
Date Speaker/Topic
Jan. 19 Rowan Killip

Overview.
Jan. 26 Norbet Požár

Local well-posedness in 2D with surface tension.
Feb. 2 Paul Smith

Local smoothing.
Feb. 9 Zaher Hani

Local well-posedness in 2D without surface tension I.
Feb. 16 Zaher Hani

Local well-posedness in 2D without surface tension II.
Feb. 23 Helen Lei

The Dirichlet to Neumann map.
Mar. 1 Yao Yao

Taylor instability and the linearized problem.
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Equations of an incompressible fluid.

• Incompressible = ρ is independent of p (and T←temperature).

• Is water incompressible?

Essentially: κT := −1
V

(
∂V
∂p

)
T

= 4.6× 10−10 N−1m2.

Thus, a 1 part in 103 change in density requires

2.1× 106 Nm−2

≡ a column of water 220m high

≡ 230kg (∼ 500 lbs) atop a wine cork (∅ = 18mm)

Notes:
1. κS = κTCV /CP = 0.993× κT for water. ←Adiabatic compressibility

2. c2 =
(
∂p
∂ρ

)
S

= (1482.3 ms−1)2 for water. ←Sound speed

3. All data is for water at 20◦C (=68F).
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Equations of an incompressible fluid.
(Eulerian formulation)

Newton says: F = ma (for a particle!)

ρ
[
~ut + (~u · ∇)~u

]
= ρDt~u = −gρ~e3 −∇p+ η∆~u (1)

~u = velocity

ρ = density

g = acceleration due to gravity

p = pressure

η = dynamic viscosity (1.0× 10−4 Nm−2s for water 20◦C)

Conservation of matter: dρ
dt +∇ · (ρ~u) = 0. (2)

Incompressibility means: ρ = const. (3)
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Equations of an incompressible fluid.

Combining these gives the (incompressible) Navier–Stokes
system:

~ut + (~u · ∇)~u = −g~e3 −∇℘+ ν∆~u (4)

∇ · ~u = 0 (5)

where:
ν = η/ρ = kinematic viscosity; and
℘ = p/ρ is pressure/density.

(OED: Advection = transfer of material, heat, etc., brought about

by . . . mass movement.)
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Boundary conditions:

Fluid cannot enter a rigid boundary: ~n · ~u = 0

Viscosity inhibits slippage at rigid boundary: ~u = 0

The free boundary follows the fluid: tautology

Atmosphere above the free boundary: p = p0

Viscosity prevents shear at the free boundary:

(~n · ∇)
[
~u− (~n · ~u)~n

]
= 0.
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Aside: what is (Newtonian) viscosity?

Friction: atomic-level phenomena dissipate energy in

proportional to velocity difference squared.

Viscosity: energy dissipated in proportion to the square

of the irrotational velocity gradient:

d

dt

∫
1
2ρ|~u|

2 −
∫
ρgz = −η2

∫
(uk,j + uj,k)(uk,j + uj,k) (6)

= η
∫
~u ·∆~u (7)

(ignoring boundary terms and using ∇ · u = 0).

(Note: pre-comma subscripts = components
post-comma = derivatives

repetition = summation)
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Aside: measuring viscosity

A fluid between sliding plates

-
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speed = v

~u = (0, vz/h,0)

∂tE = ηv2L2/h in an L× L× h box

∴ η = power required (per area of plate) to maintain
unit speed difference across a film of unit width

= 1.0× 10−4 Nm−2s for water 20◦C
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Surface Tension.

There is an energy penalty proportional to the water

surface area resulting from missing inter-molecular bonds.

(Image from Wikipedia)
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Correspondingly, there is a pressure proportional to the
mean curvature (the first variation of area) at the surface
in the direction of the center of curvature.

For a graph, z = h(x, y), we have

2H = −∇ ·
(

∇h√
1 + |∇h|2

)
(8)

= −∆h when ∇h = 0 (9)

(positive at a crest; negative in a trough).

Conclusion: p = p0 + 2γH immediately below surface.

γ = 7.27× 10−2 Nm−1 for water at 20◦C
σ = γ/ρ = 7.28× 10−5 m3s−2 so ℘ = ℘0 + 2σH.
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Water waves equations without viscosity

Incompressible Euler inside the fluid region:

~ut + (~u · ∇)~u = −g~e3 −∇℘ (10)

∇ · ~u = 0 (11)

At the sea floor:

~n · ~u = 0 (12)

On the free surface Γ(t):

℘ = 2σH(Γ) and d
dtΓ = (~n · ~u)~n (13)
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Note on pressure and vorticity.

• Taking the divergence of the Euler Equation (10) and

using incompressibility yields

∆℘ = −∇ ·
[
(~u · ∇)~u

]
= −uj,kuk,j (14)

Thus the pressure is determined by an elliptic equation.

This represents the infinitude of sound speed.

• Taking the curl yields the vorticity equation

∂t ~w + (u · ∇)~w = (w · ∇)u (15)

where ~w = ∇× ~u.

Note: ~w(0) = 0 ⇒ ~w(t) = 0.
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Irrotational fluid motion.

If ∇× ~u = 0 initially, the flow remains irrotational.

By vector calculus we are guaranteed the existence of a
velocity potential φ(t, x, y, z) such that ~u = ∇φ.

Incompressibility, ∇ · ~u = 0, then implies

∆φ = 0 (16)

that is, φ is harmonic!

