prime ends a, b, c, d , listed in counter-clockwise order, and let us
assume that M(∂�) < 2. Let Cε(�,a, b, c, d) denote the probability that there exists a blue
crossing from [a, b] to [c, d] on the ε-lattice approximation of �. Consider the (unique) con-
formal map which takes (�,a, b, c, d) to (H,1 − x,1,∞,0), where, clearly, 0 < x < 1 and
x = x(�,a, b, c, d). Then, for the model described in Sect. 4.1 (or without the restriction
M(∂�) < 2 for the site percolation model)

lim
ε→0

Cε(�,a, b, c, d) = F(x) :=
∫ x

0 (s(1 − s))−2/3 ds
∫ 1

0 (s(1 − s))−2/3 ds
. (1)

Proof This, modulo the formula (1), is the content of [3], Theorem 4.7. For the particular
model at hand, this was established for a restricted class of domains in [9]. The necessary
generalization of the work in [9] to domains with M(∂�) < 2 will be proved in Sect. 4.4
(see Lemma 4.8). �

Using general estimates in Sect. 3.1, we establish the following important properties of
any weak∗-limiting point μ′. The proofs can be found in Sects. 3.2 and 3.3.

Lemma 2.3 (Tightness) Let μ′ be any limit point, in the weak∗ Hausdorff topology on com-
pact sets, of με . Then μ′ gives full measure to Löwner curves in � from a to c.

Furthermore, we have

Lemma 2.4 (Admissibility) The limit point μ′ gives full measure to curves with upper
Minkowski dimension less than 2 − ψ ′ for some ψ ′ > 0.
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We note that in Lemma 2.3 (and Lemma 2.4), a stronger notion of convergence is avail-
able. Indeed, for domains which are regular enough, the results of [2] provide weak∗ con-
vergence to μ′ in the distance provided by the sup-norm:

dist(γ1, γ2) = inf
ϕ1,ϕ2

sup
t

|γ1(ϕ1(t)) − γ2(ϕ2(t))|,

where the infimum is over all possible parametrizations. For our purposes—where prime
ends are a concern—we will consider a weighted sum of the distances within various regions
between the curves. We will denote the appropriate distance by Dist; see Definition 3.12.
We can easily extend the result of [2] to the following:

Lemma 2.5 (Dist Topology) The measure μ′ is a limit point in the weak∗ Dist topology on
curves of με .

We remark that as far as most of the following arguments are concerned, one need not be
overly concerned about the difference between the Dist norm versus the usual sup-norm, at
least on a preliminary reading.

Finally, we will use the following continuity result for crossing probabilities, whose proof
can be found in [3] (stated as Corollary 5.10):

Lemma 2.6 Consider the models described in [9] (which includes the triangular site prob-
lem studied in [19]) on a bounded domain � with boundary Minkowski dimension less than
two (if necessary) and two marked boundary points a and c. Consider Ca,c,�, the set of
Löwner curves which begin at the point a and are aiming towards the point c but have not
yet entered the � neighborhood of c for some � > 0. Suppose we have γ ε → γ in the Dist
norm, then

Cε(�ε \ γε([0, t]), γε(t), bε, cε, dε) → C0(� \ γ ([0, t]), γ (t), b, c, d)

pointwise equicontinuously in the sense that

∀σ > 0, ∀γ ∈ Ca,c,�, ∃δ(γ ) > 0, ∃εγ ,

such that

∀γ ′ ∈ Bδ(γ )(γ ), ∀ε ≤ εγ ,

|Cε(�ε \ γε([0, t]), γε(t), bε, cε, dε) − Cε(�ε \ γ ′
ε([0, t]), γ ′

ε(t), bε, cε, dε)| < σ.

(2)

Here Bδ(γ ) denotes the Dist neighborhood of γ .

2.4 Proof of the Main Theorem

Let us show how to derive our Main Theorem from the preceding lemmas. We closely fol-
low the strategic initiative outlined in the expositions of [20] (for a slightly different and
more probabilistic perspective on the subject, also see the exposition in [22]); moreover, the
“expansion at infinity” technique we will use here first appeared in [17] in the proof of the
convergence of the loop-erased random walk to SLE2.

Let us fix � with M(∂�) < 2 and two boundary prime ends a and c. We start with an
informal list of the key steps.
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I. Extract some limiting measure μ′.
II. Show that any limiting measure is supported on Löwner curves.

III. Establish the discrete domain (crossing) Markov property.
IV. Löwner parameterize all curves under consideration.
V. Obtain the limiting martingale.

VI. Show that κ = 6.

I. Let us note that the collection of measures (με) defined by the Exploration Processes on
ε-lattice is weakly precompact as a set of regular measures defined on the space of compact
subsets of � with the Hausdorff metric. Thus to prove the Main Theorem it is enough to
show that any weak limit point μ′, of με , is supported on curves which have the law of
SLE6 from a to c in �.

II. By Lemma 2.3, μ′ gives full measure to Löwner curves. Let wt be the random driving
function of the curve. To finish the proof, we need to show that wt has the law of B6t , where
Bt is the standard one dimensional Brownian Motion started at 0.

III. Let us add two boundary prime ends b and d so that (a, b, c, d) are listed counter-
clockwise. Given a discrete Exploration Process, we may parametrize it in any convenient
fashion and denote the resulting curve by X

ε
t . Let us assume, temporarily, that X

ε
t does not

“explore” the boundary, ∂�ε . Now, by convention/definition, the faces on the right side of
the Exploration Process are blue, and the faces on the left side are yellow. In general, a blue
crossing from [a, b] to [c, d] can either touch the blue portion of the exploration path X

ε
[0,t],

or avoid it. It is thus a fact that the blue crossing in �ε of the described type implies a blue
crossing between [Xε

t , b] to [c, d] in �ε \ X
ε
[0,t]. And vice versa: It is clear (at least modulo

cases where X
ε
[0,t] touches ∂�ε) that any blue crossing between [Xε

t , b] to [c, d] in �ε \X
ε
[0,t]

produces a blue crossing from [a, b] to [c, d] in �ε .
Under these conditions, we can write the following Markov identity for the crossing

probabilities

Cε

(
�ε \ X

ε
[0,t],X

ε
t , b, c, d

) = Cε

(
�ε,a, b, c, d | X

ε
[0,t]

)
(3)

and further,

Eμε

[
Cε

(
�ε \ X

ε
[0,t],X

ε
t , b, c, d

)] = Cε (�ε, a, b, c, d) . (4)

Now let 0 < s < t , then given some X
ε
[0,s], the same reasoning as above applied to �ε \X

ε
[0,s]

and the conditional measure με(· | X
ε
[0,t]) gives the martingale equation

Eμε

[
Cε

(
�ε \ X

ε
[0,t],X

ε
t , b, c, d

) | X
ε
[0,s]

] = Cε

(
�ε \ X

ε
[0,s],X

ε
s , b, c, d

)
. (5)

We will later establish a continuum version of this equation (see (9)).

Remark 2.7 Here, let us focus briefly on circumstances where X
ε
[0,t] has touched ∂�ε—

which turns out to be highly likely—or has even “already determined” the crossing game
in �ε—which must happen eventually. In case of the former but not the latter, the above
equations require no further discussion provided we interpret �ε \ X

ε
[0,t] as the connected

component of c in �ε \ X
ε
[0,t] =: Comp�\X

ε[0,t](c). As for the latter, it is not difficult to see
that this occurs precisely when either b or d fail to lie in the boundary of Comp�ε\X

ε[0,t](c). As
such, the notation Cε(�ε \ X

ε
[0,t],X

ε
t , b, c, d) can no longer be literally read as “the crossing

probability in said domain with these marked boundary points” since as least one of the
relevant points is not actually in the boundary of the relevant domain. Notwithstanding,
we can and will use the notation Cε(�ε \ X

ε
[0,t],X

ε
t , b, c, d) even when b or d is not in
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Comp�ε\X
ε[0,t](c) with the understanding that in this case the relevant crossing probability is

given by
{

1; if X
ε
t has hit [c, d] before [b, c],

0; if X
ε
t has hit [b, c] before [c, d].

We will continue with this convention in the ε → 0 case.

It is noted that for ε > 0, we are dealing with a discrete system and the above holds
regardless of the parameterization scheme (provided that no overcounting is engendered);
however, some care will be needed as we take the continuum limit. In particular, the above
equation with all ε removed does not really make sense unless all curves X[0,t] are endowed
with a “common” parameterization. The natural choice is the Löwner parameterization, but
this requires some argument since the relevant topology for convergence is in the sup-norm
(or Dist norm).

IV. Now we show that it is possible to re-parameterize by the Löwner parameterization
(where the half-plane capacity is 2t ). What will suffice for us is a statement to the effect
that every “Löwner parameterization neighborhood” in the support of μ′ contains a Dist-
neighborhood. (By the former it is meant that if γ and γ ′ are endowed with the Löwener
parameterization, then the distance between them is taken to be dL(γ, γ ′) = supt |γ (t) −
γ ′(t)|; thus the converse of the above claim is obvious.) We remark that the statement is
essentially deterministic; we put in the proviso that we are in the support of μ′ just to ensure
that the curves can be Löwner parameterized in the first place.

Hereafter we shall restrict attention to the portion of the curves which have not yet entered
the � neighborhood of c. Our first claim is that (for η  �), in fact, these portions of all
curves in the same η-Dist neighborhood are in fact close in the Löwner parameterization.
Indeed,

Lemma 2.8 Consider curves γ emanating from a which stay outside of the � neighborhood
of c. If Dist(γ1, γ2) < η, then

|Cap
H
(γ1) − Cap

H
(γ2)| < C(�,�)ηα

for some α > 0 and some � and � dependent constant C(�,�). Here CapH(·) denotes the
half plane capacity.

