1. Show that the dual of the LCA group \mathbb{R} is isomorphic to \mathbb{R}.
2. Let G be a finite abelian group and H a subgroup. For $\chi \in \hat{G}$ we write

$$
\hat{f}(\chi)=\sum_{g} f(g) \chi(g)
$$

We say $\chi \in \hat{G}^{H}$ if χ is constant on each coset of H. Prove
(a) $\hat{G}^{H} \cong \widehat{G / H}$ in a natural way; and
(b) the following 'Poisson Summation' formula:

$$
\frac{|H|}{|G|} \sum_{\chi \in \hat{G}^{H}} \hat{f}(\chi)=\sum_{h \in H} f(h) .
$$

3. Recall from class that the dyadic cubes in \mathbb{R}^{d} are the sets of the form

$$
Q_{n, k}=\left[k_{1} 2^{n},\left(k_{1}+1\right) 2^{n}\right) \times \cdots \times\left[k_{d} 2^{n},\left(k_{d}+1\right) 2^{n}\right)
$$

were n ranges over \mathbb{Z} and $k \in \mathbb{Z}^{d}$. We define \mathcal{F}_{n} as the smallest σ-algebra containing every $Q_{-n, k}$.
(a) Given a collection of dyadic cubes whose diameters are bounded, show that one may find a sub-collection which covers the same region of \mathbb{R}^{d} but with all cubes disjoint.
(b) Define the (uncentered) dyadic maximal function by

$$
\left[M_{D} f\right](x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q} f(y) d y
$$

where the supremum is over all dyadic cubes that contain x. Show that this operator is of weak type $(1,1)$.
(c) Fix $1 \leq p \leq \infty$. Show that for any $f \in L^{p}\left(\mathbb{R}^{d}\right)$,

$$
\mathbb{E}\left(f \mid \mathcal{F}_{n}\right) \rightarrow f
$$

both almost everywhere and (when $1 \leq p<\infty$) in L^{p} sense.
4. Suppose $f \in L^{1}(\mathbb{R} / \mathbb{Z})$ and let $M_{D} f$ denote its (uncentred) dyadic maximal function.
(a) Show that for $\lambda>\int|f|$,

$$
\frac{1}{\lambda} \int_{|f|>\lambda}|f(x)| d x \lesssim\left|\left\{x: M_{D} f>\lambda\right\}\right| .
$$

[Hint: Do a Calderón-Zygmund style decomposition.]
(b) Deduce that if $M_{D} f \in L^{1}$, then $|f| \log [1+|f|] \in L^{1}$. This result is due to Stein.
(c) Use the fact that $M_{D}: L^{\infty} \rightarrow L^{\infty}$ and $L^{1} \rightarrow L^{1, \infty}$ to show

$$
|\{x: M f>\lambda\}| \lesssim \frac{1}{\lambda} \int_{|f|>c \lambda}|f(x)| d x .
$$

for some small constant c.
(d) Deduce that if $|f| \log [1+|f|] \in L^{1}$ then $M f \in L^{1}$.
5. Given a Schwartz vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{C}^{3}$, define vector and scalar fields A and ϕ via

$$
\hat{\phi}(\xi)=\frac{\xi \cdot \hat{F}(\xi)}{2 \pi i|\xi|^{2}} \quad \text { and } \quad \hat{A}(\xi)=-\frac{\xi \times \hat{F}(\xi)}{2 \pi i|\xi|^{2}}
$$

Note that ϕ and A are smooth functions, but need not be Schwartz.
(a) Show that

$$
\|\phi\|_{L^{q}\left(\mathbb{R}^{3}\right)}+\|A\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|F\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

for $1<p<q<\infty$ obeying $1+\frac{d}{q}=\frac{d}{p}$.
(b) Show that $F=\nabla \times A+\nabla \phi$ and hence that

$$
\|F\|_{L^{p}\left(\mathbb{R}^{3}\right)} \approx\|\nabla \times A\|_{L^{p}\left(\mathbb{R}^{3}\right)}+\|\nabla \phi\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

for any $1<p<\infty$.
(c) Show that all (first-order) derivatives of all components of A are under control (not just the curl):

$$
\left\|\partial_{k} A_{l}\right\|_{L^{p}\left(\mathbb{R}^{3}\right)} \lesssim\|F\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

for any $1<p<\infty$ and any $k, l \in\{1,2,3\}$.
Remark: Observe that $F=\nabla \times A+\nabla \phi$ decomposes F into a divergence-free part and a curlfree part. Indeed this (Helmholtz-Hodge) decomposition is orthogonal under the natural innerproduct on vector-valued functions. Note however, that the choice of A is far from unique; consider $A \mapsto A+\nabla \psi$. Our choice corresponds to the Coulomb gauge: $\nabla \cdot A=0$.

