Recall (from class) the definition of the $\chi_{\nu}^{2}$ random variable: $X \sim \chi_{\nu}^{2}$ if and only if

$$
f_{X}(x)= \begin{cases}\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} x^{\frac{\nu}{2}-1} e^{-x / 2} & : x \geq 0 \\ 0 & : \text { otherwise }\end{cases}
$$

where $\nu>0$ and $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ for all $\alpha>0$.
(1) Suppose $X \sim \chi_{\nu}^{2}$ and $Y \sim \chi_{k}^{2}$ are independent. Show that $X+Y \sim \chi_{\nu+k}^{2}$. In this way, also recover the value of

$$
\int_{0}^{1} u^{\frac{\nu}{2}-1}(1-u)^{\frac{k}{2}-1} d u
$$

as a ratio of Gamma functions. Hint: mimic the arguments in class that covered the case $k=1$.
(2) Suppose $X \sim \chi_{\nu}^{2}$ and $Z \sim N(0,1)$ are independent. Find the pdf of

$$
T=Z \sqrt{\frac{\nu}{X}}
$$

Hint: Solving this problem will lead to the discovery (also of Euler) that

$$
\int_{-\infty}^{\infty}\left(1+\frac{1}{\nu} t^{2}\right)^{-\frac{\nu+1}{2}} d t=\frac{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu+1}{2}\right)}
$$

(3) Suppose $\Theta \sim \operatorname{Uniform}([0,2 \pi])$ and let

$$
X=\cos (\Theta) \quad \text { and } \quad Y=\sin (\Theta)
$$

(a) Determine the correlation coefficient between $X$ and $Y$.
(b) Prove that $X$ and $Y$ are not independent.
(4) Continuing from the previous problem, define events

$$
A=\{X \geq 0\} \quad \text { and } \quad B=\{Y \geq 0\}
$$

(a) Show that $A$ and $B$ are independent.
(b) Show that $A$ and $B$ are not independent conditioned on $A \cup B$.
(c) Determine the correlation coefficient between $X$ and $Y$ conditioned on $A \cup B$.
(5) Let $A$ and $B$ be events of probabilities $\mathbb{P}(A)=p$ and $\mathbb{P}(B)=q$ respectively.
(a) What are the largest and smallest possible values that $\mathbb{P}(A \cap B)$ could take if $p$ and $q$ are known.
(b) Express the correlation coefficient $\rho$ of the indicator random variables

$$
\chi_{A}(\omega)=\left\{\begin{array}{ll}
1 & : \omega \in A \\
0 & : \text { otherwise }
\end{array} \quad \text { and } \quad \chi_{B}(\omega)= \begin{cases}1 & : \omega \in B \\
0 & : \text { otherwise }\end{cases}\right.
$$

in terms of $\mathbb{P}(A), \mathbb{P}(B)$, and $\mathbb{P}(A \cap B)$.
(c) Apply Cauchy-Schwarz to the product $\chi_{A} \chi_{B}$ to obtain a bound on $\mathbb{P}(A \cap B)$ in terms $\mathbb{P}(A)$ and $\mathbb{P}(B)$.