Proof On H, if two (compact) sets A1 and A2 are σ close in the Hausdorff metric, then by
the Beurling estimates (see e.g., Corollary 3.80 in [15])

|Cap
H
(A1) − Cap

H
(A2)| ≤ C

√
σ · diam(Nσ (A1))

3/2, (6)

where Nσ (A1) denotes the Hausdorff-σ neighborhood of A1, relative to H and C is some
constant. (The estimate is also valid if we replace Nσ (A1) by Nσ (A2).) In our case, we are
only assuming σ -closeness in the original domain � and therefore one could a priori be
concerned about distortions near the boundary. However, this can be rectified with the aid
of some distortion theorems. Let us decompose

� = Nδ(∂�) ∪ [� \ Nδ(∂�)]
and similarly given two curves γ1 and γ2, we will write e.g., γ1 = γ̂1 ∪ γ̄1, where γ̂1 =
γ1 ∩ [� \ Nδ(∂�)] and γ̄1 = γ1 ∩ Nδ(∂�). Here, the neighborhoods are relative to �.
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We will invoke the Distortion Theorems. (For a more detailed argument along these lines,
see the proof of Lemma 3.8.) First, we have that if ϕ : � → H, then

ϕ(Nδ(∂�)) ⊂ NC′√δ(∂H)

for some (� dependent) constant C ′ and hence bounding the capacity via the area of the
corresponding strip, we have

Cap
H
(γ̄1),Cap

H
(γ̄2) � D

√
δ

where D is the diameter of the image of the complement of the �-neighborhood of c under
ϕ and we use � to denote implied universal/�-dependent constants. Next we note that by
the subadditive property of capacities, it is clear that

|Cap
H
(γ1) − Cap

H
(γ2)| ≤ Cap

H
(γ̄1) + Cap

H
(γ̄2) + |Cap

H
(γ̂1) − Cap

H
(γ̂2)|

so we now estimate |Cap
H
(γ̂1)− Cap

H
(γ̂2)|. But by another distortion estimate (to be found

e.g., in Corollary 3.19 in [15]) we have

|ϕ′(z)| � 1/
√

δ.

Hence d(ϕ(z1), ϕ(z2)) � η√
δ

if z1, z2 ∈ � \ Nδ(∂�) with d(z1, z2) < η and we conclude that

dH (γ̂1, γ̂2) � η√
δ

where dH denotes the Hausdorff distance. It therefore follows by (6) that

|Cap
H
(γ̂1) − Cap

H
(γ̂2)| �

√
η

δ1/4
.

Combining the above estimates, we see that with proper choice of δ (which vanishes with η),
the difference in capacities indeed differs by a fractional power of η. �

We may thus safely replace all parameterizations by the Löwner parameterization:

Corollary 2.9 Let γ be a Löwner curve emanating from a and staying outside of the �

neighborhood of c, and let Lσ (γ ) denote the σ Löwner parameterization neighborhood
of γ . Then there exists η = η(σ,�,γ ) > 0 such that the Dist neighborhood of size η is
contained in Lσ (γ ).

Proof Suppose towards a contradiction that this is not the case. Then there exists γn →
γ in the Dist norm such that dL(γn, γ ) > σ . It is clear that we may endow each γn—as
well as γ —with some (uniform) parameterization so that supt |γn(t) − γ (t)| = ηn, which
tends to zero; further, we can and will without loss of generality assume that γ is in fact
parameterized by capacity (this does not imply that γn’s are parameterized by capacity;
indeed, they are parameterized by γ ’s capacity). But this implies that there is a sequence of
capacities cn, which occur for γn at time sn (in this parameterization) such that

|γn(sn) − γ (cn)| > σ.
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Taking a subsequence if necessary, we may assume that sn → s. Our first claim is that
γn([0, sn]) converges in the Dist norm to γ ([0, s]). Indeed,

Dist(γn([0, sn]), γ ([0, s])) ≤ Dist(γ ([0, sn]), γ ([0, s])) + Dist(γ ([0, sn]), γn([0, sn])).

The second term is clearly bounded by ηn; as for the first term, it is clearly bounded by
diam(γ ([sn ∧ s, sn ∨ s])) which tends to zero since γ is continuous. We may assume without
loss of generality (taking a subsequence if necessary) that cn → c. By Lemma 2.8 we then
have

c = lim
n→∞ Cap

H
(γn[0, sn]) = Cap

H
(γ [0, s]).

So using the fact that capacity is strictly increasing (which follows from the definition of
Löwner curves) the above display implies that s = c which is a contradiction since Dist-
convergence necessitates that γn(sn) → γ (s). �

V. As a first step towards obtaining a martingale observable in the continuum, our next
goal is to remove all ε’s from (4). On the basis of the previous step, it is clear that we may
now interpret (4) in terms of Löwner parameterization. Further, we set t > 0 to be such that
the relevant curves have not yet entered the � neighborhood of c. First, the right hand side
of (3) converges to the continuum counterpart C0(�,a, b, c, d) by Lemma 2.2, so we focus
on the left hand side.

First, recalling that μ′ is a weak∗ limit with respect to the Dist norm, and that the space of
all possible continuous curves is, in fact, separable, it follows that there are countably many
curves γn such that the space, Ca,c,�, of Löwner curves which begin at a aiming towards c

but having not yet entered the � neighborhood of c, can be written as

Ca,c,� =
∞⋃

n=1

Bδn(γn) ∩ Lσ (γn) :=
∞⋃

n=1

N ∗
n .

In the above, δn has been chosen in accord with Lemma 2.6 (and also, for the model in
[9], described in Sect. 4.1, Lemma 2.4 ensures that Cardy’s Formula is viable for domains
slit by the Explorer Process) so that Cε(�ε \ X

ε
[0,t],X

ε
t , b, c, d) for any X

ε
[0,t] in Bδn(γn)

is ϑ close to the corresponding object with argument γn([0, t]) (for ε < ε(γn) sufficiently
small), where ϑ  1 is small, and σ is also envisioned to be small. Further, modifying the
neighborhoods to be mutually disjoint, we can now reduce to a finite number, N , of these
neighborhoods which carries all but α (with α  1) of the measure of μ′. For what follows,
we will sometimes abbreviate, e.g.,

Kε(Y
ε
t ) := Cε

(
�ε \ Y

ε
[0,t],Y

ε
t , b, c, d

)
.

In the above display, it is understood that the right hand side is interpreted in accord with
Remark 2.7 above.

We first observe that (for ε sufficiently small)

∣
∣
∣
∣
∣
Eμε (Kε(X

ε
t )) −

N∑

n=1

με(N ∗
n )Kε(γn)

∣
∣
∣
∣
∣
≤ α +

N∑

n=1

∑

Xε
t ∈N ∗

n

|Kε(X
ε
t ) − Kε(γn)| με(X

ε
t ) ≤ α + ϑ
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and similarly

∣
∣
∣
∣
∣
Eμ′(K0(Xt)) −

N∑

n=1

μ′(N ∗
n )K0(γn)

∣
∣
∣
∣
∣
≤ α +

N∑

n=1

∫

Xt ∈N ∗
n

|K0(Xt ) − K0(γn)|dμ′(Xt) ≤ α + ϑ.

Therefore, it is enough to control the difference of the relevant sums over neighborhoods:

∣
∣
∣
∣
∣

N∑

n=1

με(N ∗
n )Kε(γn) −

N∑

n=1

μ′(N ∗
n )K0(γn)

∣
∣
∣
∣
∣

≤
N∑

n=1

∣
∣με(N ∗

n )Kε(γn) − μ′(N ∗
n )K0(γn)

∣
∣

≤
N∑

n=1

∣
∣με(N ∗

n )(Kε(γn) − K0(γn))| + |(μ′(N ∗
n ) − με(N ∗

n ))K0(γn)
∣
∣

≤ ϑ + α.

Thus, taking N → ∞ and ε → 0, etc., we may now upgrade (3) with

Eμ′
[
C0

(
� \ X[0,t],Xt , b, c, d

)] = C0 (�,a, b, c, d) . (7)

Remark 2.10 The demonstration of (7) (or some version thereof) in the continuum repre-
sents the key issue in this approach to proving convergence. In the present work, this has
been achieved via a robust convergence to Cardy’s Formula in general (i.e., slit) domains via
the sup-approximations; see [3], Corollary 4.10. In any case, the authors strongly believe that
some analytical statement along these lines cannot be avoided.

Next we recast (7) in terms of conditional expectation:

Eμ′(1C�
| σ([0, t])) ≡ Eμ′(1C�

| X[0,t]) = K0(X[0,t]), (8)

where σ([0, t]) denotes the σ -algebra generated by μ′ supported curves up to time t and
1C�

(·) is the indicator function of the crossing event. (The latter can be realized as

1C�
(γ ) =

{
1, if γ hits [c, d] before [b, c],
0, if γ hits [b, c] before [c, d]

and hence is a μ′ measurable function.) Note that e.g., 1C�
≡ 1 if X[0,t] has already hit the

[c, d] boundary of � and, in this vein, (8) is of course interpreted in accord with Remark 2.7
above. We see that (8) follows immediately: For B ∈ σ([0, t]]),
∫

B
[Eμ′(1C�

| σ([0, t]))](γ )dμ′(γ ) =
∫

B
1C�

(γ )dμ′(γ ) = μ′(C� ∩ B) =
∫

B
K0(X[0,t])dμ′.

