
Optimization Integrator for Large Time Steps
Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M. Teran

Abstract—Practical time steps in today’s state-of-the-art simulators typically rely on Newton’s method to solve large systems of

nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate,

particularly for difficult or stiff simulations. We show that recasting backward Euler as a minimization problem allows Newton’s method

to be stabilized by standard optimization techniques with some novel improvements of our own. The resulting solver is capable of

solving even the toughest simulations at the 24Hz frame rate and beyond. We show how simple collisions can be incorporated directly

into the solver through constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for

self collisions and collisions against scripted bodies designed for the unique demands of this solver. Finally, we show that these

techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.

Index Terms—Computer graphics, three-dimensional graphics and realism, animation

Ç

1 INTRODUCTION

THE most commonly used time integration schemes in
use today for graphics applications are implicit methods.

Among these, backward Euler [1], [2], [3], [4], [5] or variants
on Newmark methods [6], [7], [8] are the most common,
though even more sophisticated schemes like BDF-2 [9], [10],
implicit-explicit schemes [11], [12], or even the more exotic
exponential integrators [13] have received consideration.
Integrators have been the subject of comparison before (see
for example [3], [9], [14]), seeking good compromises
between speed, accuracy, robustness, and dynamic behavior.

These integrators require the solution to one or more
nonlinear systems of equations each time step. These sys-
tems are typically solved by some variation on Newton’s
method. Even the most stable simulators are typically run
several time steps per 24Hz frame of simulation. There is
growing interest in running simulations at larger time steps
[15], so that the selection of Dt can be made based on other
factors, such as damping or runtime, and not only on
whether the simulator works at all. One of the major factors
that limits time step sizes is the inability of Newton’s
method to converge reliably at large time steps (See
Figs. 3, 2, and 4), or if a fixed number of Newton iterations
are taken, the stability of the resulting simulation. We
address this by formulating our nonlinear system of equa-
tions as a minimization problem, which we demonstrate
can be solved more robustly. The idea that dynamics,
energy, and minimization are related has been known
since antiquity and is commonly leveraged in variational

integrators [6], [12], [16], [17], [18], [19], [20]. The idea that
the nonlinear system that occurs from methods like back-
ward Euler can be formulated as a minimization problem has
appeared many times in graphics in various forms [2], [4], [5],
[13], [19]. [19] point out that minimization leads to a method
that is both simpler and faster than the equivalent nonlinear
root-finding problem, and [5] show that a minimization for-
mulation can be used to solve mass-spring systems more effi-
ciently. Kane et al. [17] use a minimization formulation as a
means of ensuring that a solution to their nonlinear system
can be found assuming one exists. Goldenthal et al. [21]
shows that a minimization formulation can be used to enforce
constraints robustly and efficiently. Hirotaet al. [2] shows that
supplementing Newton’s method with a line search greatly
improves robustness. Martin et al. [4] also shows that
supplementing Newton’s method with a line search and a
definiteness correction leads to a robust solution procedure.
Following their example, we show that recasting the solution
of the nonlinear systems that result from implicit time inte-
gration schemes as a nonlinear optimization problem results
in substantial robustness improvements. We also show that
additional improvements can be realized by incorporating
additional techniques like Wolfe condition line searches
which curve around collision bodies, conjugate gradient
with early termination on indefiniteness, and choosing
conjugate gradient tolerances based on the current degree of
convergence.

This publication is an extended version of [22] in which
we have applied the optimization integrator approach to
the MPM snow simulator of [23]. This allows us to take
much larger time steps than the original method and results
in a significant speedup.

2 TIME INTEGRATION

The equations of motion for simulating solids are

_xx ¼ vv MM _vv ¼ ff ff ¼ ffðxx; vvÞ;

where ff are forces. As is common in graphics we assume MM
is a diagonal lumped-mass matrix. Since we are interested

� T.F. Gast, C. Schroeder, and C. Jiang are with the University of California
Los Angeles, Los Angeles, CA 90095.
E-mail: {tfg, Craig}@math.ucla.edu, cffjiang@cs.ucla.edu.

