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Banach space X then one can find v € X with ||z|| =1 and dist(x, M) > 0.

Lemma 1 (Riesz Lemma). Fiz 0 < 0 < 1. If M C X is a proper closed subspace of a

Proof. By the hyperplane separation theorem, there is a unit element ¢ € X* that vanishes
on M. Now choose x so that ¢(x) > 0. As ¢ is 1-Lipschitz, |¢(z)| < dist(x, M). O

By employing this lemma inductively, we obtain the following, which better reflects how
we will use the lemma.

Corollary 2 (Riesz Lemma). Given a strictly nested sequence of closed subspaces

{0} SN CNyCNs SNy G-

of a Banach space X, one can find a sequence of vectors x, € N, with ||z,|| = 1 and
dist(ay, Np—1) > % Similarly, for a sequence of closed subspaces nested in the opposite
direction, Ry 2 Ro 2 -+, there are unit vectors x,, € R,, with dist(z,, Rp+1) > %

Proposition 3. Suppose T : X — X is compact and X # 0.

(a) For each integer m > 1, ker(A—T)™ is finite dimensional. Moreover, there is an integer
k so that ker(A — T)™ C ker(A — T)* for every integer m > 1.

(b) The range of (A —T)™ is closed for each integer m > 1.

(¢c) A =T is surjective <= it is injective.

Remarks. 1. When ker(A — T') is nontrivial, then A is an eigenvalue of 7. In this case,
dimker(\ — T) is called the geometric mulitplicity of the eigenvalue, while dim ker(A — T)*
(with k as in (a)) is called the algebraic multiplicity.

2. Asker(A—T)™ C ker(A—T)¥*! so dimker(A— 7)™+ < dim ker(A—T)™*!. However,
the rate at which the dimension increases is decreasing:

dimker(A — 7)™ — dim ker(\ — 7)™ < dimker(A — 7)™ — dimker(A — 7)™ (1)

To see this, argue that A — T defines an injective map from ker(\ — T)™+2/ker(\ — T)™*!
to ker(A — T)™ !/ ker(A — T)™.

Proof. By rescaling T+ A~1T, it suffices to consider the case A = 1.

If the kernel of 1 — T were infinite dimensional, then by the Riesz Lemma we can find
a %—separated sequence of unit vectors therein. But T is compact, so x,, = Tx, lie in a
compact set, which contradicts their separation.

As T is compact, so is

= (= T)" = ()T ()T o7 @)

Thus the reasoning just given shows that the kernel of (1 — 7)™ is also finite dimensional.

If the nested sequence of subspaces N,, := ker(A — T')™ did not stabilize then by we
see that each is properly contained in its successor. Thus we may apply the Riesz lemma to
produce a sequence &, € N,, with dist(x,,, Nym—1) > % But then for n > m,

Te, —Tey =x,— (1 —-T)xp —xm+ (1 —T)xy € 2y + Np—q.

Thus ||Tz, — Tz, || > dist(x,, Np—1) > % which implies the image of the unit ball under T'
contains a %—separated sequence. This contradicts the compactness of T'.

We now turn to part (b). By the trick (2), it suffices to treat the case m = 1. This
requires us to show that if y, = (1 — T)x, and y, — y then there exists © € X so that
y = (1 — T)z. For brevity, we continue to use the notation Ny := ker(1 —T).
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First we claim that d,, := dist(z,, N1) is bounded. We prove this by contradiction and
so assume (perhaps after passing to a subsequence) that d,, — co. Choose z, € Ny so that
|z — 2zn|l < 2d,, and observe that

(1 —=T)d,  (2p — 2n) = d; "9y, — 0. (3)

n

As T is compact, any subsequence of d;, *(z,, — z,) has a subsequence so that d; 1T (x,, — 2,)
converges. In view of above, d;!(x, — 2,) also converges to some w € X along the
subsequence; indeed we see that w € N7. But this leads us to a contradiction:

1 =d,; dist(wn, N1) < d; Hwn — (20 —w)|| = |, (20 — 20) —w|| =0 asn — oo.

