271D Homework

1. Proceeding directly from the definition, show that the Laplacian defined as follows,

$$
D(-\Delta)=\left\{u \in L^{2}: \int|\xi|^{4}|\hat{u}(\xi)|^{2}<\infty\right\} \quad \text { and } \quad-\widehat{\Delta u}(\xi)=|\xi|^{2} \hat{u}(\xi)
$$

is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{3}\right)$. Our convention for the Fourier transform is as follows:

$$
\hat{u}(\xi)=(2 \pi)^{-3 / 2} \int e^{-i \xi \cdot x} u(x) d x
$$

for all $u \in L^{1} \cap L^{2}$ and then extended to $u \in L^{2}$ by continuity.
2. What is the dimension of the Fermionic Fock space based on $\mathcal{H}=\mathbb{C}^{k}$ as the oneparticle space.
3. Fix $N \geq 2$ and define

$$
E(\psi)=\sum_{i} \int\left|\nabla_{i} \psi(\vec{x})\right|^{2} d x_{1} \cdots d x_{N}+\sum_{i<j} \int V\left(x_{i}-x_{j}\right)|\psi(\vec{x})|^{2} d x_{1} \cdots d x_{N}
$$

for all $\psi \in H^{1}\left(\mathbb{R}^{3 N} / L \mathbb{Z}^{3 N}\right)$. Show that the infimum of $E(\psi)$ over all L^{2}-normalized vectors ψ is achieved. (We impose no symmetry constraint.)

