First Name: \qquad ID\# \qquad

Last Name: \qquad

Rules.

- There are FIVE problems, totaling 50 points.
- There are extra pages after some problems. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone, pager,...

1	2	3	4	5	\sum
			$/ 8$		$/ 10$

(1) (a) Define convergence in distribution.
(b) State the Strong Law of Large Numbers.
(2) Given $p \in(0,1)$ and an integer $k \geq 1$, we say that $X \sim \operatorname{PL}(k, p)$ if

$$
\mathbb{P}(X=m)= \begin{cases}\binom{m-1}{k-1} p^{k}(1-p)^{m-k} & : \text { for } m=k, k+1, k+2, \ldots \\ 0 & : \text { otherwise }\end{cases}
$$

or equivalently, if

$$
M_{X}(s)=\left[\frac{p e^{s}}{1-(1-p) e^{s}}\right]^{k}
$$

(a) Suppose $X \sim \mathrm{PL}(k, p)$ and $Y \sim \mathrm{PL}(\ell, p)$ are independent. Determine the law of $X+Y$.
(b) Suppose $X_{i} \sim \mathrm{PL}(1, p)$ and $N \sim \mathrm{PL}(k, q)$ are mutually independent. Show that

$$
Y=\sum_{i=1}^{N} X_{i}
$$

is PL-distributed and determine the associated parameters.
(3) Let X be a random variable with

$$
M_{X}(s)= \begin{cases}\left(1-s^{2}\right)^{-1} & : \text { for }-1<s<1 \\ \infty & : \text { otherwise }\end{cases}
$$

(a) Use the Chebyshev inequality to give a bound on $\mathbb{P}(|X| \geq 10)$.
(b) Use the Cramer-Chernoff method to give a bound on $\mathbb{P}\left(X \geq \frac{3}{4}\right)$.
(4) (a) State the Central Limit Theorem.
(b) Suppose $X \sim \operatorname{Binomial}(100,1 / 2)$. Use a CLT approximation to estimate

$$
\mathbb{P}(40 \leq X \leq 55)
$$

Remember to include the DeMoivre-Laplace correction.
(5) Let $X_{n} \sim N\left(0, \sigma_{n}^{2}\right)$ be independent random variables.
(a) Show that $X_{n} \rightarrow 0$ in L^{2} sense if and only if $\sigma_{n} \rightarrow 0$.
(b) Show that if $\sum \sigma_{n}^{2}<\infty$, then $X_{n} \rightarrow 0$ with probability one.

