First Name:		ID#		
Last Name:		$\int 1a$	Tuesday with Eric Auld	
		1b	Thursday with Eric Auld	
Section:	= -	$\int 1c$	Tuesday with Kyung Ha	
		1d	Thursday with Kyung Ha	
		1e	Tuesday with Khang Huynh	
		(1f	Thursday with Khang Huynh	

Rules.

- There are **FOUR** problems; ten points per problem.
- There are two extra pages at the end. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone.

1	2	3	4	\sum

(1) Let \mathcal{R} be the region in the plane where $x^2 + y^2 \ge 4$. Evaluate

$$\iint_{\mathcal{R}} \frac{1}{(x^2 + y^2) \ln^2(x^2 + y^2)} \, dA$$

by the change of variables $x = e^u \cos(v)$, $y = e^u \sin(v)$. As usual, $\ln^2(w)$ denotes the square of the natural logarithm of w.

(2) I promise that the vector field

$$\vec{F}(x,y,z) = \begin{bmatrix} 3y+z^2\\ 3x\\ 2xz \end{bmatrix}$$

is conservative.

- (a) Find a potential V(x, y, z) so that $\vec{F} = -\nabla V$.
- (b) Compute the line integral $\int_{\gamma} \vec{F} \cdot d\vec{r}$ where γ is the path parameterized by

$$\vec{r}(t) = \begin{bmatrix} 1-t\\t^3\\(1-t)^2 \end{bmatrix} \qquad 0 \le t \le 1$$

- (3) (a) Let \mathcal{R} be the region in the plane where $x^2 + y^2 > 1$. Is \mathcal{R} simply connected?
 - (b) Let \mathcal{Q} be the region in the plane where $x^2 + y^2 > 1$ and $x > -\frac{1}{2}$. Is \mathcal{Q} simply connected?
 - (c) Does the following vector field obey the mixed-partials condition for begin conservative?

$$\vec{F}(x,y) = \frac{1}{1 - x^2 - y^2} \begin{bmatrix} x \\ y \end{bmatrix}$$

(d) Evaluate the line integral $\int_{\gamma} \|\vec{F}\| ds$ where γ is the straight path from (2,0) to (4,0).

(4) Compute the flux of the vector field

$$\vec{F} = \begin{bmatrix} y \\ 0 \\ z \end{bmatrix}$$

upwards through the rectangle with corners (0,3,0), (1,3,0), (1,0,2) and (0,0,2). Here 'upwards' means in the direction of the positive z-axis. extra paper

extra paper