First Name:	 Ι	D#_	
Last Name: _		$\left(\begin{array}{c} 3a \\ a \end{array} \right)$	Tuesday with Allen Boozer
Section:	 = {	36 3c 3d	Tuesday with Allen Boozer Thursday with Allen Boozer Tuesday with Steven Gagniere Thursday with Steven Gagniere Tuesday with Francis White Thursday with Francis White
		3e 3f	Tuesday with Francis White Thursday with Francis White

Rules.

- There are **FOUR** problems; ten points per problem.
- There are two extra pages at the end. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone.

1	2	3	4	\sum

(1) Evaluate

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} xy^{3} \, dy \, dx$$

by changing variables via x = uv and $y = u\sqrt{1 - v^2}$.

(2) Compute

$$\int_{\gamma} \sqrt{x^2 + 9y^2} \, ds$$

where γ passes from (0,0) to (1,1) along the curve $y = x^3$.

(3) (a) For what value of λ is the vector field

$$\vec{F}(x,y) = \begin{bmatrix} \frac{-y^2}{(x+1)^2} \\ \frac{\lambda y}{x+1} \end{bmatrix}$$

conservative in the region where x > -1? (b) Find a potential with this value of λ . (4) Let \mathcal{H} denote the surface where $z^2 = 1 + x^2 + y^2$ and $0 \le z \le 2$. Compute

$$\int_{\mathcal{H}} z \, dS$$

extra paper

extra paper