Here the first two equalities are definitions and the third equality can be established by a
straightforward modification of the argument used to establish (7)—which corresponds to
the case where B is the full sample space.
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From (8) and the defining properties of conditional expectation, we can deduce that
(1) the random variable K0(X[0,t]) is σ([0, t]) measurable and (2) K0(X[0,t]) is a contin-
uous time martingale, i.e., if 0 < s < t , then

Eμ′
[
C0

(
� \ X[0,t],Xt , b, c, d

) | X[0,s]
] = C0

(
� \ X[0,s],Xs , b, c, d

)
. (9)

In particular, (9) is simply (7) and (8) with � replaced by � \ X[0,s]—along with the in-
terpretation of the latter in terms of conditional expectations—and μ′ averaging over X[s,t].
More specifically, since σ([0, s]) ⊂ σ([0, t]), if B ∈ σ([0, s]), then

∫

B
Eμ′(1C�

| σ([0, s])dμ′ =
∫

B
1C�

dμ′ =
∫

B
Eμ′(1C�

| σ([0, t]))dμ′

=
∫

B
Eμ′

[
Eμ′

(
1C�

| σ([0, t]) | σ([0, s]))]dμ′,

which is the content of (9).
VI. We will now finish the proof and show that κ = 6. Notice that the map

ht (z) = gt (z) − gt (d)

gt (b) − gt (d)
,

where gt (z) is the Löwner map, maps the rectangle (� \ X[0,t],Xt , b, c, d) conformally onto

(

H,
λt − gt (d)

gt (b) − gt (d)
,1,∞,0

)

.

By Cardy’s identity (Lemma 2.2),

C0(� \ X[0,t],Xt , b, c, d) = F

(
gt (b) − λt

gt (b) − gt (d)

)

, (10)

where we recall that the relevant domain is really the connected component of c in � \X[0,t]
and it is tacitly assumed that b and d are both (still) in the boundary of this component.

Using (10), we can rewrite (9), accounting for such errors, via
∣
∣
∣
∣F

(
gs(b) − λs

gs(b) − gs(d)

)

1{b,d∈∂(�\X[0,s])}

− Eμ′

(

F

(
gt (b) − λt

gt (b) − gt (d)
| X[0,s]

)

∩ {b, d ∈ ∂(� \ X[0,t])}
)∣

∣
∣
∣

≤ P
(
b �∈ ∂(� \ X[0,t]) or d �∈ ∂(� \ X[0,t])

)
. (11)

Let us now consider |gt (b)| and |gt (d)| both large compared with λt and t , which may
be enabled by considering t fixed and b, d → c. In particular, let us define b0 = g0(b) and
d0 = g0(d); the object b0 will be our large parameter and since b0 > 0 while d0 < 0, we may
as well defined d0 via d0 = −rb0 with r > 0 of order unity. It turns out that r = 1 is slightly
peculiar (which is anyway easily understood) and so we will assume that this is not the case.

Let us observe right now that (for fixed t ) the right hand side of (11) tends to zero as we
take b0 to infinity: Since the capacity of the curve at time t is, by definition, 2t , it is clear
that the image of the curve must stay within a distance ≈√

t of the real axis. The asymptotic
expansion for gt (g

−1
0 ) directly implies that for t  b0, e.g., bt ≈ b0 and hence, the image
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of the Exploration Process up to time t under the map g0 will be forced to cross a box of
large aspect ratio. By (conformal invariance of) Cardy’s Formula the probability of such a
crossing tends to zero exponentially like e−O(b0/

√
t). Hence it is sufficient to complete the

proof under the assumption that b, d ∈ ∂�t .
We now carry out the promised asymptotic expansion in 1/b0. Recall that by the Löwner

parameterization in the half plane, gt (g
−1
0 (z)) = z + 2t/z + O(1/z2) for z → ∞. Thus,

gt (b) = b0 + 2t

b0
+ · · · .

Therefore (assuming b and d are in ∂� \ X[0,s]) we may write, for the first term on the left
hand side of (11)

F

(
gt (b) − λt

gt (b) − gt (d)

)

= A(r) + B(r)

[
λt

b0

]

+ C(r)

[
λ2

t − 6t

b2
0

]

+ O(b−3
0 ). (12)

We will need to take expectation of all terms; provided that each term in the expansion is
well-defined, we may examine coefficients of various powers of b0 and draw conclusions.
The necessary moment estimates appear in Lemma 2.11 below.

First let us take expectations and note that (7) implies that the average over X[0,t] and
hence λ[0,t] must provide the same result as in the original setup (corresponding to t = 0).
This implies, from the first two terms, that

E(λt ) = λ0 = 0 (13)

and

E(λ2
t − 6t) = 0. (14)

Finally, we reiterate that the entirety of X[0,t] is determined by λ[0,t] (the history of the driving
function up to time t ). Now, conditioning on X[0,s]—which is equivalent to conditioning on
λ[0,s]—(9) gives us that the conditional expectation of (12) must (term by term) give us what
we would have gotten with s replacing t , namely,

E(λt | λs) = λs, E(λ2
t − 6t | λs) = λ2

s − 6s.

Therefore both λt and λ2
t −6t are continuous martingales, which, by Lévy’s characterization

of Brownian Motion, implies that λt has the law of B6t . Modulo the moment estimates for
λt , this completes the proof of the Main Theorem.

Finally, as promised, we will now prove an a priori estimate on λt .

Lemma 2.11 (A priori Estimate)

P[λt > n] ≤ C1 exp

(

−C2
n√
t

)

,

for some absolute constants C1 and C2.

To prove Lemma 2.11 let us first observe that:

Lemma 2.12 Let γ (t) be the chordal SLE generated by λt . Then
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• Im(γ (t)) ≤ 2
√

t .
• sups≤t |γ (s)| ≥ |λt |

4 .

Proof We remark that the first statement (perhaps with a different constant) can be attained
by capacity estimates, but in any case, let us observe that

∂t (Im(gt )) = −2Im(gt )/|gt − λt |2 ≥ −2/Im(gt ),

so ∂t (Im(gt ))
2/4 ≥ −1. Integrating, we get (Im(gt ))

2 ≥ (Im(z))2 − 4t . The conclusion is
now clear if we plug in z = γ (t) in the previous expression and note that gt (γ (t)) ∈ R.

For the second part, let us denote Rt = sups≤t |γ (s)|. From e.g., Corollary 3.44 of [15],
we have that |gt (z) − z| ≤ 3Rt , for all z ∈ H \ γ ([0, t]). The result follows by considering
z = γ (t) (or an approximating sequence). �

Now we are in a position to prove Lemma 2.11.

Proof of Lemma 2.11 On the basis of the above lemma, |λt | > n implies that in the half
plane a rectangle of aspect ratio of the order n/

√
t has been crossed by g0(γ[0,t]). But this

means that γ[0,t] itself crossed a conformal rectangle with conformal modulus n/
√

t . In-

voking Lemma 2.2, the probability of such an event is bounded by C1e
−C2

n√
t for some

C1,C2 > 0. �

3 Properties of Typical Explorer Paths

We will now provide proofs for the properties of a typical explorer path. Recall that με is a
measure generated by the percolation Exploration Process on the ε-lattice scale in a domain
� with two distinguished boundary prime ends a and c and μ′ is any limit point of με in the
weak∗-Hausdorff topology.

3.1 Estimates for Explorer Paths

Here in this subsection, we collect some estimates for the explorer paths deduced from
the underlying percolation systems. These estimates represent—at the ε level—exactly the
behavior that ensures that the limiting objects in the support of μ′ are precisely Löwner
curves. We start with

Definition 3.1 Let � be a domain. Let δ � η > 0 and let γ : [0,1] → � be a parametrized
curve. We say that γ has a δ–η doubleback if there exists disjoint subsegments I1 and I2 of
[0,1], with diam(γ (I1)) ≥ δ, diam(γ (I2)) ≥ δ, and such that the segments γ (I1) and γ (I2)

are η-close in the sup-norm.

Lemma 3.2 (No Doubleback) Let � be a domain and let γ ∈ supp(μ′). Let δ, η > 0 satisfy
η < c1δ, with a particular c1 of order unity. Then for all δ sufficiently small, there are
additional constants c2 and c3 of order unity such that for all ε sufficiently small, the με-
probability of a δ–η doubleback is bounded above by

c2

δ2
· e−c3δ/η,

with the same result inherited by μ′.
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Proof It is sufficient to verify the statement in the measures με for ε sufficiently small. Thus
let δ  1 and η small as desired and then ε much smaller than the scale set by η. Thus we
are back to percolation estimates which reduce to crossing estimates for large boxes. Proofs
of similar results have appeared in the literature (many times) before so we shall be succinct.
In summary: the probability of a percolation path crossing a fixed box with aspect ratio of
order δ : η is of order e−[const.]δ/η . The event in question implies such a crossing (somewhere)
and the factor of δ−2 accounts for all possible locations. We now proceed.

For k large but of order unity, let us grid the domain � into pixels of scale k−1δ. It’s not
difficult to see that the event in question necessitates an easy-way η-close double-crossing of
some rectangle of this scale with aspect ratio of order unity. Let us now consider a particular
such δ : kδ rectangle, denoted by Rδ and let us consider the event of at least two disjoint blue
crossings of Rδ that are within distance η of each other. If g0 is such a (single) crossing, let

N(g0) = {∃ a blue crossing of Rδ in the region above g0 that is within distance η of g0}.

Our first claim is that, uniformly in ε, for all ε sufficiently small, P(N(g0)) ≤ e
−c3

δ
η , for all

η, δ. To see this, let us cover g0 with disjoint annuli of scale 3η : η, with the center of each
annulus centered on a point of g0. Clearly, there are at least of the order δ/η such annuli. If
in the region above g0, in any one of these annuli there is a yellow circuit, then N(g0) cannot
possibly occur. For future reference, we note that in fact these preventative steps take place
in the intersection of the relevant annuli with Rδ . Since the probability of such a yellow
circuit is uniformly positive, we have so far indeed shown that

P(N(g0)) ≤ e
−c3

δ
η .

