247A Homework.

- 1. Show that the dual of the LCA group \mathbb{R} is isomorphic to \mathbb{R} .
- 2. Let G be a finite abelian group and H a subgroup. For $\chi \in \hat{G}$ we write

$$\hat{f}(\chi) = \sum_{g} f(g)\chi(g)$$

We say $\chi \in \hat{G}^H$ if χ is constant on each coset of H. Prove

(a) $\hat{G}^H \cong \widehat{G/H}$ in a natural way; and

(b) the following 'Poisson Summation' formula:

$$\frac{|H|}{|G|}\sum_{\chi\in\hat{G}^H}\hat{f}(\chi) = \sum_{h\in H}f(h).$$

3. Recall from class that the dyadic cubes in \mathbb{R}^d are the sets of the form

$$Q_{n,k} = [k_1 2^n, (k_1 + 1)2^n) \times \dots \times [k_d 2^n, (k_d + 1)2^n)$$

were n ranges over \mathbb{Z} and $k \in \mathbb{Z}^d$. We define \mathcal{F}_n as the smallest σ -algebra containing every $Q_{-n,k}$. (a) Given a collection of dyadic cubes whose diameters are bounded, show that one may find a sub-collection which covers the same region of \mathbb{R}^d but with all cubes disjoint. (b) Define the (uncentered) dyadic maximal function by

$$[M_D f](x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q f(y) \, dy$$

where the supremum is over all dyadic cubes that contain x. Show that this operator is of weak type (1,1).

(c) Fix $1 \leq p \leq \infty$. Show that for any $f \in L^p(\mathbb{R}^d)$,

$$\mathbb{E}(f|\mathcal{F}_n) \to f$$

both almost everywhere and (when $1 \le p < \infty$) in L^p sense.

4. Suppose $f \in L^1(\mathbb{R}/\mathbb{Z})$ and let $M_D f$ denote its (uncentred) dyadic maximal function. (a) Show that for $\lambda > \int |f|$,

$$\frac{1}{\lambda} \int_{|f| > \lambda} |f(x)| \, dx \lesssim |\{x : M_D f > \lambda\}|.$$

[Hint: Do a Calderón–Zygmund style decomposition.]

(b) Deduce that if $M_D f \in L^1$, then $|f| \log[1 + |f|] \in L^1$. This result is due to Stein. (c) Use the fact that $M_D : L^{\infty} \to L^{\infty}$ and $L^1 \to L^{1,\infty}$ to show

$$|\{x: Mf > \lambda\}| \lesssim \frac{1}{\lambda} \int_{|f| > c\lambda} |f(x)| \, dx$$

for some small constant c.

(d) Deduce that if $|f| \log[1 + |f|] \in L^1$ then $Mf \in L^1$.

5. Given a Schwartz vector field $F : \mathbb{R}^3 \to \mathbb{C}^3$, define vector and scalar fields A and ϕ via

$$\hat{\phi}(\xi) = \frac{\xi \cdot \hat{F}(\xi)}{2\pi i |\xi|^2}$$
 and $\hat{A}(\xi) = -\frac{\xi \times \hat{F}(\xi)}{2\pi i |\xi|^2}.$

Note that ϕ and A are smooth functions, but need not be Schwartz. (a) Show that

$$\|\phi\|_{L^{q}(\mathbb{R}^{3})} + \|A\|_{L^{q}(\mathbb{R}^{3})} \lesssim \|F\|_{L^{p}(\mathbb{R}^{3})}$$

for $1 obeying <math>1 + \frac{d}{q} = \frac{d}{p}$. (b) Show that $F = \nabla \times A + \nabla \phi$ and hence that

$$\|F\|_{L^p(\mathbb{R}^3)} \approx \|\nabla \times A\|_{L^p(\mathbb{R}^3)} + \|\nabla \phi\|_{L^p(\mathbb{R}^3)}$$

for any 1 .

(c) Show that all (first-order) derivatives of all components of A are under control (not just the curl):

$$\|\partial_k A_l\|_{L^p(\mathbb{R}^3)} \lesssim \|F\|_{L^p(\mathbb{R}^3)}$$

for any $1 and any <math>k, l \in \{1, 2, 3\}$.

Remark: Observe that $F = \nabla \times A + \nabla \phi$ decomposes F into a divergence-free part and a curlfree part. Indeed this (Helmholtz–Hodge) decomposition is orthogonal under the natural innerproduct on vector-valued functions. Note however, that the choice of A is far from unique; consider $A \mapsto A + \nabla \psi$. Our choice corresponds to the Coulomb gauge: $\nabla \cdot A = 0$.

The end