271D Homework.

1. Proceeding directly from the definition, show that the Laplacian defined as follows,

 $D(-\Delta)=\{u\in L^2: \int |\xi|^4 |\hat{u}(\xi)|^2 <\infty\} \quad \text{and} \quad -\widehat{\Delta u}(\xi)=|\xi|^2 \hat{u}(\xi)$

is a self-adjoint operator on $L^2(\mathbb{R}^3)$. Our convention for the Fourier transform is as follows:

$$\hat{u}(\xi) = (2\pi)^{-3/2} \int e^{-i\xi \cdot x} u(x) \, dx$$

for all $u \in L^1 \cap L^2$ and then extended to $u \in L^2$ by continuity.

- 2. What is the dimension of the Fermionic Fock space based on $\mathcal{H} = \mathbb{C}^k$ as the one-particle space.
- 3. Fix $N \ge 2$ and define

$$E(\psi) = \sum_{i} \int |\nabla_{i}\psi(\vec{x})|^{2} dx_{1} \cdots dx_{N} + \sum_{i < j} \int V(x_{i} - x_{j}) |\psi(\vec{x})|^{2} dx_{1} \cdots dx_{N}$$

for all $\psi \in H^1(\mathbb{R}^{3N}/L\mathbb{Z}^{3N})$. Show that the infimum of $E(\psi)$ over all L^2 -normalized vectors ψ is achieved. (We impose no symmetry constraint.)