� A. Stomakhin is with the Research, Walt Disney Animation Studios,
Burbank, CA. E-mail: st.alexey@gmail.com.

� J.M. Teran is with the University of California Los Angeles, Los Angeles,
CA 90095, and the Walt Disney Animation Studios, Burbank, CA.
E-mail: jteran@math.ucla.edu.

Manuscript received 13 Nov. 2014; revised 7 July 2015; accepted 12 July 2015.
Date of publication 21 July 2015; date of current version 4 Sept. 2015.
Recommended for acceptance by E. Sifakis and V. Koltun.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2015.2459687

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015 1103

1077-2626� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

in robustness and large time steps, we follow a backward
Euler discretization. This leads to

xxnþ1 � xxn

Dt
¼ vvnþ1 MM

vvnþ1 � vvn

Dt
¼ ffnþ1 ¼ ffðxxnþ1; vvnþ1Þ:

Eliminating vvnþ1 yields

MM
xxnþ1 � xxn � Dtvvn

Dt2
¼ ff xxnþ1;

xxnþ1 � xxn

Dt

� �
;

which is a nonlinear system of equations in the unknown
positions xxnþ1. This system of nonlinear equations is nor-
mally solved with Newton’s method. If we define

hhðxxnþ1Þ ¼ MM
xxnþ1 � xxn � Dtvvn

Dt2
� ff xxnþ1;

xxnþ1 � xxn

Dt

� �
; (1)

then our nonlinear problem is one of finding a solution to
hhðxxÞ ¼ 00. To do this, one would start with an initial guess

xxð0Þ, such as the value predicted by forward Euler. This esti-
mate is then iteratively improved using the update rule

xxðiþ1Þ ¼ xxðiÞ � @hh

@xx
ðxxðiÞÞ

� ��1

hhðxxðiÞÞ:

Each step requires the solution of a linear system, which is
usually symmetric and positive definite and solved with a
Krylov solver such as conjugate gradient or MINRES.

If the function hhðxxÞ is well-behaved and the initial
guess sufficiently close to the solution, Newton’s method
will converge very rapidly (quadratically). If the initial
guess is not close enough, Newton’s method may con-
verge slowly or not at all. For small enough time steps,
the forward and backward Euler time steps will be very

similar (they differ by OðDt2Þ), so a good initial guess is
available. For large time steps, forward Euler will be
unstable, so it will not provide a good initial guess. Fur-
ther, as the time step grows larger, Newton’s method
may become more sensitive to the initial guess (see
Fig. 1). The result is that Newton’s method will often fail
to converge if the time step is too large. Figs. 2, 3, and 4
show examples of simulations that ought to be routine
but where Newton fails to converge at Dt ¼ 1=24 s.

Sometimes, only one, or a small fixed number, of Newton
steps are taken rather than trying to solve the nonlinear
equation to a tolerance. The idea is that a small number of
Newton steps is sufficient to get most of the benefit from
doing an implicit method while limiting its cost. Indeed,
even a single Newton step with backward Euler can allow
time steps orders of magnitude higher than explicit meth-
ods. Linearizing the problem only goes so far, though, and
even these solvers tend to have time step restrictions for
tough problems.

2.1 Assumptions

We have found that when trying to be very robust,
assumptions matter. Before introducing our formulation
in detail, we begin by summarizing some idealized

Fig. 3. Cube being stretched: initial configuration (left), our method at
t ¼ 0:4 s and t ¼ 3:0 s (middle), and standard Newton’s method at
t ¼ 0:4 s and t ¼ 3:0 s (right). Both simulations were run with one time
step per 24Hz frame. Newton’s method requires three time steps per
frame to converge on this simple example.

Fig. 2. Cube being stretched and then given a small compressive pulse,
shown with our method (top) and standard Newton’s method (bottom).
Both simulations were run with one time step per 24Hz frame. In this sim-
ulation, Newton’s method is able to converge during the stretch phase,
but a simple pulse of compression, as would normally occur due to a colli-
sion, causes it to fail to converge and never recover. Newton’s method
requires five time steps per frame to converge on this simple example.

