First Name:	ID#	_
-------------	-----	---

Last Name:

Rules.

- There are **FIVE** problems, totaling 50 points.
- There are extra pages after some problems. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone, pager,...

1	2	3	4	5	\sum
/7	/8	/10	/10	/15	/50

- (1) (a) Define convergence in distribution.
 - (b) State the Strong Law of Large Numbers.

(2) Given $p \in (0,1)$ and an integer $k \ge 1$, we say that $X \sim \operatorname{PL}(k,p)$ if

$$\mathbb{P}(X=m) = \begin{cases} \binom{m-1}{k-1} p^k (1-p)^{m-k} & : \text{ for } m = k, k+1, k+2, \dots \\ 0 & : \text{ otherwise} \end{cases}$$

or equivalently, if

$$M_X(s) = \left[\frac{pe^s}{1 - (1 - p)e^s}\right]^k$$

(a) Suppose $X \sim PL(k, p)$ and $Y \sim PL(\ell, p)$ are independent. Determine the law of X + Y.

(b) Suppose $X_i \sim PL(1, p)$ and $N \sim PL(k, q)$ are mutually independent. Show that

$$Y = \sum_{i=1}^{N} X_i$$

is PL-distributed and determine the associated parameters.

(3) Let X be a random variable with

$$M_X(s) = \begin{cases} (1-s^2)^{-1} & : \text{ for } -1 < s < 1\\ \infty & : \text{ otherwise.} \end{cases}$$

- (a) Use the Chebyshev inequality to give a bound on $\mathbb{P}(|X| \ge 10)$. (b) Use the Cramer–Chernoff method to give a bound on $\mathbb{P}(X \ge \frac{3}{4})$.

- (4) (a) State the Central Limit Theorem.
 - (b) Suppose $X \sim \text{Binomial}(100, 1/2)$. Use a CLT approximation to estimate

 $\mathbb{P}(40 \le X \le 55).$

Remember to include the DeMoivre–Laplace correction.

- (5) Let X_n ~ N(0, σ_n²) be independent random variables.
 (a) Show that X_n → 0 in L² sense if and only if σ_n → 0.
 (b) Show that if Σ σ_n² < ∞, then X_n → 0 with probability one.