Having proved our claim, we know that we may choose z, € Nj so that =, — z, is
bounded. From this and the compactness of T', we deduce that T'(x,, — z,) has a convergent
subsequence. Moreover, along this subsequence, (1 — T)(x,, — z,) = y» — y and so not only
does x,, — z, have a limit, say « € X, but this limit obeys (1 — T)a = y. This completes the
proof of (b).

Consider now the = direction of part (c¢). Suppose (1 —T') is not injective; then there is
a non-zero x; € ker(1 — 7). But if (1 — T') were surjective then there would be an 2 € X
so that (1 — T)xy = x1. Proceeding inductively we find a sequence of linearly independent
vectors x,, so that (1 — 7)™z, = 0. This contradicts part (a) of the current Theorem.

To prove the other implication of part (c¢) we suppose (1—T) is injective, but not surjective.
Then R,, := (1 —T)™X form a properly nested sequence of closed (cf. part (b)) subspaces.
Choosing z,, € R,, as in Corollary |2| we find that for n < m,

Te, —Tr,=x,— (1 —-T)xp —xm+ (1 —T)xy € T, + Rpt1

and so || Tz, — T, || > dist(2,, Rpq1) > 4. This contradicts the compactness of T O

Theorem 4. Suppose T : X — X is compact, then

(a) Every 0 £ X € o(T) is an eigenvalue with finite geometric and algebraic multiplicities.
(b) If X is infinite dimensional, 0 € o(T).

(¢) o(T) is countable and may only accumulate at 0.

Proof. (a) If 0 # X € C is not an eigenvalue then (A — T') is injective. By Proposition [3{c) it
must also be surjective. The open mapping theorem then implies that (A—T) is continuously
invertible, which shows that A & o(T).

(b) Let B denote the closed unit ball in X. If 0 ¢ o(T") then T is (continuously) invertible
and so writing B = T~ 'TB we see that B lies in the continuous image of a compact set,
namely, TB. This implies that the unit ball is (norm-)compact, which is only true when X
is finite dimensional (cf. the Riesz lemma).

(¢) As o(T) is compact, it suffices to show that there are no non-zero accumulation points.
Suppose to the contrary that there is a sequence A, € o(T) with |[A,| > 6 > 0 for all n.
Then we apply Corollary [2] to the combined eigen-spaces

N, :=ker(A\, —T)+--- +ker(\y —T)
to find x,, € N,, with dist(x,, N,—1) > % Noting that (A, —T) : N,, = N,,_1 we find
Txp — Tk =M — (An — T)Xp — An@m € My + Npq

for any n > m. Thus |Tz, — Tzm| > |[A|dist(z,, Ny—1) > 3, which contradicts the

compactness of T'. O



Theorem 5. (Fredholm Alternative I) If T : X — X is compact then
1-T)X =ker(1—T)" :={x € X :4(x) =0 for all £ € ker(1 —T")}
Equivalently, given y € X there exists x € X with (1 — T)x = y if and only if for every
e X*, (1 =T =0 implies {(y) = 0.
Remark. We use the upside-down L symbol to distinguish from the annihilating set in X**.
Proof. The key point is that the range of (1 — T) is closed. Recalling a few definitions,
Leker(l—T') < Lo(1—-T)=0 (as an element of X*)
— (1-T)X Ckert.
That is, ker(1 — 7') = [(1 — T)X]*. Next we recall that by the hyperplane separation
theorem, the closure of a vector subspace M C X can be computed as
M= (M*Y)" ={z € X :4(z) =0 whenever M C ker (}.

By Proposition [3b), we know that (1 — T)X is closed. O

By combining this theorem with Proposition (c) we obtain the following variant:
Corollary 6. (Fredholm Alternative II) If T : X — X is compact then

1 — T is invertible <= 1 — T is invertible

and in particular, o(T) = o(T").

To see the ‘alternative’ in the Fredholm Alternative, we note the following:

Corollary 7. (Fredholm Alternative IIT) If T : X — X is compact and then either
(a) x — Tx =y has a solution for ally € X; or

(b) £ —=T'¢ =0 has a non-zero solution £ € X*;

but never both.