Fig. 4. Two spheres fall and collide with one another with Dt ¼ 1=24 s: ini-
tial configuration (left), our method (top), and Newton’s method (bottom).
Notice the artifacts caused by Newton not converging. Newton’s method
requires six time steps per frame to converge on this example.

Fig. 1. Convergence of Newton’s method (middle) and our stabilized
optimization formulation (bottom) for a simple 36-dof simulation in 2D.
The initial configuration (top) is parameterized in terms of a pixel loca-
tion, with the rest configuration occurring at ð35 ; 12Þ. Initial velocity is zero,
and one time step is attempted. Time steps are (left to right) 170, 40, 20,
10, and 1 steps per 24Hz frame, with the rightmost image being
Dt ¼ 1 s. Color indicates convergence in 0 iterations (black), 15 iterations
(blue), 30 or more iterations (cyan), or failure to converge in 500 itera-
tions (red). Note that Newton’s method tends to converge rapidly or not
at all, depending strongly on problem difficulty and initial guess.

1104 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

assumptions we will make. In practice, we will relax
some of these as we go along.

A1: Masses are positive
A2: ff ¼ � @F

@xx for some function F
A3: F is bounded from below
A4: F is C1

Assumption (A1) implies that MM is symmetric and posi-
tive definite and is useful for theoretical considerations;
scripted objects violate this assumption, but they do not
cause problems in practice.

Conservative forces always satisfy assumption (A2), and
most practical elastic force models will satisfy this. We will
show in Section 4.2 that even some damping models can be
put into the required form. Friction can be given an approxi-
mate potential which is valid for small Dt (See [24]). Since
our examples focus on taking larger time steps we address
the problem by incorporating friction explicitly after the
Newton solve.

Assumption (A3) is generally valid for constitutive
models, with the global minimum occurring at the rest
configuration. Gravity is an important example of a force
that violates this assumption. In Section 2.3, we show that
assumption (A3) can be safely relaxed to include forces
like gravity.

Assumption (A4) is a difficult assumption. Technically,
this assumption is a show-stopper, since we know of no
constitutive model that is both robust and satisfies it every-
where. To be practical, this must be immediately loosened
to C0, along with a restriction on the types of kinks that are
permitted in F. The practical aspects of this are discussed in
Section 3.3.

2.2 Minimization Problem

The solution to making Newton’s method converge reli-
ably is to recast the equation solving problem as an
optimization problem, for which robust and efficient
methods exist. In principle, that can always be done,
since solving hhðxxÞ ¼ 00 is equivalent to minimizing khhðxxÞk
assuming a solution exists. This approach is not very
convenient, though, since it requires a global minimum
of khhðxxÞk. Further minimization using Newton’s method
would require the Hessian of khhðxxÞk, which involves the
second derivatives of our forces. The standard approach
only requires first derivatives. What we really want is a
quantity E that we can minimize whose second deriva-
tives only require the first derivatives of our forces. That
is, we need to integrate our system of nonlinear equations
hhðxxÞ. Assumption (A2) allows us to do this. This way of
recasting the problem also requires only a local mini-
mum be found.

We can write (1) as

hhðxxÞ ¼ MM
xx� xxn � Dtvvn

Dt2
þ @F

@xx
:

We note that if we set

x̂x ¼ xxn þ Dtvvn EðxxÞ ¼ 1

2Dt2
ðxx� x̂xÞTMMðxx� x̂xÞ þF;

then we have hh ¼ @E
@xx. If the required assumptions are met, a

global minimum of E always exists.1 By assumption (A4),

Eðxxnþ1Þ is smooth at its minima, so @E
@xx ðxxnþ1Þ ¼ 00 or equiva-

lently hhðxxnþ1Þ ¼ 00.2 Any local minimum is a solution to our
original nonlinear equation (1). Although we are now doing
minimization rather than root finding, we are still solving
exactly the same equations. The discretization and dynam-
ics will be the same, but the solver will be more robust. In
particular, we are not making a quasistatic approximation.

