- (1) Suppose X and Y are independent and both are uniformly distributed on [0, 1]. What is the pdf of X + Y?
- (2) Recall from class that given a vector $\vec{\mu} \in \mathbb{R}^2$ and a 2 × 2 positive definite matrix Σ , we say that $(X_1, X_2) \sim N(\vec{\mu}, \Sigma)$ if they have joint pdf

$$f_{X_1,X_2}(\vec{x}) = [\det(2\pi\Sigma)]^{-1/2} \exp\{-\frac{1}{2}(\vec{x}-\vec{\mu})\cdot\Sigma^{-1}(\vec{x}-\vec{\mu})\}.$$

The following questions refer to this scenario.

- (a) Show that X_1 and X_2 are independent if and only if the are uncorrelated.
- (b) What is the variance of $\alpha X_1 + \beta X_2$, for $\alpha, \beta \in \mathbb{R}$.
- (3) Suppose now that $(X_1, X_2) \sim N(\vec{0}, \text{Id})$ where Id denotes the identity matrix. Compute the pdf of $X_1^2 + X_2^2$.
- (4) If $X \sim N(\mu, \sigma^2)$, find $\mathbb{E}(e^{tX})$. Hint: complete the square.
- (5) We say that X has a log normal distribution with parameters μ and σ , written $X \sim \ln N(\mu, \sigma^2)$, if $\ln(X) \sim N(\mu, \sigma^2)$.
 - (a) What are the mean and variance of X?

(b) Suppose $X_1 \sim \ln N(\mu_1, \sigma_1^2), \ldots, X_k \sim \ln N(\mu_k, \sigma_k^2)$ are statistically independent and represent the factor by which my investment changes over the course of successive years. What is the mean and variance of my investment after k years? (c) Suppose now that $\mu_1 = \cdots = \mu_k = 0.05$ and $\sigma_1 = \cdots = \sigma_k = 0.05$. What is the probability that my investment has doubled (or more) in value at the end of seven years?

- (6) Problem 6 from Chapter 3.
- (7) A farmer has two breeds of chickens, A and B, in proportion 3 : 5. The annual weight gain factor for breed A is $\sim \ln N(\frac{1}{2}, \frac{1}{2})$, for breed B it is $\sim \ln N(\frac{1}{2}, 1)$.
 - (a) What is the expected average weight gain factor across the farm?

(b) A chicken more that doubles in weight. What is the probability that is of breed A?

(c) Suppose breed A chickens have brown feathers with probability 0.5 and for breed B this probability is 0.4; moreover, feather color is independent of weight gain within each breed. If a brown chicken more that doubles in weight. What is the probability that is of breed A?

- (8) Problem 21 from Chapter 3.
- (9) Read Problem 33 from Chapter 3.
- (10) Fix 0 < a < 1. Let N ~ Poisson(λ). Given N we generate independent X₁,..., X_N ~ Uniform(0,1).
 (a) What is the probability distribution of the number of points X₁,..., X_N that lie in the interval [0, a] conditioned on N = n?
 (b) What is the (unconditional) probability distribution of the number of points X₁,..., X_N that lie in the interval [0, a]?
- (11) Problem 34 from Chapter 3.

(12) Suppose

$$(X,Y) \sim N(\vec{0}, \Sigma = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix})$$

- (a) What is the marginal law of Y?
- (b) What is the law of X conditioned on Y = 1?
- (13) Suppose $X \sim \text{Exponential}(\lambda = 1)$ and the law of Y conditioned on X = x is Exponential(x).
 - (a) What is the joint pdf of X and Y?
 - (b) What is the marginal law of Y?
 - (c) Find $\mathbb{E}(\frac{1}{1+Y})$ in two ways: via part (b) and via the total expectation theorem (see box on page 173, but reverse the roles of X and Y).
 - (d) What is the law of X conditioned on Y = y?
 - (e) What is $\mathbb{E}(X|Y=y)$?