(1) Consider the probability space $\Omega=[0,1]$. We define the probability of an event $A \subseteq \Omega$ to be its length. We define a sequence random variables as follows: When n is odd,

$$
X_{n}(\omega)= \begin{cases}1 & : 0 \leq \omega<\frac{1}{2} \\ 0 & : \text { otherwise }\end{cases}
$$

while, when n is even,

$$
X_{n}(\omega)= \begin{cases}0 & : 0 \leq \omega<\frac{1}{2} \\ 1 & : \text { otherwise }\end{cases}
$$

(a) Compute the PMF and CDF of each X_{n}.
(b) Deduce that X_{n} converge in distribution.
(c) Show that for any n and any random variable $X: \Omega \rightarrow \mathbb{R}$,

$$
\left\{\omega:\left|X_{n}-X\right| \geq \frac{1}{2} \text { or }\left|X_{n+1}-X\right| \geq \frac{1}{2}\right\}=\Omega
$$

(d) Deduce that X_{n} does not converge in probability (to any random variable X).
(2) Let X_{n} be a sequence of random variables and let X be another random variable. Given $1 \leq p<\infty$, we say $X_{n} \rightarrow X$ in L^{p} if $\mathbb{E}\left(\left|X_{n}-X\right|^{p}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that this implies that $X_{n} \rightarrow X$ in probability. (cf. Problem 5.7.)
(3) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and let X_{1}, X_{2}, \ldots, be independent and uniformly distributed on $[0,1]$. Show that

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \rightarrow \int_{0}^{1} f(x) d x
$$

in probability. This method of approximating integrals is known as the Monte Carlo technique.
(4) We wish to use it to compute $\int_{0}^{1} x d x$. How large should we choose n to ensure our answer lies between 0.49 and 0.51 with 95% probability. Use a CLT approximation.

