(1) We take two cards (without replacement) from a well-shuffled standard deck of 52 cards. Let X denote the number of these two cards that are aces and let Y denote the number that are hearts.
(a) Tabulate the joint PMF for X and Y.
(b) Compute the PMF for Y both directly and as a marginal of the above (this provides a check on your computations).
(c) What is the covariance of X and Y ?
(2) Each of n people (whom we label $1,2, \ldots, n$) are randomly and independently assigned a number from the set $\{1,2,3, \ldots, 365\}$ according to the uniform distribution. We will call this number their birthday.
(a) Describe a sample space Ω for this scenario.

Let j and k be distinct labels (between 1 and n) and let $A_{j k}$ denote the event that the corresponding people share a birthday. Let $X_{j k}$ denote the indicator random variable associated to $A_{j k}$.
(b) Write A_{12} as a subset of Ω.
(c) Tabulate the joint PMF for X_{12} and X_{13}. Compute the PMF for the product $X_{12} X_{13}$.
(d) Tabulate the joint PMF for X_{12} and X_{34}. Compute the PMF for the product $X_{12} X_{34}$.
(e) Are A_{12} and A_{34} independent? Are they independent conditioned on A_{13} ?
(f) Are A_{12} and A_{13} independent? Are they independent conditioned on A_{23} ?
(g) Compute the expected number of pairs of people who share a birthday (hint: write this the number as a sum of $\left.X_{j k} \mathrm{~s}\right)$.
(h) Compute the second moment and variance of the number of pairs of people who share a birthday.
(3) My dryer contains three pairs of socks of different colors. I blindly draw socks from the dryer one at a time until I have a matching pair; let X denote the number of socks taken from the dryer when this happens. Describe this experiment with a tree. Compute the PMF, mean, and variance of X.
(4) A student answers a True/False quiz with twenty questions by tossing a coin. What is the PMF, mean, and variance of the number of correct answers.

