(1) We have a physical process that produces independent identically distributed random variables $X_{j} \sim \operatorname{Poisson}(\lambda)$; however we are not sure of the value of λ, we wish to use our observations to estimate λ. Specifically, we consider the average of our observations

$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

as a way of estimating λ.
(a) Compute $\mathbb{E}(\bar{X})$. If this is λ, we call \bar{X} an unbiased estimate of λ.
(b) Compute the variance of \bar{X}. (This gives an indication of how precisely \bar{X} approximates λ.
(2) (Continued from previous problem.) We know that λ is also the variance of a Poisson (λ) random variable. With this in mind, we might try to estimate λ using

$$
Z=\frac{1}{n}\left(\left[X_{1}-\bar{X}\right]^{2}+\cdots+\left[X_{n}-\bar{X}\right]^{2}\right)
$$

(a) Prove that

$$
Z=\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)-\bar{X}^{2}
$$

(b) Find $\mathbb{E}(Z)$. Is Z biased or unbiased as an estimator of λ ?
(c) Informed by computations with the normal distribution, people are often taught to use $\frac{n}{n-1} Z$ as an estimator for the variance. Is this better?
(3) Suppose X_{1} and X_{2} are i.i.d. $\operatorname{Geometric}(p)$. What is the probability that $X_{1} \geq$ X_{2} ?
(4) Recall that a geometric random variable describes the number of trials needed to obtain the first success. Let us now ask about the number of trials Y_{r} required to achieve exactly r successes.
(a) Compute the PMF of Y_{r} by direct analysis from this description.
(b) Use the definition to express Y_{r} as a sum of i.i.d. random variables.
(c) As a check, use your answer to (b) to verify the PMF of Y_{r}.
(5) The life-time T (measured in minutes) of a certain radioactive nucleus follows an Exponential law with parameter $\lambda=1$.
(a) Given that the nucleus has not disintegrated in the first minute, what is the probability that it will disintegrate before a total of two minutes have passed?
(b) Given that $T \geq t$, what is the probability that $T \in[t, t+a]$?
(6) Now suppose I have ten nuclei of the type described in the preceding problem, whose disintegrations are statistically independent.
(a) What is the probability that all ten remain intact at some specified time t ?
(b) What is the probability that exactly 3 will disintegrate before some specified time t ?
(7) Fix $\nu>0$. Consider a continuous random variable X taking values in $[0, \infty)$ according to the PDF

$$
f(x)=\frac{1}{c_{\nu}} x^{\frac{\nu}{2}-1} e^{-x / 2} \quad \text { where } \quad c_{\nu}=\int_{0}^{\infty} x^{\frac{\nu}{2}-1} e^{-x / 2} d x
$$

Use integration by parts to recursively determine $\mathbb{E}\left(X^{n}\right)$ for each $n=1,2, \ldots$. Hint: Avoid figuring out what c_{ν} is!
(8) (a) For X as in the previous problem, determine $\mathbb{E}\left(e^{t X}\right)$ for $t<\frac{1}{2}$ via a change of variables.
(b) Why am I restricting to $t<\frac{1}{2}$?
(9) Let X be a random variable taking positive values and suppose $\ln (X) \sim N(0,1)$.
(a) What is the pdf of X.
(b) What is the probability that $X \geq 2$?
(c) What is the probability that $\frac{1}{2} \leq X \leq 2$?
(d) For which value of λ is $\mathbb{P}(X>\lambda)=\frac{1}{10}$?
(10) Let $\Theta \sim \operatorname{Uniform}(0,2 \pi)$. What are the pdf and cdf of $X=\cos (\Theta)$.
(11) We chose a random point on the sphere by choosing the colatitude $\Phi \in[0, \pi]$ and longitude $\Theta \in[0,2 \pi]$ according to the pdf $f_{\Phi, \Theta}(\phi, \theta)=C \sin (\phi)$.
(a) What is the value of the constant C ?
(b) Are Θ and Φ independent?
(c) What is the pdf for $Z=\cos (\Phi)$?
(d) What is the pdf for $X=\sin (\Phi) \cos (\Theta)$?

