
247A Notes on Lorentz spaces

Definition 1. For 1 ≤ p <∞ and f : Rd → C we define

(1) ‖f‖∗Lpweak(Rd)
:= sup

λ>0
λ
∣∣{x : |f(x)| > λ}

∣∣1/p
and the weak Lp space

Lpweak(Rd) :=
{
f : ‖f‖∗Lpweak(Rd)

<∞
}
.

Equivalently, f ∈ Lpweak if and only if |{x : |f(x)| > λ}| . λ−p.
Warning. The quantity in (1) does not define a norm. This is the reason we append
the asterisk to the usual norm notation.

To make a side-by-side comparison with the usual Lp norm, we note that

‖f‖Lp =

(∫∫
0≤λ<|f(x)|

pλp−1 dλ dx

)1/p

=

(∫ ∞
0

|{|f | > λ}| pλp dλ
λ

)1/p

= p1/p
∥∥λ|{|f | > λ}|1/p

∥∥
Lp((0,∞), dλλ )

and, with the convention that p1/∞ = 1,

‖f‖∗Lpweak
= p1/∞

∥∥λ|{|f | > λ}|1/p
∥∥
L∞((0,∞), dλλ ).

This suggests the following definition.

Definition 2. For 1 ≤ p <∞ and 1 ≤ q ≤ ∞ we define the Lorentz space Lp,q(Rd)
as the space of measurable functions f for which

(2) ‖f‖∗Lp,q := p1/q
∥∥λ|{|f | > λ}|1/p

∥∥
Lq( dλλ ) <∞.

From the discussion above, we see that Lp,p = Lp and Lp,∞ = Lpweak. Again
‖ · ‖∗Lp,q is not a norm in general. Nevertheless, it is positively homogeneous: for all
a ∈ C,

‖af‖∗Lp,q =
∥∥λ∣∣{|f | > |a|−1λ}∣∣1/p∥∥

Lq(dλ/λ)
= |a| · ‖f‖∗Lp,q(3)

(strictly the case a = 0 should receive separate treatment). In lieu of the triangle
inequality, we have the following:

‖f + g‖∗Lp,q =
∥∥λ∣∣{|f + g| > λ}

∣∣1/p∥∥
Lq(dλ/λ)

≤
∥∥λ (∣∣{|f | > 1

2λ}
∣∣+∣∣{|g| > 1

2λ}
∣∣)1/p∥∥

Lq(dλ/λ)

≤
∥∥λ∣∣{|f | > 1

2λ}
∣∣1/p∥∥

Lq(dλ/λ)
+
∥∥λ∣∣{|g| > 1

2λ}
∣∣1/p∥∥

Lq(dλ/λ)

by the subadditivity of fractional powers and the triangle inequality in Lq(dλ/λ).
Thus

‖f + g‖∗Lp,q ≤ 2‖f‖∗Lp,q + 2‖g‖∗Lp,q .(4)

Combining (3), (4), and the fact that ‖f‖Lp,q = 0 implies f ≡ 0 almost every-
where, we see that ‖ · ‖∗Lp,q obeys the axioms of a quasi-norm. When p > 1, this
quasi-norm is equivalent to an actual norm (see below). When p = 1 and q 6= 1,
there cannot be a norm that is equivalent to our quasi-norm. However there is
a metric that generates the same topology. In either case, we obtain a complete
metric space.

Notice that (i) if |f | ≥ |g| then ‖f‖∗Lp,q ≥ ‖g‖∗Lp,q and (ii) The quasi-norms are
rearrangement invariant, which is to say that ‖f‖∗Lp,q = ‖f ◦φ‖∗Lp,q for any measure
preserving bijection φ : Rd → Rd.
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Proposition 3. Given f ∈ Lp,q, we write f =
∑
fm where

fm(x) := f(x)χ{x:2m≤|f(x)|<2m+1}.

Then

‖f‖∗Lp,q ≈p,q
∥∥∥‖fm‖Lpx(Rd)∥∥∥

`qm(Z)

In particular, Lp,q1 ⊆ Lp,q2 whenever q1 ≤ q2.

Proof. It suffices to consider f of the form f =
∑

2mχEm with disjoint sets Em (cf.
Em = {2m ≤ |f | < 2m+1}). Now(

‖f‖∗Lp,q
)q

= p

∫ ∞
0

λq|{|f | > λ}|q/p dλ
λ

= p
∑
m

∫ 2m

2m−1

λq
(∑
n≥m

|En|
)q/p

dλ

λ

≈
∑
m

∣∣∣∣2m(∑
n≥m

|En|
)1/p∣∣∣∣q.