In particular, the interior motion of the fluid is entirely
determined by its behavour at the boundaries.

Warning: Even for ~u|Γ ∈ C∞c , φ|Γ may not decay.
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Irrotational water waves.

Inside the fluid region: ∆φ = 0. (17)

At the sea floor: ~n · ∇φ = 0. (18)

On the free surface Γ(t):

dφ

dt
+ 1

2|∇φ|
2 = −gz − 2σH(Γ) (19)

and

d
dtΓ = (~n · ∇φ)~n (20)

Note: we can reduce to just two unknowns: Γ and φ|Γ.
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Dirichlet to Neumann map

Given Γ and φ|Γ, we need to recover (∇φ)|Γ, or rather the

only missing piece ~n · ∇φ.

For elliptic equations, the boundary values are called

Dirichlet data; the normal derivatives, Neumann data.

Naturally, the mapping depends intrinsically on the

geometry of the region, as dictated by the shape of the

sea floor and of Γ.

As a warm up lets consider flat water: −d ≤ z ≤ 0:
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Dirichlet to Neumann map
for flat water over a level bottom.
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φ(x, y,0) = ψ(x, y) known

φ(x, y, z) =
∫∫ cosh[|ξ|(z + d)]

cosh[|ξ|d]
eiξ·(x,y) ψ̂(ξ) dξ

∂zφ = 0 at z = −d

Thus

∂zφ(x, y,0) = |∇| tanh(|∇|d)φ(x, y,0) (21)

Ekin = 〈ψ, |∇| tanh(|∇|d)ψ〉L2 (22)
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Linearization around still water

Let Γ be z = h(t;x, y) with h small and suppose ∇φ is
also small.

Then setting ψ = φ|Γ in

dφ

dt
+ 1

2|∇φ|
2 = −gz − 2σH(Γ) & d

dtΓ = (~n · ∇φ)~n (23)

leads (in the above approximation) to

dψ

dt
= −gh+ σ∆h & d

dth = ∂zφ (24)

Combining this with ∂zφ = |∇| tanh(|∇|d)ψ, we obtain

∂2
t ψ =

(
g|∇|+ σ|∇|3

)
tanh(|∇|d)ψ
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Linearized waves on still water

Substituting the ansatz

ψ = cos(ωt+ kx)

reveals the dispersion relation:

ω2 = (gk + σk3) tanh(kd)

The transition from gravity waves to capillary waves

occurs for wavelengths λ ∼ 2π
√
σ/g ∼ 17 mm (water).
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More on gravity waves.

ω2 = gk tanh(kd)

Group velocity dω
dk is decreasing in depth

reaching a maximum of dω
dk =

√
g
k when d =∞.

By comparison:

A tsunami with λ ∼ 100 km in deep water (4000m)

travels at dω
dk ∼

√
gd ∼ 200 ms−1 ∼ 700 km/h
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More on capillary waves
(deepish water).

ω2 = σk3

Group velocity dω
dk ∝

√
k.

Fast waves spend little time near the origin:∫∫
〈x〉−1−ε |~u|2 dx dt . E/

√
k

with E = Energy.

; Expect 1
4-derivative local smoothing.
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The Rayleigh-Taylor Instability.

In the movies:

Surface Tension in Fluid Mechanics at 15:40.

Flow Instabilities at 17:35.

Or in print:

G. Taylor The instability of liquid surfaces when
accelerated in a direction perpendicular to their planes. I.
↑Theory

D. J. Lewis The instability of liquid surfaces when
accelerated in a direction perpendicular to their planes. II.
↑Experiment
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Other formulations (d =∞).

1. Hamiltonian framework; cf. V. Zakharov Stability of
periodic waves of finite amplitude on the surface of a
deep fluid.

The energy is given by

E = 1
2

∫∫∫
z≤h
|∇φ|2 +

∫∫ 1

2
gh2 +

∫∫
2σ
[√

1 + |∇h|2 − 1
]

or via Green’s Theorem,

= 1
2

∫∫
ψ(~n · ∇φ)

√
1 + |∇h|2 +

∫∫ 1

2
gh2 +

∫∫
2σ
[√

1 + |∇h|2 − 1
]

and the equations are

∂h

∂t
=
δE

δψ
&

∂ψ

∂t
= −

δE

δh
(25)
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Other formulations (d =∞).

2. Lagrangian coordinate formulation (2D, σ = 0).

Graph Γ(t) by ~x(t, α) :=
(
x(t, α), z(t, α)

)
denoting the position of surface particles (indexed by α).

Newton: ~xtt = −ge3 −∇℘.
Atmosphere: ℘ = 0 on surface ⇒ ~xα · ∇℘ = 0.
Velocity potential: ~xt = ∇φ ⇒ zt = Kxt where K is

the (rotated) tangential to normal derivative map
for Laplace’s eqn in the geometry dictated by Γ.
In the case of flat water (and d =∞), (21) gives

∂zφ = |∂x|φ = 1
πx ∗ ∂xφ

This convolution operator is the Hilbert transform.
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Lagrangian coordinate formulation
(cont.).

xαxtt + zα(1 + ztt) = 0 & zt = Kxt (26)

Attempting to solve this system leads to the requirement

~n · (~xtt + ge3) > 0 (27)

which expresses the Rayleigh–Taylor stability criterion.

Understanding the appearance of this condition and its

role in the analysis is an important goal for this quarter.
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