170B Killip

- (1) Suppose $X \sim \text{Exponential}(\lambda)$. Find the PDF of $Y = \sin^2(X)$. Note: While the solution involves an infinite sum, it is an example of a geometric series and so can be evaluated.
- (2) Let X_1 and X_2 be independent and uniformly distributed on the interval [0, 1]. Given $0 < \alpha < 1$, we generate a random variable Y as follows: If $X_1 > \alpha$ then $Y = X_1$, otherwise $Y = X_2$.
 - (a) What are the CDF and PDF of Y.
 - (b) What is $\mathbb{E}(Y)$.
 - (c) For which value of α is $\mathbb{E}(Y)$ largest.
- (3) Suppose $X \sim \text{Exponential}(\lambda)$ and define a function floor : $\mathbb{R} \to \mathbb{Z}$ as follows:

$$floor(x) = n \quad \iff \quad x \in [n, n+1)$$

Determine the law of floor(X).

(4) Suppose U and V are independent and follow a Uniform(0,1) law. Show that

$$X = \sqrt{-2\ln(U)\cos(2\pi V)} \quad \text{and} \quad Y = \sqrt{-2\ln(U)\sin(2\pi V)}$$

define independent random variables each with a N(0,1) law. *Notes:* This is known as the Box–Muller transform. Before attempting this problem, please review book problem 16 from Chapter 4.

- (5) Fix $\beta \in (0, 1)$ and suppose $U, V \sim \text{Uniform}(0, 1)$ are independent. (a) Find the pdf of X = UV.
 - (b) Find the conditional pdf of X = UV conditioned on $U \ge \beta$.
 - (c) What is the probability that $U \ge \beta$ and $UV < \beta$.
- (6) Suppose X_1, X_2 , and X_3 are independent and follow a N(0, 1) law. Find the PDF of $Y = \sqrt{X_1^2 + X_2^2 + X_3^2}$.
- (7) Suppose X_1, X_2 , and X_3 are independent and uniformly distributed on the interval [0, 1].
 - (a) What is the probability of the event $X_1 \leq X_2 \leq X_3$?
 - (b) What is the joint pdf of X_1 and X_2 conditioned on the event $X_1 \leq X_2$?
 - (c) What is the joint pdf of X_1 , X_2 , and X_3 conditioned on $X_1 \le X_2 \le X_3$?
 - (d) Find the PDF for the median of these three random variables.