To obtain a lower bound, we keep only the summand n = m; for an upper bound,
we use the subadditivity of fractional powers. This yields∥∥2m|Em|1/p

∥∥
`qm
. ‖f‖∗Lp,q .

∥∥∥∥∑
m≤n

2m|En|1/p
∥∥∥∥
`qm

.(5)

As ‖2mχEm‖Lp = 2m|Em|1/p, we have our desired lower bound. To obtain the
upper bound, we use the triangle inequality in `q(Z):

RHS(5) =

∥∥∥∥ ∞∑
k=0

2−k‖2m+kχEm+k
‖Lp
∥∥∥∥
`qm

≤
∞∑
k=0

2−k
∥∥∥‖2mχEm‖Lp∥∥∥

`qm

This completes the proof of the upper bound. �

Lemma 4. Given 1 ≤ q <∞ and a finite set A ⊂ 2Z,∑
Aq ≤

∣∣∣∑A
∣∣∣q ≤ ∣∣∣2 max

A∈A
A
∣∣∣q ≤ 2q

∑
Aq

where all sums are over A ∈ A. More generally, for any subset A of a geometric
series and any 0 < q <∞, ∑

Aq ≈
∣∣∣∑A

∣∣∣q
where the implicit constants depend on q and the step size of the geometric series.

Proposition 5. For 1 < p <∞ and 1 ≤ q ≤ ∞,

sup
{
|
∫
fg| : ‖g‖∗

Lp′,q′
≤ 1
}
≈ ‖f‖∗Lp,q .(6)

Indeed, LHS (6) defines a norm on Lp,q. Note that by (6), this norm is equivalent
to our quasi-norm. Moreover, under this norm, Lp,q is a Banach space and when
q 6=∞, the dual Banach space is Lp

′,q′ , under the natural pairing.

Remark. When p = 1 (and q 6= 1), the LHS(6) is typically infinite; indeed,
∫
E
|f |

may well be infinite even for some set E of finite measure. In fact, there there cannot
be a norm on Lp,q equivalent to our quasi-norm. For example, the impossibility of
finding an equivalent norm for L1,∞(R) can be deduced by computing∥∥∥∥ N∑

n=0

|x− n|−1
∥∥∥∥∗
L1,∞

≈ N log(N) and

N∑
n=0

∥∥|x− n|−1∥∥∗
L1,∞ ≈ N.
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Proof. Because the quasi-norm is positively homogeneous, we need only verify (6)
in the case that f and g have quasi-norm comparable to one. We may also assume
that f =

∑
2nχFn and g =

∑
2mχEm . By the normalization just mentioned,

(7)
∑
n

(
2n|Fn|1/p

)q ≈ 1 ≈
∑
m

(
2m|Em|1/p

′)q′
Combining the above with Lemma 4, we obtain

(8)
∑
A∈2Z

∣∣∣∣ ∑
n:|Fn|≈A

2nA1/p

∣∣∣∣q ≈ ∑
A∈2Z

∑
n:|Fn|≈A

(
2n|Fn|1/p

)q ≈ 1.

and similarly for g. Now we compute:∫
|fg| dx =

∑
n,m

2n2m|Fn ∩ Em|

≤
∑

A,B∈2Z

∣∣∣∣ ∑
n:|Fn|∼A

2n
∣∣∣∣ ·min(A,B) ·

∣∣∣∣ ∑
m:|Em|∼B

2m
∣∣∣∣

≤
∑

A,B∈2Z

∣∣∣∣ ∑
n:|Fn|∼A

2nA1/p

∣∣∣∣ ·min
([

A
B

] 1
p′ ,

[
B
A

] 1
p

)
·
∣∣∣∣ ∑
m:|Em|∼B

2mB1/p′
∣∣∣∣.