2.3 Gravity

A graphics simulation would not be very useful without
gravity. Gravity has the potential energy function �MMggTxx,
where gg is the gravitational acceleration vector, but this
function is not bounded. An object can fall arbitrarily far
and liberate a limitless supply of energy, though in practice
this fall will be stopped by the ground or some other object.
Adding the gravity force to our nonlinear system yields

hhðxxÞ ¼ MM
xx� xxn � Dtvvn

Dt2
�MMggþ @F

@xx
;

which can be obtained from the bounded minimization
objective

EðxxÞ ¼ 1

2Dt2
ðxx� x̂x� Dt2ggÞTMMðxx� x̂x� Dt2ggÞ þF:

A more convenient choice of E, and the one we use in prac-
tice, is obtained by simply adding the effects of gravity

Fg ¼ �MMggTxx into F. Since all choices E will differ by a con-
stant shift, this more convenient minimization objective will
also be bounded from below.

3 MINIMIZATION

The heart of our simulator is our algorithm for solving opti-
mization problems, which we derived primarily from [25],
though most of the techniques we apply are well-known.
We begin by describing our method as it applies to uncon-
strained minimization and then show how to modify it to
handle the constrained case.

3.1 Unconstrained Minimization

Our optimization routine begins with an initial guess, xxð0Þ.
Each iteration consists of the following steps:

1)
$

Register active set
2) Compute gradient rE and Hessian HH of E at xxðiÞ

3) Terminate successfully if krEk < t

4) Compute Newton step Dxx ¼ �HH�1rE
5) Make sure Dxx is a downhill direction

1. Assumptions (A1) and (A3) ensure that E is bounded from below.
Let B be a lower bound on F. Then, let L ¼ Fðx̂xÞ �Bþ 1 and V be the

region where 1
2Dt2

ðxx� x̂xÞTMMðxx� x̂xÞ � L. Note that V is a closed and

bounded ellipsoid centered at x̂x. E must have a global minimum when
restricted to the set V since it is a continuous function on a closed and
bounded domain. Outside V, we have EðxxÞ > LþB ¼ Eðx̂xÞ þ 1, so
that the global minimum inside V is in fact a global minimum over all
possible values of xx.

2. Relaxation of assumption (A4) is discussed in Section 3.3, where
F is allowed to have ridge-type kinks. Since these can never occur at a
relative minimum, the conclusion here is unaffected.

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1105

6) Clamp the magnitude of Dxx to ‘ if kDxxk > ‘
7) Choose step size a in direction Dxx using a line search
8) Take the step: xxðiþ1Þ ¼ xxðiÞ þ aDxx
9)

$
Project xxðiþ1Þ.

Here, t is the termination criterion, which controls how
accurately the system must by solved. The length clamp ‘
guards against the possibility of the Newton step being

enormous (if kDxxk ¼ 10100, computing FðxxðiÞ þ DxxÞ is
unlikely to work well). Its value should be very large. Our
line search is capable of choosing a > 1, so the algorithm is
very insensitive with respect to the choice ‘. We normally

use ‘ ¼ 103. Steps beginning with
$

are only performed for
constrained optimization and will be discussed later. A few
of the remaining steps require further elaboration here.

Linear solver considerations. Computing the Newton step
requires solving a symmetric linear system. The obvious
candidate solver for this is MINRES that can handle indefi-
nite systems, and indeed this will work. However, there are
many tradeoffs to be made here. In contrast to a normal
Newton solve, an accurate estimate for Dxx is not necessary
for convergence. Indeed, we would still converge with high
probability if we chose Dxx to be a random vector. The point
of using the Newton direction is that convergence will
typically be much more rapid, particularly when the super-
convergence of Newton’s method kicks in. (Choosing
Dxx ¼ �rE leads to gradient descent, for example, which
can display notoriously poor convergence rates.) When the
current estimate is far from the solution, the exact Newton
direction tends to be little better than a very approximate
one. Thus, the idea is to spend little time on computing Dxx
when krEk is large and more time when it is small. We
do this by solving the system to a relative tolerance of

minð12 ; s
ffi
maxðkrEk; tÞp Þ. The 1

2 ensures that we always

reduce the residual by at least a constant factor, which guar-
antees convergence. The scale s adjusts for the fact that rE
is not unitless (we usually use s ¼ 1). If our initial guess is
naive, we must make sure we take at least one minimization
iteration, even if rE is very small. Using t here ensures that
we do not waste time solving to a tiny tolerance in this case.