Letting G0 denoting the event that g0 is the lowest crossing, one obtains the same estimate
as the above for P(N(g0) | G0). The estimates will hold if we now let Gk denote the event
that the curve gk is the kth to lowest crossing, e.g., out of a total of � ≥ k disjoint crossings.
Thus, by subadditivity, conditioned on the existence of say � disjoint crossings, the ultimate

double-crossing event of interest has probability bounded above by �e
−d3

δ
η . However, if r�

denotes the probability of � disjoint crossings in Rδ , then by a BK-type inequality (which
for the model at hand is provided in Lemma 4.7) it is clear that

∑
� �r� < ∞. Hence the

probability of two disjoint blue crossings (or two disjoint yellow crossings) in Rδ is bounded
above by

c2e
−c3

δ
η . (15)

To finish we note that there are only of order δ−2 such rectangles in � and hence summing
over them, we have finished proving the lemma. �

In the above and in what is to follow, results are shown to hold “uniformly in ε for ε

sufficiently small”—which, ultimately, always follows from scale invariance of the RSW
estimates. Hereafter we shall be somewhat less explicit concerning this matter.

Lemma 3.3 (Multi-Arm Estimates) Let D(η, l) denote the circular annulus with inner
radius η and outer radius l. Consider the events of a (i) 5-arm crossing of D(η, l) and
(ii) 6-arm crossing of D(η, l). Then the 5-arm event has probability bounded above by
(η/l)2 while the 6-arm event has probability bounded above by (η/l)2+σ for some σ > 0.
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Proof Let us rescale back so that the lattice spacing is of order unity and the diameter of
�ε is of order N . Then the five arm event in D(η, l) is the event of five crossings between
circles of radius ηN and lN . Approximating by appropriate “square” annular regions, the
arguments of [13] may be used in generic circumstances (of course some degree of reflection
symmetry for the underlying lattice has to be employed and in addition it has been checked
that the fencing/corridor arguments in [13] apply). So the probability of the five arm event
in D(η, l) is bounded above by a constant times (η/l)2. For the particular percolation model
at hand, such issues were dispensed with in the proof of Lemma 7.3 in [9]. To bound the
6-arm event (also the subject of Lemma 7.3 in [9] but not handled with ease) we note that
if we let A denote the event of one crossing in the annular region, then the probability of A

is bounded by (
η

l
)σ , for some σ > 0, by standard Russo–Seymour–Welsh arguments. Then

letting B be the event of 5 crossings in the annular region and applying a BK-type inequality
to A◦B (which for the model at hand is given as Lemma 4.7) we obtain the desired result. �

Definition 3.4 Let �2 > �1 (with �2 � �1 envisioned) and let γ : [0,1] → � be a curve.
We say that γ has a �2–�1 triple visit if there are times ta < t1 < tb < t2 < tc < t3 < td such
that γ (t1), γ (t2) and γ (t3) all lie within a single �1-neighborhood while γ (ta), . . . , γ (td)

each lie a distance at least �2 from some point in this neighborhood. For an illustration see
Fig. 1(a).

A direct consequence of Lemma 3.3 is the absence of triple visits of the type described
in the above definition as the ratio �1/�2 tends to zero:

Lemma 3.5 Let � be a domain and let �2 � �1 > 0. The μ′-probability of a �2–�1 triple
visit tends to zero as �1/�2 → 0.

Proof A sketch of a triple visit scenario in D(η, l) yields immediately 6 long disjoint pas-
sages of γ (t) across the annulus. Note this can occur in two topologically distinct fashions.
For γ (t) a two-sided Exploration Process, naïve counting would yield as many as twelve
long arms, but adjacent sides of “disjoint” long arms can lead to sharing of (boundary)

Fig. 1 Atypical behavior of με curves
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elements of the process; in the worst possible case, entire adjacent arms can “collapse”.
However, in either topology, even taking into account all these sharings and collapses, we
are still left with six genuinely disjoint long arms.

We have established, in the continuum or lattice approximation, that the six arm event
in an annulus D(η, l) has probability bounded above by (

η

l
)2+σ . We may divide � (or �ε)

into an overlapping grid of scale η. The probability that such an event happens anywhere
is therefore bounded above by (η/l)2+σ ( 1

η2 ) = 1
l2

(
η

l
)σ , so ultimately, the probability of an

actual triple visit is zero and the probability of a �2–�1 triple visit indeed tends to zero as
�1
�2

→ 0. �

Remark 3.6 We make the following observation for intrinsic interest and for possible future
reference: Observe that in one of the topological alternatives, after the second visit to the
inner circle, the Exploration Process can immediately delve into the sack created between
this visit and the first. As an Exploration Process, γ (t) is now forced to perform its third
visit and escape D(η, l) altogether. The observation of interest is that these forced future
visitation events provide, at least on the level of arm estimates, no additional decay after the
(deep) visit into the cul-de-sac. Indeed, six arms are already present at this juncture (and
ostensibly all potential additional arms may undergo collapse).

Definition 3.7 Let � be a domain. Let �2 > �1 (with �2 � �1 envisioned) and let γ :
[0,1] → � be a curve. We say that γ has a �2–�1 double visit to the boundary by the
obvious modification of Definition 3.4 (using only ta, t1, tb, t2, tc along with the stipulation
that at least one of the points γ (t1) or γ (t2) is within distance �1 of ∂�). For an illustration
see Fig. 1(b).

Lemma 3.8 (No Double Visits Near the Boundary) For any �2 > 0, the probability of a
�2–�1 double visit to (anywhere on) the boundary tends to zero as �1 → 0.

Proof First we observe that if the Exploration Process has a �2–�1 double visit to the
boundary, then this implies at least a 3-arm event on the scale of �2 : �1 near the boundary.
This three-arm event can be viewed as the difference of crossing probabilities of certain
conformal rectangles, all of which are contained in �; the limiting probabilities of these
events are therefore conformally invariant and, furthermore, can be viewed under a single
conformal map.

The problem on the unit disc follows from well-known estimates: If ND,p denotes the
p neighborhood of the boundary in D then, as ε → 0, the probability of a three-arm event
between ND,p1 and N c

D,p2
is of the order (p1/p2)

2. For percolation domains with smooth
boundaries, this follows from the a priori 1/N2 power law estimates described in [1]
and [16]. (The idea of proof is straightforward. In brief: Consider the easy way crossing
of an N by 2kN box. This probability is markedly larger than the similar probability in an
N by kN box with both probabilities of order unity. The difference between these two prob-
abilities can be written as a telescoping sum, with each increment corresponding to a single
site distortion, the vast majority of which leading to a three arm event in the half space—the
contributions from sites near the boundary are negligible. This implies on the order of N2

three arm events, each of which can be shown to happen with comparable probability by the
rearrangement arguments of Kesten [13]. Since the sum of all these probabilities is of order
unity, the result follows.)

Let us then consider the uniformization map ϕ : D → �. We denote by p2 = p2(�2,�)

the distance between [ϕ−1(N�,�2)]c and ∂D. Obviously p2 is independent of �1, therefore
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it is sufficient that the image of N�,�1 is contained in a neighborhood of ∂D whose girth
vanishes as �1 → 0. In particular and more than adequate it can be shown that f (N�,�1) ⊂
ND,C(�)

√
�1

: Indeed, by the Bieberbach Distortion theorem,

|ϕ′(z)| ≥ |ϕ′(0)|(1 − |z|)/4.

By the Koebe 1/4-theorem,

dist(ϕ(z), ∂�) ≥ 1/4(1 − |z|)|ϕ′(z)| ≥ 1/16|ϕ′(0)|(1 − |z|)2.

This implies the required estimate with C(�) = 4/
√|ϕ′(0)|. �

Remark 3.9 The above estimates apply equally to the situation when the tip of the Explo-
ration Process has “just” performed a double visit; i.e., the time tc in Definition 3.8 is in fact
superfluous. This situation is analogous to the forced future triple visitations discussed in
Remark 3.6. As in these cases, the ostensible extra arms that the continuation of the journey
might generate are susceptible to collapse and cannot be counted, while the estimates are
already sufficient without these arms.

3.2 Limit is Supported on Löwner Curves

Here we provide a proof of Lemma 2.3, i.e., any limit point of the με’s is supported on
Löwner curves. Our proof will utilize three additional lemmas, but first we must discuss
crosscuts.

As alluded to several times before, we envision � as the conformal image of the upper
half plane via some map φ : H → �. The prime end a is defined in the usual fashion as
the set of all limit points of sequences φ(zn), zn → za , where za ∈ R is fixed. Alternatively,
consider

Ak = φ({|z − za| ≤ 1/k, Im z > 0}),
then the prime end a can be defined as

⋂
k Ak . We define similar quantities for c and call

them Ck . Finally let us also define γ k
ε to be the curve formed by γε from the last exit from Ak

to the first entrance into Ck after this last exit from Ak (here γε denotes a generic με curve).
We remark that for finite k, with non-zero probability, γε will form multiple crossings of
the region �k ≡ � \ (Ak ∪ Ck), but this probability tends to zero as k → ∞, as can be seen
by applying Cardy’s Formula (or by using Russo–Seymour–Welsh type arguments, c.f. the
proof of Lemma 2.4).

Lemma 3.10 Consider the domain �k and let μ′
k be a limit point of the measures on the

curves γ k
ε . Then the μ′

k’s are supported on Hölder continuous curves. Moreover, the weak
convergence to μ′

k can be taken with respect to the topology defined by the sup-norm distance
between curves.

