(1) Each of n people are randomly and independently assigned a number from the set $\{1,2,3, \ldots, 365\}$ according to the uniform distribution. We will call this number their birthday.
(a) What is the probability that no two people share a birthday?
(b) Use a computer or calculator to evaluate your answer as a decimal for $n=22$ and $n=23$.
(2) Suppose $X \sim \operatorname{Poisson}(\lambda)$. By repeatedly differentiating the power series for e^{λ}, compute

$$
\mathbb{E}\{X(X-1)(X-2) \cdots(X+1-\ell)\}
$$

for each $\ell=1,2,3, \ldots$.
(3) Suppose $X \sim \operatorname{Binomial}(n, p)$. (a) By repeatedly differentiating the binomial identity compute

$$
\mathbb{E}\{X(X-1)(X-2) \cdots(X+1-\ell)\}
$$

for each $\ell=1,2,3, \ldots$.
(b) If $n \rightarrow \infty$ with $p=\lambda / n$ show that your answer converges to the answer to the preceding question.
(4) Suppose $X \sim \operatorname{Poisson}(\lambda)$. Compute the probability that X is even.
(5) We deal seven cards from a well-shuffled standard deck of 52 cards. Compute the PMF, mean, and variance of the number of aces dealt.
(6) We throw a die independently four times and let X denote the minimal value rolled.
(a) What is the probability that $X \geq 4$.
(b) Compute the PMF of X.
(c) Determine the mean and variance of X.
(7) Compute $\mathbb{E}\left(e^{t X}\right)$ as a function of $t \in \mathbb{R}$ when
(a) $X \sim \operatorname{Poisson}(\lambda)$,
(b) $X \sim \operatorname{Binomial}(n, p)$.
(8) Problem 20 from Chapter 2.

