
The Moore-Penrose Pseudoinverse (Math 33A: Laub)

In these notes we give a brief introduction to the Moore-Penrose pseudoinverse, a gen-
eralization of the inverse of a matrix. The Moore-Penrose pseudoinverse is defined for any
matrix and is unique. Moreover, as is shown in what follows, it brings great notational
and conceptual clarity to the study of solutions to arbitrary systems of linear equations and
linear least squares problems.

1 Definition and Characterizations

We consider the case of A ∈ IRm×n
r . Every A ∈ IRm×n

r has a pseudoinverse and, moreover,
the pseudoinverse, denoted A+ ∈ IRn×m

r , is unique. A purely algebraic characterization of
A+ is given in the next theorem proved by Penrose in 1956.

Theorem: Let A ∈ IRm×n
r . Then G = A+ if and only if

(P1) AGA = A

(P2) GAG = G

(P3) (AG)T = AG

(P4) (GA)T = GA

Furthermore, A+ always exists and is unique.

Note that the above theorem is not constructive. But it does provide a checkable cri-
terion, i.e., given a matrix G that purports to be the pseudoinverse of A, one need simply
verify the four Penrose conditions (P1)–(P4) above. This verification is often relatively
straightforward.

Example: Consider A =

[
1
2

]
. Verify directly that A+ = [15 , 2

5 ]. Note that other left

inverses (for example, A−L = [3 , −1]) satisfy properties (P1), (P2), and (P4) but not (P3).

Still another characterization of A+ is given in the following theorem whose proof can
be found on p. 19 in Albert, A., Regression and the Moore-Penrose Pseudoinverse, Aca-
demic Press, New York, 1972. We refer to this as the “limit definition of the pseudoinverse.”

Theorem: Let A ∈ IRm×n
r . Then

A+ = lim
δ→0

(AT A + δ2I)
−1

AT (1)

= lim
δ→0

AT (AAT + δ2I)
−1

(2)
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2 Examples

Each of the following can be derived or verified by using the above theorems or characteri-
zations.

Example 1: A+ = AT (AAT )−1 if A is onto, i.e., has linearly independent rows (A is right
invertible)

Example 2: A+ = (AT A)−1
AT if A is 1-1, i.e., has linearly independent columns (A is left

invertible)

Example 3: For any scalar α,

α+ =

{
α−1 if α 6= 0
0 if α = 0

Example 4: For any vector v ∈ IRn,

v+ = (vT v)
+
vT =

{
vT

vT v
if v 6= 0

0 if v = 0

Example 5:

[
1 0
0 0

]+

=

[
1 0
0 0

]

This example was computed via the limit definition of the pseudoinverse.

Example 6:

[
1 1
1 1

]+

=

[
1
4

1
4

1
4

1
4

]

This example was computed via the limit definition of the pseudoinverse.

3 Some Properties

Theorem: Let A ∈ IRm×n and suppose U ∈ IRm×m, V ∈ IRn×n are orthogonal (M is
orthogonal if MT = M−1). Then

(UAV )+ = V T A+UT .

Proof: Simply verify that the expression above does indeed satisfy each of the four Penrose
conditions.

Theorem: Let S ∈ IRn×n be symmetric with UT SU = D, where U is orthogonal and D
is diagonal. Then S+ = UD+UT where D+ is again a diagonal matrix whose diagonal
elements are determined according to Example 3.

Theorem: For all A ∈ IRm×n,

1. A+ = (AT A)+AT = AT (AAT )+

2. (AT )+ = (A+)T
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Both of the above two results can be proved using the limit definition of the pseudoinverse.
The proof of the first result is not particularly easy nor does it have the virtue of being
especially illuminating. The interested reader can consult the proof in Albert, p. 27. The
proof of the second result is as follows:

(AT )
+

= lim
δ→0

(AAT + δ2I)
−1

A

= lim
δ→0

[AT (AAT + δ2I)
−1

]
T

= [lim
δ→0

AT (AAT + δ2I)
−1

]
T

= (A+)T

Note now that by combining the last two theorems we can, in theory at least, com-
pute the Moore-Penrose pseudoinverse of any matrix (since AAT and AT A are symmet-
ric). Alternatively, we could compute the pseudoinverse by first computing the SVD of
A as A = UΣV T and then by the first theorem of this section A+ = V Σ+UT where

Σ+ =

[
S−1 0
0 0

]
. This is the way it’s done in Matlab; the command is called mpp.