Proof These claims follow from the result of [2]. We claim that on �k , the curves {γ k
ε }

satisfy hypothesis H1 of [2], namely: The probability of multiple crossings of circular shells
(intersected with �k) goes to zero as the multiplicity gets large. This is clear if we consider
circular shells with the outer radius sufficiently small, dependent on k. Indeed, for R less
than some Rk , there is no possibility of both blue and yellow boundary inside �k intersected
with the corresponding circular shell. Thus we must only rule out many crossings of γ k

ε of



On Convergence to SLE6 I: Conformal Invariance for Certain Models 377

Fig. 2 A jump of magnitude l occurring in the vicinity of the prime end c

the circular shell either in the presence of no boundary or in the presence of a monochrome
boundary—with the rate of decay which increases to infinity with the number of traversals.
These estimates follow from straightforward repeated applications of the BK type inequality,
which, for the model at hand, is proved in Lemma 4.7. �

For the next lemma, we need another definition. We say that we have a jump of magnitude
(at least) � if

γ k+�
ε ∩ (�ε \ (Ak ∪ Ck)) �= γε ∩ (�ε \ (Ak ∪ Ck)).

For an illustration see Fig. 2.

Lemma 3.11 For every k, as ε → 0, the magnitude of the jumps stay bounded with proba-
bility one.

Proof The modulus of the conformal rectangle (Ak \Ak+�)
◦ tends to infinity as � → ∞ (with

� � k envisioned). We observe that in the event of a jump there must be a crossing of this
conformal rectangle. As ε → 0, we may utilize Cardy’s formula to show that the probability
of such a crossing is bounded by some constant δk,� which tends to zero as � → ∞, i.e.,
as ε → 0, the probability of jumps of unbounded magnitude is zero. Analogous arguments
hold for the Ck’s. �

We are now ready to prove that μ′ is supported on Löwner curves.

Proof of Lemma 2.3 We first establish that any limiting measure μ′ is supported on curves
from a to c. By Lemma 3.11, a μ′ generic set intersected with � \ (Ak ∪ Ck) is the same as
μ′

k+� generic curves (these objects are curves by Lemma 3.10) intersected with �\(Ak ∪Ck)

for some �. The family of domains � \ (Ak ∪Ck) is monotone and exhaustive, and hence μ′
is concentrated on curves. By Lemma 3.11 again, these curves are crosscuts from a to c.

To show that these are Löwner crosscuts it is enough to show that they almost surely
satisfy conditions (L1) and (L2). Consider a parametrization of γ with non-vanishing speed.
It is not difficult to see that a violation of (L1) implies that there exists some point z0 which
is visited at least three times if z0 is in the bulk or twice if z0 is on the boundary. We remind
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the reader that this is in the continuum; at the lattice level, our collisions could represent ap-
proaches which are microscopically large but macroscopically small e.g., a sublinear power
of N .

Such an encounter in the interior leads to a triple visit and thus has vanishing probabil-
ity, by Corollary 3.5. If z0 is η(ε)-close to the boundary, η → 0, violation of (L1) implies a
double visit below/at z0. As ε → 0, this has vanishingly small probability, by Lemma 3.8. Fi-
nally, a violation of (L2) is equivalent to the existence of some severe doubling back (e.g. at
scales δ(ε), η(ε), with η/δ → 0), as defined in Definition 3.1 and therefore is forbidden by
Lemma 3.2. �

We are now prepared to define the Dist function alluded to in the previous section.

Definition 3.12 Let λ� > 0 be fixed numbers that satisfy
∑

� λ� = 1, e.g., λ� = 2−�. If γr

and γg are two curves in � from a to c, we denote, as before, γ �
r (or γ �,ε

r ) the appropriate
portion of the curve in ��, etc. Let d�(γr , γg) denote the usual sup norm distances between
γ �

r and γ �
g . Then we define

Dist(γr , γg) =
∑

�

λ�d�(γr , γg).

As a corollary, we have weak∗ convergence of με to μ′ with respect to the topology
provided by the Dist norm:

Proof of Lemma 2.5 For any finite k, we have by the result of [2] that μ′
k is the weak∗ sup-

norm limit of the objects μk,ε , which are measures on the curves {γ k
ε }. It only remains to be

seen that once two curves in �k are close for k large, then they remain close uniformly in k,
but this is a property which follows directly from the definition of Dist. �

3.3 Preservation of M(∂�) < 2

Here we show that if we start with some domain � with boundary Minkowski dimension
less than two, then the Exploration Process also yields a curve with Minkowski dimension
less than two.

Proof of Lemma 2.4 Let z ∈ Int(�) and gδ(z) the box of radius δ surrounding z and D(z)

denote the distance between z and ∂�. We claim that there is some ψ > 0 such that for all
ε sufficiently small,

Pε(X
ε
t ∈ gδ(z)) < C2

(
δ

D

)ψ

where C2 is a constant.
This follows from Russo–Seymour–Welsh theory, which we do here in some detail. In-

deed, if r < s, let As,r (z) ≡ Bs(z) \ Br(z) denote the annulus centered at z, where, if nec-
essary, the sides are approximated, within ε, by the lattice structure. Assume temporarily
that As,r (z) ⊂ Int(�). Clearly, if there is both a yellow and a blue ring in As,r , then X

ε
t

cannot possibly visit Br(z) (since the yellow portion of X
ε
t cannot penetrate the blue ring

and similarly with yellow ↔ blue). Now by the Russo–Seymour–Welsh estimates alluded to
(Theorem 3.10, item (iii) in [9] for the model at hand) the probability of a blue ring in AM,λM

is bounded below uniformly in ε by a strictly positive constant that depends only on λ. Let
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η > 0 denote a lower bound on the probability that in A4L,3L there is a blue ring and in
A3L,2L a yellow. Now let k satisfy 2k > ε−1D > 2k−1 and similarly 2� > ε−1δ > 2�−1. Then,
give or take, there are k − � independent annuli in which the pair of rings described can
occur. The probability that all such ring pair events fail is less than C1(1 − η)k−� ≤ C2(

δ
D

)ψ ,
where C1 and C2 are constants and ψ > 0 is defined via η.

Let us fix a square grid of scale δ with ε  δ  1. Let Nδ denote the number of boxes of
scale δ that are visited by the process. We claim that for all ε sufficiently small

Eε(Nδ) ≤ Cψ ′

(
1

δ

)2−ψ ′

= Cψ ′n2−ψ ′
, (16)

where ψ ′ > 0 is a constant and n = nδ = δ−1 represents the characteristic scale of � on the
grid of size δ−1. In particular we may take ψ ′ < min{ψ,θ}, where θ ∈ [0,1] describes the
roughness of the boundary: M(∂�) = 2 − θ .

Let nk denote the number of boxes a distance kδ (i.e., k boxes distant) from ∂� and

Nl =
∑

k≤l

nk.

Our first claim is that for all δ,

Nl < Cθ ′n2−θ ′
lθ

′
, (17)

for any θ ′ < θ , where Cθ ′ is a constant. To see this, let us estimate the total area of boxes
on a grid of size σ intersected by or within one unit of ∂�. It is not hard to see that this is
bounded by Cθ ′ × ( 1

σ
)2−θ ′×σ 2 = Cθ ′σ θ ′

, where Cθ ′ is a constant which is uniform for a fixed
θ ′ < θ . Taking σ = lδ and noting that these boxes contain all of the n1 + · · · + nl boxes of
scale δ (i.e., boxes within l units of ∂�), the claim follows.

Now, clearly,

Eε(Nδ) ≤ C2

lmax∑

k=1

nk ·
(

1

k

)ψ

.

Let us now dispense with the sum in the display. Summing by parts, we get

lmax∑

k=1

nk

(
1

k

)ψ

= Nlmax l
−ψ
max +

lmax−1∑

k=1

Nk

(
1

kψ
− 1

(k + 1)ψ

)

.

Now if ψ > θ , then ψ > θ ′. Using (17) and pulling out an n2−θ ′
, the sum is convergent.

Meanwhile, the first term (again using the estimate in (17)) is smaller. Conversely, if ψ ≤ θ ,
then both terms are of order n2−θ ′

l
θ ′−ψ
max and the result follows if we take lmax = n. It is re-

emphasized that the estimate in (16) is uniform in ε; by further sacrifice of the constant, we
may claim that (16) holds for all box-scales in the range [δ,2δ].

The remaining argument is now immediate. Letting δk = 2−k we have that for any δ ∈
[δk+1, δk] and s > 0

Pε(Nδ > Cψ ′n2−ψ ′+s

δ ) ≤ 1

2ks
. (18)

The result follows, for any s > 0, by taking ε → 0 and summing over k. �
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4 The Model

4.1 Review of Model

Here we give a quick description of the model under study. For more details see Sect. 2.2
of [9]. The model takes place on the hexagon tiling of the 2D triangular site lattice: hexagons
are yellow, blue and sometimes split; half and half. Connectivity for us is defined by adjacent
shapes (of the same color) sharing an edge segment in common. Our description of the model
starts with a particular local arrangement of hexagons:

Definition 4.1 A flower is the union of a particular hexagon with its six neighbors. The
central hexagon we call an iris and the outer hexagons we call petals. We number the petals
from 1 to 6, starting from the one directly to the right of the iris. All hexagons which are not
flowers will be referred to as filler.