Notice that this has the structure of a bilinear form: two vectors (indexed over 2Z)
with a matrix sitting between them. Moreover, by Schur’s test, the matrix is a
bounded operator on `q(2Z). Thus,∫

|fg| dx .
∥∥∥∥ ∑
n:|Fn|∼A

2nA1/p

∥∥∥∥
`q(A∈2Z)

·
∥∥∥∥ ∑
m:|Em|∼B

2mB1/p′
∥∥∥∥
`q′ (B∈2Z)

≈ 1

by (8) and the corresponding statement for g. This completes proof of the . part
of (6). We turn now to the opposite inequality. Given f =

∑
2nχFn ∈ Lp,q, we

choose

g =
∑
n

(
2n|Fn|

1
p

)q−1
|Fn|−

1
p′ χFn =

∑
n

2n(q−1)|Fn|
q−p
p χFn .

Then∫
fg =

∑
n

(
2n|Fn|

1
p

)q−1
2n|Fn|1−

1
p′ =

∑
n

(
2n|Fn|

1
p

)q
≈
(
‖f‖∗Lp,q

)q
≈ 1.

It remains to show that ‖g‖∗
Lp′,q′

. 1. By Proposition 3,

(
‖g‖∗

Lp′,q′
)q′ ≈ ∑

A∈2Z
Aq
′
∣∣∣∣ ∑
n∈N(A)

|Fn|
∣∣∣∣q′/p′ where n ∈ N(A)⇔ 2n(q−1)|Fn|

q−p
p ≈ A.

Notice that for each A, the sum in n is over part of a geometric series; indeed,

n ∈ N(A) ⇐⇒ |Fn| ≈ A
p
q−p 2−n

p(q−1)
q−p .

Thus Lemma 4 applies and yields(
‖g‖∗

Lp′,q′
)q′ ≈ ∑

A∈2Z
Aq
′ ∑
n∈N(A)

|Fn|q
′/p′ ≈

∑
n

2nq|Fn|q/p ≈ 1.

This provides the needed bound on g and so completes the proof of (6).
The fact that LHS(6) is indeed a norm is a purely abstract statement about

vector spaces and (separating) linear functionals. The proof that Lp,q is complete
in this norm differs little from the usual Riesz–Fischer argument.

Let ` be a continuous linear functional on Lp,q. By definition, |`(χE)| . |E|1/p
and so the measure E 7→ `(χE) is absolutely continuous with respect to Lebesgue
measure and so is represented by some locally L1 function g. This is the Radon–
Nikodym Theorem. By linearity this representation of the functional extends to
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simple functions. Boundedness when tested against simple functions suffices to
show that g ∈ Lp′,q′ . When q 6= ∞, the simple functions are dense in Lp,q and so
our linear functional admits the desired representation.

When q = ∞ the simple functions are not dense. For example, one cannot
approximate |x|−d/p ∈ Lp,∞(Rd) by simple functions. Indeed, inspired by the
Banach limit linear functionals on `∞(Z) we can construct a non-trivial linear
functional on Lp,∞ that vanishes on simple functions. Let L denote the vector
space of f ∈ Lp,∞ such that

`(f) := lim
x→0
|x|d/pf(x) exists.

Notice that L contains the simple functions and that ` vanishes on these. By the
Hahn–Banach theorem, we can extended ` to a linear functional on all of Lp,q. �

Definition 6. We say that a mapping T on (some class of) measurable functions
is sublinear if it obeys∣∣T (cf)(x)

∣∣ ≤ |c|∣∣Tf(x)
∣∣ and

∣∣T (f + g)(x)
∣∣ ≤ ∣∣[Tf ](x)

∣∣+
∣∣[Tg](x)

∣∣
for all c ∈ C and measurable functions f and g (in the domain of T ).

Linear maps are obviously sublinear. Moreover, if {Tt} is a family of linear maps
then

[T f ](x) :=
∥∥[Ttf ](x)

∥∥
Lqt

is sublinear. The case q =∞ yields a kind of ‘maximal function’, while q = 2 gives
a kind of ‘square function’.

Theorem 7 (Marcinkiewicz interpolation theorem). Fix 1 ≤ p0, p1, q0, q1 ≤ ∞
with p0 6= p1 and q0 6= q1. Let T be a sublinear operator that obeys

(9)

∫ ∣∣χE(x)[TχF ](x)
∣∣ dx . |E|1/q′j |F |1/pj j ∈ {0, 1}

uniformly for finite-measure sets E and F . Then for any 1 ≤ r ≤ ∞ and θ ∈ (0, 1),∥∥Tf∥∥∗
Lqθ,r

.
∥∥f∥∥∗

Lpθ,r

where 1/pθ = (1− θ)/p0 + θ/p1 and similarly, qθ = (1− θ)/q0 + θ/q1.

