- (1) Each of n people are randomly and independently assigned a number from the set $\{1, 2, 3, \ldots, 365\}$ according to the uniform distribution. We will call this number their birthday.
 - (a) What is the probability that no two people share a birthday?
 - (b) Use a computer or calculator to evaluate your answer as a decimal for n = 22 and n = 23.
- (2) Suppose $X \sim \text{Poisson}(\lambda)$. By repeatedly differentiating the power series for e^{λ} , compute

$$\mathbb{E}\left\{X(X-1)(X-2)\cdots(X+1-\ell)\right\}$$

for each $\ell = 1, 2, 3, ...$

(3) Suppose $X \sim \text{Binomial}(n, p)$. (a) By repeatedly differentiating the binomial identity compute

$$\mathbb{E}\left\{X(X-1)(X-2)\cdots(X+1-\ell)\right\}$$

for each $\ell = 1, 2, 3, \dots$

(b) If $n \to \infty$ with $p = \lambda/n$ show that your answer converges to the answer to the preceding question.

- (4) Suppose $X \sim \text{Poisson}(\lambda)$. Compute the probability that X is even.
- (5) We deal seven cards from a well-shuffled standard deck of 52 cards. Compute the PMF, mean, and variance of the number of aces dealt.
- (6) We throw a die independently four times and let X denote the minimal value rolled.
 - (a) What is the probability that $X \ge 4$.
 - (b) Compute the PMF of X.
 - (c) Determine the mean and variance of X.
- (7) Compute $\mathbb{E}(e^{tX})$ as a function of $t \in \mathbb{R}$ when
 - (a) $X \sim \text{Poisson}(\lambda)$,
 - (b) $X \sim \text{Binomial}(n, p)$.
- (8) Problem 20 from Chapter 2.