Let � ⊂ C be a domain, which for simplicity we may regard as being a finite connected
subset of the hexagon lattice. A floral arrangement, symbolically denoted �F, is a designa-
tion of certain hexagons as irises (this determines the flowers). There are three restrictions
on placement of irises: (i) no iris is a boundary hexagon, (ii) there are at least two non–iris
hexagons between each pair of irises, and (iii) ultimately in infinite volume the irises have a
periodic structure with 60◦ symmetries.

We are now ready to define the statistical properties of our model.

Definition 4.2 Let � be a domain with floral arrangement �F.

• Petals and hexagons in the complement of flowers are only allowed to be blue or yellow,
each with probability 1/2.

• For “most” configurations of petals, irises can be blue, yellow, or mixed (one of three
ways c.f., Fig. 3) with probabilities a, or s, so that 2a + 3s = 1 and in addition,

a2 ≥ 2s2.

• The exceptional configurations of petals, which we call triggers, are configurations where
there are three yellow and three blue petals, with one pair of blue (and hence also yellow)
petals contiguous. In these configurations, the irises can now only be blue or yellow, each
with probability 1/2.

Note that triggering is the only source of (very short range) correlation in this model;
everything else is configured independently. It is worth noting that for each floral arrange-
ment, we have a one-parameter family of critical models with s = 0 reducing to the usual
site percolation on the triangular lattice.

Fig. 3 The three allowed “split”
states of the hexagon. Note that
these correspond to single bond
occupancy events in the
corresponding up-pointing
triangle in the bond-triangular
lattice percolation problem
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Finally, it is remarked that the total of five possible configurations on a hexagon corre-
spond to the eight possible configurations on (up-pointing) triangles—of which there are
five distinct connectivity classes. It is not hard to see, by checking local connectivity prop-
erties, that the model described is a representation of a correlated percolation model on the
triangular bond lattice.

It was shown in [9] Theorem 3.10 that our model exhibits all the typical properties of
a 2D percolation model at criticality. Cardy’s formula for this model was the main result
of [9] (Theorem 2.4). More specifically, let � ⊂ C be a domain with piecewise smooth
boundary which is conformally equivalent to a triangle. Let us denote the three boundaries
and “prime ends” of interest by A, c, B, a, C, b, in counterclockwise order. We endow �

with an approximate discretization (with hexagons) on a lattice of scale ε = 1/N and a floral
arrangement �Fε . Let z be the vertex of a hexagon in �Fε . We define the discrete crossing
probability function uY

ε (z) to be the indicator function of the event that there is a blue path
connecting A and B, separating z from C , with similar definitions for vY

ε (z) and wY
ε (z) and

the blue versions of these functions. Then taking the scaling limit in an appropriate fashion
(for more details see Sect. 2.3 of [9]), we have, e.g.

lim
ε→0

uY
ε = u,

where u is one of the so-called Carleson–Cardy function: It is harmonic, and on the up-
pointing equilateral triangle with base C being the unit interval, it is equal to 2√

3
· y—this is

equivalent to Cardy’s formula. The functions v and w are defined similarly.

4.2 The Exploration Process

We now give a (microscopic) definition of the percolation Exploration Process tailored to our
system at hand. We must start with a precise prescription of how to construct our domains.
Let � be a domain as described. Let a and c be two prime ends and consider hexagons
of the ε-tiling of C. It is assumed that within this tiling (with fixed origin of coordinates)
the locations of all irises/flowers/fillers are predetermined. We define �ε to be the union of
all fillers and flowers whose closure lies in the interior of �. It is assumed that ε is small
enough that both a and c are in the same lattice connected component of the tiling. Other
components, if any, will not be discarded but will only play a peripheral rôle. With the
exception of flowers, the boundary of the domain will be taken as the usual internal lattice
boundary, which consists of the points of the set which have neighbors not belonging to the
set. If the lattice boundary cuts through a flower, then the whole flower is included as part
of the boundary. The notation for this lattice boundary will be ∂ε�ε .

Consider points aε , cε which are on ∂ε�ε and are vertices of hexagons. We call
(�ε, ∂�ε, aε, cε) admissible if

• �ε contains no partial flowers.
• ∂ε�ε can be decomposed into two lattice connected sets consisting of hexagons and/or

halves of boundary irises, one of which is colored blue and one of which is colored yellow,
such that aε and cε lie at the points where the two sets join and such that the blue and
yellow paths are valid paths following the connectivity and statistical rules of our model;
in particular, the coloring of these paths do not lead to flower configurations that have
probability zero.

• aε and cε lie at the vertices of hexagons, such that of the three hexagons sharing the vertex,
one of them is blue, one of them is yellow, and the third is in the interior of the domain.
(See Fig. 4.)
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Fig. 4 The setup for the
definition of the Exploration
Process

We remark that in the case of boundary flowers (and other sorts of clusters on the bound-
ary) it is not necessary to color all the hexagons/irises. Indeed the coloring scheme need not
be unique—it is only required that a boundary coloring of the requisite type can be selected.

It is not hard to see that the domains (�ε, ∂ε�ε, aε, cε) converges to (�, ∂�,a, c) in the
sense that ∂ε�ε and �ε converge respectively to ∂� and � in the Hausdorff metric and in
the Caratheodory metric with respect to any point inside �. Also, there exists aε and cε

which converge respectively to a and c as ε → 0. Notice that the latter convergence is really
in terms of the preimages under the uniformization map of the relevant domain. In some
sense we have chosen the “simplest” discretization scheme, which, in the companion work
[3] will be called the canonical approximation; of course other discretizations are possible,
but in the interest of brevity we shall not discuss these in the present work.

Geometrically, the Exploration Process produces, in any percolation configuration on �ε ,
the unique interface connecting aε to cε , i.e.,the curve separating the blue lattice connected
cluster of the boundary from that of the yellow. We denote this interface by γε . Dynamically,
the exploration process is defined as follows: Let X

ε
0 = aε . Given X

ε
t−1, it may be necessary

to color new hexagons in order to determine the next step of the process. (In particular,
X

ε
t−1 is “usually” at the vertex of a hexagon which has not yet been colored.) We color any

necessary undetermined hexagons according to the following rules:

• If the undetermined hexagon is a filler hexagon, we color it blue or yellow with probability
1/2.

• If the undetermined hexagon is a petal or an iris, we color it blue or yellow or mixed
with the conditional distribution given by the hexagons of the flower which are already
determined.

• If a further (petal) hexagon is needed, it is colored according to the conditional distribution
given by the iris and the other hexagons of the flower which have already been determined.

We are now ready to describe how to determine X
ε
t :

• If X
ε
t−1 is not adjacent to an iris, X

ε
t will be equal to the next hexagon vertex we can get

to in such a way that blue is always on the right of the segment [Xε
t−1,X

ε
t ].• If X

ε
t−1 is adjacent to an iris, then the state of the iris is determined as described above,

after which the exploration path can be continued (keeping blue on the right) until a petal
is hit. The color of the petal will now be determined (according to the proper conditional
distribution) and X

ε
t will equal one of the two possible vertices common to the iris and

the new petal which keeps the blue region to the right of the final portion of the segments
joining X

ε
t−1 to X

ε
t .

In particular, it is noted that at the end of each step, we always wind up on the vertex of a
hexagon (see Fig. 5). We denote by (γε)t the actual value taken by the random variable X

ε
t .
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Fig. 5 “Multistep” procedure by
which the Exploration Process
gets through a mixed hexagon

We state without proof some properties of our Exploration Process.

Proposition 4.3 Let γε([0, t]) be the line segments formed by the process up till time t , and
�ε([0, t]) the hexagons revealed by the Exploration Process. Let ∂ε�

t
ε = ∂ε�ε ∪ �ε([0, t])

and let �t
ε = �ε \ �ε([0, t]). Then, the quadruple (�t

ε, ∂ε�
t
ε,X

ε
t , cε) is admissible. Fur-

thermore, the Exploration Process in �t
ε from X

ε
t to cε has the same law as the original

Exploration Process from aε to cε in �ε conditioned on �ε([0, t]).

4.3 A Restricted BK-Inequality

Here we will prove an inequality that will be needed for proofs in several other places.
Suppose A and B are two events. Then the BK inequality [21] states that (for suitable

probability spaces) the probability of the disjoint occurrence of A and B is bounded above
by the product of their probabilities. The most general version of this is Reimer’s inequality
[18] (see also [5] for more background and a self-contained proof), which holds for arbitrary
product probability spaces. For the model at hand, we do not have a product probability
space; Reimer’s inequality would, in the present context, yield the desired result only for
flower disjoint events. Unfortunately, we have need of a stronger statement; specifically, for
disjoint path-type events where the individual paths may use the same flower. In fact, as
the following example demonstrates, a general BK inequality does not hold in our system.
However, as we later show, an abridged version holds for path-type events.

Example 4.4 Let A be the event of a blue connection between petals 1, 4, and 5 (without
any requirement on the color of the petals 1, 4, and 5), and let B = {petals 1, 4, 5 are blue}.
Observe that B and Bc are defined entirely on the petals 1, 4, 5, whereas A is defined on the
complementary set. Therefore we have A ∩ Bc = A ◦ Bc . By Example 6.1 of [9], we know
that P(A ∩ B) < P(A)P(B). But this immediately implies that P(A ◦ Bc) > P(A)P(Bc).

Before tending to the detailed analysis of flowers, let us first introduce the notion of
disjoint occurrence for non-negative random variables.

Definition 4.5 Let ai, bj ≥ 0 and let

X =
n∑

1

ai1Ai
, Y =

m∑

1

bj 1Bj
,

where Ai ∩ Ak = ∅ for i �= k and Bj ∩ Bl = ∅ for j �= l. We define

X ◦ Y =
∑

i,j

aibj 1Ai◦Bj
.
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If the usual BK inequality holds then linearity immediately gives

E(X ◦ Y ) ≤ E(X)E(Y ).