Remarks. 1. This form of the result is actually due to Hunt. The original version
is Corollary 8 below.

2. Inequalities of the form (9) are known as restricted weak type estimates. Note∫ ∣∣χE [TχF ]
∣∣ dx . |E|1/q′ |F |1/p ⇔ ∥∥TχF∥∥Lq,∞ . |F |1/p ⇐ ∥∥Tf∥∥

Lq,∞
. ‖f‖Lp

as can be shown using Propositions 3 and 5. The rightmost inequality here is called
a weak type estimate. At the top of the food chain sits the strong type estimate:
‖Tf‖Lq . ‖f‖Lp . If pθ ≤ qθ we then we can choose r = qθ and so (using the nesting
of Lorentz spaces) obtain a strong type estimate as the conclusion of the theorem.

3. The hypothesis pθ ≤ qθ is needed to obtain the strong type conclusion.
Consider, for example,

f(x) 7→ x−1/2f(x) which maps Lp
(
[0,∞), dx

)
→ L

2p
p+2 ,∞

(
[0,∞), dx

)
boundedly for all 2 ≤ p ≤ ∞. However

f(x) = x−1/p[log(x+ x−1)]−
p+2
2p

shows that T does not map Lp into L2p/(p+2) for any such p.
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Proof of Theorem 7. By the duality relations among Lorentz spaces (cf. Proposi-
tion 5), it suffices to show that∣∣∣∣∫ g(x)[Tf ](x) dx

∣∣∣∣ . 1 whenever ‖f‖∗Lpθ,r ≈ 1 ≈ ‖g‖∗
Lq
′
θ
,r′ .

Moreover, we can take g to be of the form
∑

2mχEm .
We would like to take f of the same form, but this takes a little more justification.

First by splitting a general f into real/imaginary parts and then each of these into
its positive/negative parts, we see that it suffices to consider non-negative functions
f . This also justifies taking g of the special form. Note that for g we can safely round
up to the nearest power of two; however, since T need not have any monotonicity
properties we are not able to do this for f .

Now by using the binary expansion of the values of f(x) ≥ 0 at each point, we
see that it is possible to write f as the sum of a sequence functions of the form∑

2nχFn in such a way the summands are bounded pointwise by f , 1
2f , 1

4f , and
so on. Since Lpθ,qθ is a Banach space (specifically the triangle inequality holds)
we can just sum the pieces back together. (A similar decomposition is possible
under a quasi-norm, but a little cunning is required to avoid the summability being
swamped by the constants from the triangle inequality.)

Now we have reduced to considering f =
∑

2nχFn and g =
∑

2mχEm , let us
compute:∫
|g(x)[Tf ](x)| dx .

∑
n,m

2n2m min
j∈{0,1}

(
|Fn|1/pj |Em|1/q

′
j
)

.
∑

A,B∈2Z

( ∑
n:|Fn|∼A

2nA1/pθ

)
min

j∈{0,1}

(
A

1
pj
− 1
pθ B

1
q′
j
− 1
q′
θ
)( ∑

m:|Em|∼B

2mB1/q′θ

)
.

Once again we recognize the structure of a bilinear form with vectors indexed over
2Z. With a little effort, we see that the matrix has the form

min
j∈{0,1}

([
A

1
p1
− 1
p0B

1
q′1
− 1
q′0

]j−θ)
and so is bounded on `r(2Z) by Schur’s test. (It is essential here that p0 6= p1 and
q0 6= q1.) On the other hand, by Lemma 4,∑

A∈2Z

( ∑
n:|Fn|∼A

2nA1/pθ

)r
≈
∑
n

(
2n|Fn|1/pθ

)r ≈ (‖f‖∗Lpθ,r)r ≈ 1

and similarly for g, though we use power r′. Putting these all together completes
the proof. �

Corollary 8 (Marcinkiewicz interpolation theorem). Suppose 1 ≤ p0 < p1 ≤ ∞
and T is a sublinear operator that obeys

(10)
∥∥Tf∥∥

Lp0,∞
. ‖f‖Lp0 and

∥∥Tf∥∥
Lp1,∞

. ‖f‖Lp1
uniformly for measurable functions f . Then for any θ ∈ (0, 1),

‖Tf‖Lpθ . ‖f‖Lpθ
where 1/pθ = (1− θ)/p0 + θ/p1 and similarly, qθ = (1− θ)/q0 + θ/q1.