Additional useful properties of pseudoinverses:

1. (A+)+ = A

2. (AT A)+ = A+(AT )+, (AAT )+ = (AT )+A+

3. R(A+) = R(AT ) = R(A+A) = R(AT A)

4. N (A+) = N (AA+) = N ((AAT )+) = N (AAT ) = N (AT )

5. If A is normal then AkA+ = A+Ak for all k > 0, and (Ak)+ = (A+)k for all k > 0.

Note: Recall that A ∈ IRn×n is normal if AAT = AT A. Thus if A is symmetric, skew-
symmetric, or orthogonal, for example, it is normal. However, a matrix can be none of the
preceding but still be normal such as

A =

[
1 −1
1 1

]
.

4 Applications to the Solution of Arbitrary Linear Systems

The first theorem is fundamental to using pseudoinverses effectively for studying the solution
of arbitrary systems of linear equations.
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Theorem: Suppose A ∈ IRm×n, b ∈ IRm. Then R(b) ⊆ R(A) if and only if AA+b = b.

Proof: Suppose R(b) ⊆ R(A). Take arbitrary γ ∈ IR so that γb ∈ R(b) ⊆ R(A). Then
there exists a vector v ∈ IRn such that Av = γb. Thus we have

γb = Av = AA+Av = AA+γb

where one of the Penrose properties is used above. Since γ ∈ IR was arbitrary, we have
shown that b = AA+b. To prove the converse, assume now that AA+b = b. Then it is clear
that b ∈ R(b) and hence

b = AA+b ∈ R(A) .

We close with some of the principal results concerning existence and uniqueness of solutions
to the general matrix linear system Ax = b, i.e., the solution of m equations in n unknowns.

Theorem: (Existence) The linear system

Ax = b ; A ∈ IRm×n, b ∈ IRm (3)

has a solution if and only if R(b) ⊆ R(A); equivalently, there is a solution to these m
equations in n unknowns if and only if AA+b = b.

Proof: The subspace inclusion criterion follows essentially from the definition of the range
of a matrix. The matrix criterion is from the previous theorem.

Theorem: (Solution) Let A ∈ IRm×n, B ∈ IRm and suppose that AA+b = b. Then any
vector of the form

x = A+b + (I −A+A)y where y ∈ IRn is arbitrary (4)

is a solution of
Ax = b. (5)

Furthermore, all solutions of (5) are of this form.

Proof: To verify that (4) is a solution, pre-multiply by A:

Ax = AA+b + A(I −A+A)y
= b + (A−AA+A)y by hypothesis
= b since AA+A = A by the first Penrose condition.

That all solutions are of this form can be seen as follows. Let z be an arbitrary solution of
(5), i.e., Az = b. Then we can write

z ≡ A+Az + (I −A+A)z
= A+b + (I −A+A)z
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and this is clearly of the form (4).

Remark: When A is square and nonsingular, A+ = A−1 and so (I−A+A) = 0. Thus, there
is no “arbitrary” component, leaving only the unique solution x = A−1b.

Theorem: (Uniqueness) A solution of the linear equation

Ax = b ; A ∈ IRm×n, B ∈ IRm (6)

is unique if and only if A+A = I; equivalently, there is a unique solution if and only if
N (A) = 0.

Proof: The first equivalence is immediate from the form of the general solution in (4). The
second follows by noting that the n× n matrix A+A = I only if r = n where r = rank(A)
(recall r ≤ n). But rank(A) = n if and only if A is 1-1 or N (A) = 0.

EXERCISES:

1. Use the limit definition of the pseudoinverse to compute the pseudoinverse of

[
1 1
2 2

]
.

2. If x, y ∈ IRn, show that (xyT )+ = (xT x)+(yT y)+yxT .

3. For A ∈ IRm×n, prove that R(A) = R(AAT ) using only definitions and elementary
properties of the Moore-Penrose pseudoinverse.

4. For A ∈ IRm×n, prove that R(A+) = R(AT ).
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