Conjugate gradient. One further optimization is to use con-
jugate gradient as the solver with a zero initial guess. If
indefiniteness is encountered during the conjugate gradient
solve, return the last iterate computed. If this occurs on the
first step, return the right hand side. If this is done, Dxx is
guaranteed to be a downhill direction, though it might not
be sufficiently downhill for our purposes. In practice, indefi-
niteness will only occur if far from converged, in which case
little time is wasted in computing an accurate Dxx that is
unlikely to be very useful anyway. Indeed, if the system
is detectably indefinite and Dxx is computed exactly, it
might not even point downhill. Since we are searching
for a minimum of E (even a local one), the Hessian of E
will be symmetric and positive definite near this solution.
(Technically, it need only be positive semidefinite, but in
practice this is of little consequence.) Thus, when we are
close enough to the solution for an accurate Newton step
to be useful, conjugate gradient will suffice to compute it.
This is very different from the normal situation, where a
solver like MINRES or an indefiniteness correction are
employed to deal with the possibility of indefiniteness.

In the case of our solver, neither strategy is necessary,
and both make the algorithm slower.

Downhill direction. Making sure Dxx points downhill is
fairly straightforward. If Dxx � rE < �kkDxxkkrEk, then we
consider Dxx to be suitable. Otherwise, if �Dxx is suitable, use
it instead. If neither Dxx nor �Dxx are suitable, then we use
the gradient descent direction �rE. Note that if the conju-
gate gradient strategy is used for computing the Newton
direction, then �Dxx will never be chosen as the search direc-

tion at this stage. We have found k ¼ 10�2 to work well.
Line search. For our line search procedure, we use an algo-

rithm for computing a such that the strong Wolfe Conditions
are satisfied. See [25] for details. The line search procedure
guarantees that E never increases from one iteration to the
next and that, provided certain conditions are met, sufficient
progress is always made. One important attribute of this line
search algorithm is that it first checks to see if Dxx itself is a
suitable step. In this way, the line search is almost entirely
avoided when Newton is converging properly.

Initial guess. A good initial guess is important for efficient
simulation under normal circumstances. Under low-Dt or
low-stress conditions, a good initial guess is obtained by

replacing ffnþ1 by ffn resulting in

MM
xxð0Þ � xxn � Dtvvn

Dt2
¼ ffðxxnÞ:

Solving for xxnþ1 yields the initial guess

xxð0Þ ¼ xxn þ Dtvvn þ Dt2MM�1ffðxxnÞ:

This initial guess is particularly effective under free fall,
since here the initial guess is correct and no Newton itera-
tions are required. On the other hand, this initial guess is
the result of an explicit method, which will be unstable at
large time steps or high stress. Under these conditions, this
is unlikely to be a good initial guess and may in fact be very
far from the solution. Under these situations, a better initial
guess is obtained from xxð0Þ ¼ xxn þ Dtvvn. In practice, we
compute both initial guesses and choose the one which pro-
duces the smaller value of E. This way, we get competitive
performance under easy circumstances and rugged reliabil-
ity under tough circumstances.

3.2 Constrained Minimization

We use constrained minimization for some of our collisions,
which may result in a large active set of constraints, such as
when an ball is bouncing on the ground. As the ball rises, con-
straints become deactivated. As the ball hits the ground, more
constraints become activated. The change in the number of
active constraints from iteration to iteration may be quite sig-
nificant. This would render a traditional active set method
impractical, since constraints are activated or deactivated one
at a time. Instead, we use the gradient-projection method as
our starting point, since it allows the number of active con-
straints to change quickly. The downside to this choice is that
its reliance on the ability to efficiently project to the feasible
region limits its applicability to simple collision objects.

Projections. Let P ðxxÞ be the projection that applies Pbp to
xxp for all body-particle pairs ðb; pÞ that are labeled as active
or are violated (fbðxxpÞ < 0). Note that pairs such that

1106 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

fbðxxpÞ ¼ 0 (as would be the case once projected) are consid-

ered to be touching but not violated. The iterates xxðiÞ

obtained at the end of each Newton step, as well as the
initial guess, are projected with P .