We will be working with this slight generalization; what we have in mind is the hexagon
disjoint occurrence of paths, and in the case of paths of different colors, sharing of the iris
may occur. To be precise, we have the following definition:

Definition 4.6 Let �F denote a flower arrangement and let S and T denote sets in �F which
contain no irises. Let Xb

S,T denote the indicator of the event that all hexagons in S and T are
blue and that there is a blue path-possibly including irises—connecting S and T . Similarly
we define X

y

S,T to be the yellow version of this event. Now if S ′ and T ′ are two other sets
of �F which are disjoint from S and T and also do not contain irises, then we may define
Xb

S,T ◦ Xb
S′,T ′ in accord with the usual fashion. However, for present purposes, in the event

corresponding to Xb
S,T ◦ X

y

S′,T ′ , the two paths may share a mixed iris.

Lemma 4.7 Let X
�1
S1,T1

,X
�2
S2,T2

, . . . ,X
�n

Sn,Tn
be the indicator functions of path-type events as

described in Definition 4.6, where �i ∈ {b, y}, then

E(X
�1
S1,T1

◦ X
�2
S2,T2

◦ · · · ◦ X
�n

Sn,Tn
) ≤ E(X

�1
S1,T1

)E(X
�2
S2,T2

) · · ·E(X
�n

Sn,Tn
).

Proof Our proof is slightly reminiscent of the proof of Lemma 6.2 in [9]. Let σ denote
a configuration of petals and filler and let I denote a configuration of irises. We will use
induction; first we prove the statement for the case of exactly one flower (i.e., supposing
there is only one flower in all of �F) and two path events, whose indicator functions we
denote by X and Y . We write

E(X ◦ Y ) = Eσ [EI (X ◦ Y |σ)].
If we can show that EI (X ◦ Y |σ) ≤ EI (X|σ) ◦ EI (Y |σ), then we may apply the BK-
inequality to the outer expectation to yield the desired result since, on the outside, the mea-
sure is independent. It is clear that the function E(X ◦ Y |σ) can only take on five different
values; we write

E(X ◦ Y |σ) = 1 · 1O(X◦Y)(σ )

+ (a + s) · 1A1(X◦Y)(σ )

+ (1/2) · 1A2(X◦Y)(σ )

+ (a + 2s) · 1A3(X◦Y)(σ )

+ s · 1F (X◦Y)(σ ), (19)

where e.g.

O(X ◦ Y ) = {σ | E(X ◦ Y |σ) = 1}.
It is not difficult to see that O(X ◦ Y ) is the set of σ configurations where X ◦ Y has

occurred on the complement of the iris. The remaining terms warrant some discussion. We
first point out that these terms correspond to configurations where the flower is pivotal for the
achievement of at least one of X and Y , and, due to the nature of the events in question, petal
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arrangements in these configurations satisfy certain constraints. For instance, configurations
in A3 must exhibit a petal arrangement such that one of the paths is in a position where it
must transmit through the iris, which can be accomplished by the preferred color or two of
the split configurations; the flower must not be in a triggering configuration and, needless to
say, the other path has already occurred (independent of the iris).

Finally we observe that σ ∈ F (X ◦Y ) implies that both paths must use the iris and there-
fore can only occur when the paths in question have different colors. It is not hard to see, via
petal counting, that F (X ◦ Y ) forces the alternating configuration of petals and that indeed,
we have a situation of a “parallel transmission” through the iris, with exactly one iris config-
uration which achieves both desired transmissions. We also note that in similar expressions
for E(X|σ) and E(Y |σ), the corresponding terms F (X) and F (Y ) will be empty, since e.g.,
if the path is blue and some iris is capable of achieving the transmission, then certainly the
pure blue iris will achieve the transmission.

Let us expand E(X|σ) ◦ E(Y |σ) in the sense defined above:

E(X|σ) ◦ E(Y |σ) = 1 · 1O(X)◦O(Y )(σ )

+ (a + s) · [1O(X)◦A1(Y )(σ ) + 1A1(X)◦O(Y )(σ )]
+ (1/2) · [1O(X)◦A2(Y )(σ ) + 1A2(X)◦O(Y )(σ )]
+ (a + 2s) · [1O(X)◦A3(Y )(σ ) + 1A3(X)◦O(Y )(σ )]
+ (a + s)2 · [1A1(X)◦A1(Y )(σ )]
+ R(a, s, σ ), (20)

where R(a, s, σ ) contains all the remaining terms in the expansion, e.g. the terms

(1/2)(a + s) · [1A1(X)◦A2(Y )(σ ) + 1A2(X)◦A1(Y )(σ )] (21)

and

(a + s)(a + 2s) · [1A1(X)◦A3(Y )(σ ) + 1A3(X)◦A1(Y )(σ )]. (22)

We claim that (21) will evaluate to zero for each σ : In the first term, A1(X) requires that
the petals exhibit a configuration which precludes a trigger and A2(Y ) requires the petals to
exhibit a configuration which leads to a trigger, and similarly for the second term. The terms
in (22) may or may not evaluate to zero for all σ a priori, but in any case will not be needed.

Now we match up the terms in (19) and (20) and demonstrate that indeed E(X ◦ Y |σ) ≤
E(X|σ) ◦ E(Y |σ). First note that O(X ◦ Y ) = O(X) ◦ O(Y ). Next, as discussed previously,
we see that Ai(X◦Y ) ⊂ (Ai(X)◦ O(Y ))∪ (O(X)◦Ai(Y )),1 ≤ i ≤ 3. Finally, and this is the
key case, we claim that F (X ◦ Y ) ⊂ A1(X) ◦ A1(Y ). This follows from the observation we
made before, which is that if σ ∈ F (X◦Y ), then we must see the alternating configuration on
the flower, requiring next to nearest neighbor transmissions through the iris for both paths;
such a σ certainly lies in A1(X)◦A1(Y ). Thus we are done, assuming that (a + s)2 ≥ s—but
this is equivalent to the statement that a2 ≥ 2s2.

We have established the claim for the case of a single flower and two paths. Next we
may induct on the number of flowers, as follows. Suppose now the claim is established for
K − 1 flowers. We can now let σ denote the configuration of all petals, filler, and irises of
the first K − 1 flowers. We condition on σ as above and adapt the notation so that the sets
O, Ai ’s, and F correspond to the K th flower. The argument can then be carried out exactly
as above to yield the result for K flowers and two paths. Finally we induct on the number
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of paths. Suppose the claim is true for n − 1 paths. Since the ◦ operation is associative, we
consider (X1 ◦ · · · ◦ Xn−1) ◦ Xn, where the Xi ’s are indicator functions of the n paths. We
simply view (X1 ◦ · · · ◦ Xn−1) as a single path-type event and repeat the proof (note that the
analogue of (20) may now contain non-trivial F -type terms; these are immaterial since what
is listed is already enough for an upper bound). This argument is sufficient since no more
than two paths may share an iris under any circumstance. �

4.4 On the Generalization of Cardy’s Formula for M(∂�) < 2

Here we provide the necessary interior analyticity statement required to extract Cardy’s
Formula for the model in [9] (the actual, full proof requires additional ingredients found in
the companion work [3]). As described in Sect. 4.1, [9] contains a proof of Cardy’s formula
for piecewise smooth domains, so what is needed here is a generalization to domains � with
M(∂�) < 2. What we will prove is the following:

Lemma 4.8 Let � denote any conformal triangular domain with M(∂�) < 2. Let uY
ε , vY

ε

and wY
ε denote the crossing probability functions as defined in � for the lattice at scale ε.

Then for the model as defined in Sect. 4.1, we have

lim
ε→0

uY
ε = u,

with similar results for vY
ε and wY

ε and the corresponding blue versions of these functions,
where u, v and w are the Cardy–Carleson functions.

To prove the current statement, we start by repeating the proof in [9] up to Lemma 7.2
and Corollary 7.4—the one place where the assumption on a piecewise smooth boundary
is used. We now give a quick exposition of the (relevant portions of the) strategy of proof
in [9]. The idea (directly inherited from [19]) is to represent the derivative of the crossing
probability functions as a “three-arm” event, e.g., two blue paths and one yellow path from
some point to the boundaries, with all paths disjoint, and then derive Cauchy–Riemann type
identities by switching the color of one of the arms.

In order to accomplish this color switching in our model, it was necessary to introduce a
stochastic notion of disjointness. This amounted to the introduction of a large class of ran-
dom variables which indicate whether or not a percolation configuration contributes to the
event of interest (e.g., a blue path from A to B, separating z from C ). We call the restrictions
and permissions given by these random variables ∗-rules. The ∗-rules may at times call a
self-avoiding path illegitimate if it contains close encounters, i.e., comes within one unit
of itself; on the other hand, the ∗-rules may at other times permit a path which is not self-
avoiding but in fact shares a hexagon. Thus the ∗-rules are invoked only at shared hexagons
and close encounter points of a path. When a close encounter or sharing at a hexagon is
required to achieve the desired path event it is called an essential lasso point.

The fact that these ∗-rules may be implemented by random variables in a fashion which
allows color switching is the content of Lemma 3.17 in [9]. The strategy was then to first
prove that the ∗-version of e.g., the function uε , denoted u∗

ε , converges to u, then show that
in the limit the starred and unstarred versions of the function coincide. For the current work,
the precise statement is as follows:

Lemma 4.9 Let � be a domain such that

M ≡ M(∂�) < 2.
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Let z denote a point in �. Consider the (blue version of the) function uε(z) as defined in
Sect. 4.1. Let u∗

ε(z) denote the version of uε with the ∗-rules enforced. Then,

lim
ε→∞|u∗

ε(z) − uε(z)| = 0.

