1. (i). Define the greatest common divisor $gcd(a, b)$ of two non-zero integers a and b.

(ii). Show that if a is an odd integer and b is an even integer then $gcd(a, b) = gcd(a + b, a - b)$. Show that the statement may be false if a and b are both odd.

2. State the Chinese Remainder Theorem, and write down all integers x which satisfy the congruences $x \equiv 3 \pmod{17}$, $x \equiv 8 \pmod{13}$.

3. State the fundamental theorem of arithmetic. Using it prove that the equation $x^2 = 3$ has no solution in the rationals.

4. If n is a positive integer, and a_1, \cdots, a_{n+1} are $n + 1$ integers, then at least two of them are congruent to each other modulo n. Prove that there are n integers b_1, \cdots, b_n that are all incongruent modulo n.

5. When is a commutative ring R with unit different from zero said to be an integral domain? Prove that for a prime p, \mathbb{Z}_p is an integral domain.

6. Show that every non-zero element $x \in \mathbb{Z}_p$ has a multiplicative inverse, i.e. there is a $y \in \mathbb{Z}_p$ such that $xy = 1$.

7. Prove that if a, b are integers such that $gcd(a^3, b^3) = 1$ then $gcd(a, b)$ is also 1.

8. (i) If p_1, \cdots, p_r all > 3 are primes congruent to 3 modulo 4, show that $4p_1...p_r + 3$ is not divisible by any of the p_i, and nor by 3.

(ii) Prove that if a, b are integers with ab congruent to 3 modulo 4, then one of a or b is 3 modulo 4.

(iii) Deduce that there are infinitely many primes congruent to 3 modulo 4.
9. (i) Let \(G \) be an abelian group and let \(g, h \in G \) be elements of finite order. Let \(k \) denote the order of \(g \) and \(l \) denote the order of \(h \). Prove that if \(\gcd(k, l) = 1 \) then the order of \(gh \) is \(kl \).

(ii) Find the orders of 2 and 6 in \(\mathbb{Z}_{31}^* \). Use this and (i) to show that 12 is a primitive root modulo 31.

10. Show, by example, that there is a positive integer \(n \) such that there is no primitive root modulo \(n \).

11. Find all positive integers \(n \) such that \(|\mathbb{Z}_n^*| = 1000 \).

12. Let \(p \) and \(q \) be distinct odd primes and let \(a \) be an integer with \(\gcd(a, pq) = 1 \). Prove that if \(a \) is a quadratic residue modulo \(pq \), then the congruence \(x^2 \equiv a \pmod{pq} \) has four distinct solutions modulo \(pq \).

13. Does the polynomial \(x^2 + 10x + 1 \) have roots modulo 17? Justify your answer.

14. State Fermat’s little theorem. Using it, compute \(3^{1199} \mod 401 \). The answer should be a number between 0 and 400. (If you use that 401 is a prime, prove it!)

15. (i) State precisely the Chinese Remainder Theorem.

(ii) Given integers \(m, n > 1 \) with \(\gcd(m, n) > 1 \), show that there always exist integers \(a, b \) such that the simultaneous congruences \(x \equiv a \pmod{m}, x \equiv b \pmod{n} \) has no solutions with \(x \in \mathbb{Z} \). (This shows that a certain hypothesis in the statement of the Chinese Remainder Theorem cannot be weakened.)

16. Show that if the order of an element \(a \) in \(\mathbb{Z}_p^* \) is odd, then it is the square of an element in \(\mathbb{Z}_p^* \).

17. State Euler’s theorem, and using it compute \(2^{300} \mod 187 \).