First Name: $\qquad$ ID\# $\qquad$

Last Name: $\qquad$

## Rules.

- There are FIVE problems, totaling 50 points.
- There are extra pages after some problems. You may also use the backs of pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone, pager,...

| 1 | 2 | 3 | 4 | 5 | $\sum$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  | $/ 8$ |  | $/ 10$ |

(1) Let $X$ and $Y$ be random variables with $\operatorname{var}(X)=12$ and $\operatorname{var}(Y)=3$.
(a) According to the Cauchy-Schwarz inequality, what is the largest possible value of $\operatorname{cov}(X, Y)$ ?

Suppose now that we discover $\operatorname{cov}(X, Y)=1$.
(b) What is $\rho(X, Y)$ ?
(c) What is $\operatorname{var}(X-2 Y)$ ?
(2) Suppose $X$ is uniformly distributed on the interval $[0,1]$. Determine the pdf of $Y=\frac{1}{X}$.
(3) Let $X$ denote the number of heads resulting from two (independent) tosses of a fair coin.
(a) Sketch the CDF of $X$. Label your axes thoroughly.
(b) Determine the MGF of $Y=(X-1)^{2}$.
(c) Find $\mathbb{E}(Y \mid X)$.
(4) Let $X$ and $Y$ be random variables whose joint pdf is as follows:

$$
f_{X, Y}(x, y)= \begin{cases}2 & : \text { if } x \geq 0, y \geq 0, \text { and } x+y \leq 1 \\ 0 & : \text { otherwise }\end{cases}
$$

(a) Find the pdf of $Z=X+Y$.
(b) What is the probability that $Z \leq \frac{2}{3}$ given that $X \geq \frac{1}{3}$.
(5) Let $X$ and $Y$ be random variables with

$$
f_{X}(x)=\left\{\begin{array}{ll}
1 & : 0<x \leq 1 \\
0 & : \text { otherwise }
\end{array} \quad \text { and } \quad f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & : 0<y \leq x \\
0 & : \text { otherwise }\end{cases}\right.
$$

(a) Determine $\mathbb{E}(Y \mid X)$.
(b) Determine $\mathbb{E}(Y)$.
(c) Determine $\operatorname{var}(Y \mid X)$.
(d) Determine $\operatorname{var}(Y)$.