In particular, on closed subsets of �, the above is uniformly bounded by a constant times a
power of ε.

Before we begin the proof we need some standard percolation notation.

Definition 4.10 Back on the unit hexagon lattice, if L is a positive integer, let BL denote
a box of side length L centered at the origin. Further, let �5(L) denote the event of five
disjoint paths, not all of the same color, starting from the origin and ending on ∂BL. Now
let m < n be positive integers, and let �(n,m) denote the event of five long arms, not all of
the same color, connecting ∂Bm and ∂Bn. We use the notation π5(n) and π5(n,m) for the
probabilities of �5(n) and �5(n,m), respectively.

Proof of Lemma 4.9 We set N = ε−1 and, without apology, we will denote the relevant
functions by u

N
. For convenience we recap the proof of Lemma 7.2 in [9] (with one minor

modification). Let us first consider the event which is contained in both the starred and
unstarred versions of the u-function, namely the event of a self-avoiding, non-self-touching
path separating z from C , etc. We will denote the indicator function of this event by U−

N
.

Similarly, let us define an event, whose indicator is U∗+
N

, that contains both the starred and
unstarred versions: This is the event that a separating path of the required type exists, with
no restrictions on self-touching, and is allowed to share hexagons provided that permissions
are granted. It is obvious that

E[U∗+
N

− U
−
N
] ≥ |u∗

N
− u

N
|. (23)

We turn to a description of the configurations, technically on (ω,X) (the enlarged prob-
ability space which include the permissions), for which U∗+

N
= 1 while U−

N
= 0. In such a

configuration, the only separating paths contain an essential lasso point which, we remind
the reader, could be either a shared hexagon or a close encounter pair. Let us specify the lasso
point under study to be the last such point on the journey from A to B (i.e., immediately af-
ter leaving this point, the path must capture z without any further sharing or self-touching,
then return to this point and continue on to B). For standing notation, we denote this “point”
by z0. A variety of paths converge at z0: certainly there is a blue path from A, denoted BA ,
a blue path to B, denoted BB , and an additional loop starting from z0 (or its immediate vicin-
ity) which contains z in its interior. The loop we may view as two blue paths of comparable
lengths, denoted L1

z and L2
z . However, since the lasso point was deemed to be essential, there

are two additional yellow arms emanating from the immediate vicinity of z0. These yellow
arms may themselves encircle the blue loop and/or terminate at the boundary C . We denote
these yellow paths Y 1

C and Y 2
C .

Since z0 is the last lasso point on the blue journey from A to B, we automatically get that
the two loop arms are strictly self-avoiding. Also, without loss of generality, we may take the
yellow arms to be strictly self-avoiding. Further, by Lemma 4.3 of [9], we may take either
the portion of the path from A to z0 to be strictly self-avoiding or the portion of the path from
B to z0 to be strictly self-avoiding. To summarize, we have six paths emanating from z0, four
blue and two yellow, with all paths disjoint except for possible sharings between BA and BB .
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For simplicity, let us start with the connected component of z in � \ (αk ∪ βk ∪ γk) where
αk,βk, γk are short crosscuts defining the prime ends a, b, c, respectively. It is noted that
in this restricted setting, the various portions of the boundary are at a finite (macroscopic)
distance from one another. Thus, on a mesoscopic scale, we are always near only a single
boundary.

The case where z0 is close to z is handled by RSW-type bounds (see proof of Lemma 7.2
in [9]). The terms where z0 is in the interior follow from the 5+ arm estimates; these argu-
ments are the subject of Lemma 7.2 and Lemma 7.3 in [9]. We are left with the case where
say z0 is within a distance Nλ of the boundary but outside some box of side Nμ2 separating
c from z.

Let δ > 0. For N large enough, ∂� can be covered by no more than JδN
M+δ−λ boxes

of side Nλ. Now we take these boxes and expand by a factor of, say, two and we see that
the region within Nλ of the boundary can be covered by JδN

M+δ−λ boxes of side 2Nλ. We
surround each of these boxes by a box of side Nμ1 , where μ2 > μ1 > λ.

Now suppose z0 is inside the inner box. We still have the six arms BA , BB , L1
z , L2

z , Y 1
C

and Y 2
C , but since z0 is now close to some boundary, we expect some arm(s) to be short

(i.e., shorter than Nλ). We note that the box of side μ1 is still away from c, and therefore
we cannot have more than one of BA and BB be short due to being close to the boundary.
Also, since z must be a distance of order N away from the boundary, z is outside of both of
these boxes and therefore both L1

z and L2
z are long. The upshot is that regardless of which

boundary z0 is close to, one and only one of the six arms will be short: If z0 is close to
A (respectively B), then BA (respectively BB ) will be short, and if z0 is close to C , then a
moment’s reflection will show that only one of the yellow arms will be short.

What we have is then five long arms and one short arm emanating from the immediate
vicinity of z0, and these arms either end on some boundary or the boundary of the outer
box of side Nμ1 . For reasons which will momentarily become clear, we will now perform
a color switch. Topologically, the two yellow arms separate L1

z and L2
z from BA and BB .

Denote the outer box by Bμ1 and consider now the region T ≡ � ∩ Bμ1 . The two yellow
arms together form a “crosscut” (in the sense of Kesten [14]) of T . This crosscut separates
T into two disjoint regions Tb and Tl , where Tb contains BA and BB and Tl contains L1

z and
L2

z . We condition on the crosscut which minimizes the area of Tl . Next we apply Lemma 4.3
of [9] to reduce the blue arm adjacent to the longer of the two yellow arms—which we
take to be Y 1

C —to be strictly self-avoiding, which without loss of generality we assume to
be BA . Since BA forms a crosscut of Tb , there is a crosscut which maximizes the region
which contains BB , which we denote �B . The region �B is now an unconditioned region,
and we may apply Lemma 3.17 of [9] to switch the color of BB from blue to yellow, while
preserving the probability. The resulting yellow path we will denote YB .

We now have three blue paths and three yellow paths. The blue paths are now all strictly
self-avoiding. Y 1

C is still strictly self-avoiding, but the path YB may very well interact with
(i.e., share hexagons with, due to the ∗-rules) Y 2

C . If indeed there is sharing, then let Ŷ =
YB ∪ Y 2

C be the geometric union of the two paths. Ŷ can then be reduced to be a strictly self-
avoiding path, which we now denote Y . In any case, we now have (at least) five long paths
emanating from z0, three blue and two yellow, with the yellow paths separating the blue
paths, and with all paths strictly self-avoiding. The probability of such an event is certainly
bounded above (possibly strictly since the boxes will most likely intersect �c) by the full
space event �5(N

μ1 ,2Nλ)—see Definition 4.10. The upshot of Lemma 5 of [14] is that

π5(N
μ1 ,2Nλ) ≤ C

(
Nλ

Nμ1

)2

, (24)
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where C is a constant. This result can, almost without modification, be taken verbatim
from [14]; the proviso therein which concerned “relocation of arms” was discussed in the
first paragraph of the proof of Lemma 7.3 in [9]. We consider (24) to be established.

If we sum over all such boxes of side 2Nλ, we find that the contribution from the near
boundary regions is a constant times

NM+δ−λ+2λ−2μ1 = NM+δ+λ−2μ1 .

Since M < 2, we may first choose δ and λ such that M + δ +λ < 2, and next we will choose
μ2 and then μ1 large enough so that the exponent is negative.

Finally let us take care of the crosscuts. We shall show that for large k, the event that
a path emanates from the crosscut e.g., βk and goes to B tends to 0 as k → ∞ (uniformly
in N for all N sufficiently large): Indeed, although the prime end b may be a continua,
the probability of a path emanating from b is “as small” as though b were a point. Let us
begin by looking at the conformal rectangle Bk \ B2k defined by the relevant crosscuts. We
now mollify Bk \ B2k so that the resulting domain has smooth boundary and lies strictly in
�: This is easily accomplished by deleting from Bk \ B2k the image under the conformal
map φ : H → � of some δ neighborhood of ∂H, where δk > 0 is chosen so small that
the said image is within some (Euclidean distance) ηk of ∂�. Let us denote the resulting
domain by Rk . Since Rk has smooth boundary, the result of [9] applies and we may apply
Cardy’s Formula inside Rk to see that the probability of a “lateral” yellow crossing (i.e.,
one “parallel” to βk and β2k) is uniformly bounded from below, independently of k, if ηk

is properly chosen. We may even assume that the crossing takes place in the “bottom” half
of Rk , which will allow us to construct Harris annuli of order ηk enabling a connection to
the actual boundary. Thus, having achieved all this, looking at the lowest such crossing, we
may RSW continue the crossing to the actual ∂�, with probability uniformly bounded from
below. It is now straightforward to observe that in the presence of such a yellow crossing, no
blue path may emanate from βk . Performing this construction on a multitude of scales, it is
clear, as ε → 0 that with probability tending to one, no blue path emanates from this prime
end.

All estimates described above are uniform in z provided z remains a fixed non-zero
(Euclidean) distance from the boundary. And, finally, the proof of Lemma 4.9 for vN and
wN are the same. �

Proof of Lemma 4.8 Corollary 7.4 of [9] concerned the difference between the blue and yel-
low versions of these functions (Cauchy–Riemann relations are only established for color-
neutral sums). However, the argument of Corollary 7.4 in [9] reduced the difference between
the two colored versions to six arm events in the bulk and five arm events near the boundary,
to which the above arguments can be applied. Replacing Lemma 7.2 (and Lemma 7.3) in [9]
with Lemma 4.9 gives a proof of Lemma 4.8. �
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