(1) Suppose X and Y are independent and both are uniformly distributed on $[0,1]$. What is the pdf of $X+Y$?
(2) Recall from class that given a vector $\vec{\mu} \in \mathbb{R}^{2}$ and a 2×2 positive definite matrix Σ, we say that $\left(X_{1}, X_{2}\right) \sim N(\vec{\mu}, \Sigma)$ if they have joint pdf

$$
f_{X_{1}, X_{2}}(\vec{x})=[\operatorname{det}(2 \pi \Sigma)]^{-1 / 2} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu}) \cdot \Sigma^{-1}(\vec{x}-\vec{\mu})\right\} .
$$

The following questions refer to this scenario.
(a) Show that X_{1} and X_{2} are independent if and only if the are uncorrelated.
(b) What is the variance of $\alpha X_{1}+\beta X_{2}$, for $\alpha, \beta \in \mathbb{R}$.
(3) Suppose now that $\left(X_{1}, X_{2}\right) \sim N(\overrightarrow{0}$, Id $)$ where Id denotes the identity matrix. Compute the pdf of $X_{1}^{2}+X_{2}^{2}$.
(4) If $X \sim N\left(\mu, \sigma^{2}\right)$, find $\mathbb{E}\left(e^{t X}\right)$. Hint: complete the square.
(5) We say that X has a \log normal distribution with parameters μ and σ, written $X \sim \ln \mathrm{~N}\left(\mu, \sigma^{2}\right)$, if $\ln (X) \sim N\left(\mu, \sigma^{2}\right)$.
(a) What are the mean and variance of X ?
(b) Suppose $X_{1} \sim \ln \mathrm{~N}\left(\mu_{1}, \sigma_{1}^{2}\right), \ldots, X_{k} \sim \ln \mathrm{~N}\left(\mu_{k}, \sigma_{k}^{2}\right)$ are statistically independent and represent the factor by which my investment changes over the course of successive years. What is the mean and variance of my investment after k years?
(c) Suppose now that $\mu_{1}=\cdots=\mu_{k}=0.05$ and $\sigma_{1}=\cdots=\sigma_{k}=0.05$. What is the probability that my investment has doubled (or more) in value at the end of seven years?
(6) Problem 6 from Chapter 3.
(7) A farmer has two breeds of chickens, A and B, in proportion $3: 5$. The annual weight gain factor for breed A is $\sim \ln \mathrm{N}\left(\frac{1}{2}, \frac{1}{2}\right)$, for breed B it is $\sim \ln \mathrm{N}\left(\frac{1}{2}, 1\right)$.
(a) What is the expected average weight gain factor across the farm?
(b) A chicken more that doubles in weight. What is the probability that is of breed A ?
(c) Suppose breed A chickens have brown feathers with probability 0.5 and for breed B this probability is 0.4 ; moreover, feather color is independent of weight gain within each breed. If a brown chicken more that doubles in weight. What is the probability that is of breed A ?
(8) Problem 21 from Chapter 3.
(9) Read Problem 33 from Chapter 3.
(10) Fix $0<a<1$. Let $N \sim \operatorname{Poisson}(\lambda)$. Given N we generate independent $X_{1}, \ldots, X_{N} \sim \operatorname{Uniform}(0,1)$.
(a) What is the probability distribution of the number of points X_{1}, \ldots, X_{N} that lie in the interval $[0, a]$ conditioned on $N=n$?
(b) What is the (unconditional) probability distribution of the number of points X_{1}, \ldots, X_{N} that lie in the interval $[0, a]$?
(11) Problem 34 from Chapter 3.
(12) Suppose

$$
(X, Y) \sim N\left(\overrightarrow{0}, \Sigma=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\right)
$$

(a) What is the marginal law of Y ?
(b) What is the law of X conditioned on $Y=1$?
(13) Suppose $X \sim \operatorname{Exponential}(\lambda=1)$ and the law of Y conditioned on $X=x$ is Exponential (x).
(a) What is the joint pdf of X and Y ?
(b) What is the marginal law of Y ?
(c) Find $\mathbb{E}\left(\frac{1}{1+Y}\right)$ in two ways: via part (b) and via the total expectation theorem (see box on page 173, but reverse the roles of X and Y).
(d) What is the law of X conditioned on $Y=y$?
(e) What is $\mathbb{E}(X \mid Y=y)$?