Register active set. Let E0 be the objective that would be
computed in the unconstrained case. The objective function
for constrained optimization is EðxxÞ ¼ E0ðP ðxxÞÞ. Compute
the gradient rE0. Constraints that are touching and for
which rE0 � rfb � 0 are labeled as active for the remainder
of the Newton step. All others are labeled as inactive. No
constraint should be violated at this stage. Note that

E0ðxxðiÞÞ ¼ EðxxðiÞÞ is true before and after every Newton
step, since constraints are never violated there.

Curved paths. Note that configurations are always pro-
jected to the feasible region before E is computed. One may
interpret this as performing line searches along curved
paths, as illustrated is Fig. 5.

When the unprojected line search curve passes through
the medial axis of an object, it is possible for the search
curve to be disconnected. This causes a discontinuity in the
energy as seen from the line search. If the line search does
not stop at the discontinuity, the discontinuity has no effect.
If it does, the constraint causing the discontinuity will be
active (in which case the discontinuity is projected out) or
separating (in which case we move away from the disconti-
nuity) in the next Newton step. Thus a disconnected search
curve is not a problem for our method.

Discretized level sets. While discontinuities in the curved
paths do not pose a problem when the level set is computed
correctly, the situation can be quite different when the level
set is approximated. This occurs when a grid-based level set
is used to approximate a collision object. As a particle
moves from cell to cell, the level set approximation (and
thus projected location) changes slightly but unpredictably.
The resulting kinks or discontinuities in the search path pro-
duce kinks or discontinuities in the objective function along
the search line, which may cause the integrator to get stuck.
For this reason, we restrict our use of optimization con-
straints to analytic level sets.

Derivatives. Note also that E must be differentiated twice,
and that involves differentiating the projection function P
twice. Since P depends on the first derivatives of fb, the
Hessian HH of E would seem to require third derivatives.
We note, however, that the only occurrence of the third
derivative of fb occurs multiplied by fb. Since HH is used
only at the beginning of the Newton step when the configu-
ration is feasible, fbðxxpÞ ¼ 0 or Pbp is the identity function.

The third derivative term is zero either way, so only the
second derivatives of fb are required.

3.3 Practical Considerations

There are a few matters of practicality relating to assump-
tion (A4) that are worth mentioning regarding the effective
use of this method. The most important of these is that the
method does not tolerate discontinuities in E, not even very
minute ones, except under some special circumstances that
we mention below. In practice, what tends to happen is that
a line search encounters a discontinuity in E, where E rises
abruptly. The line search dutifully advances the configura-
tion right up to location of this discontinuity. If in the next
Newton iteration the descent direction points into the dis-
continuity, no progress can be made. The solver is stuck.

Discontinuities in rE can also cause problems and are
impossible to avoid in general. These are kinks in E, which
can be broken down into two types: valleys and ridges. The
classification is based on whether the kink is ridge-like or
valley-like. Ridge-type kinks are acceptable in practice.
Valley-type kinks must be avoided, since they can also
cause the solver to become stuck for the same reason. A
minimum that occurs at a valley-type kink is also problem-
atic since it does not correspond to a solution of (1). Thus,
the corotated constitutive model, though not completely
unusable with this solver, is ill-advised (the fixed variant
has no such valleys [26] and is fine). Mass-spring systems
are also fine. In practice, we have only encountered prob-
lems when evaluating self-collision models. The self-colli-
sion model we propose works well with the method.

The second practical consideration is that E can be some-
what noisy. This is particularly true with forces that involve
an SVD, since its computation often involves a balance
between speed and accuracy. If the Newton tolerance t is
set too low, the solver will be forced to optimize an objective
E where the actual change in E is hidden by the noise. Even
with our noisy SVD, we found there is typically at least a
three-order-of-magnitude range between the largest value
of t below which no change in output is visually observed
and the smallest value above which E is not too noisy to
optimize reliably. If we make the E computation robust, E
can be optimized down to roundoff level.

Another practical consideration is that occasionally very
large changes in the configuration are considered by the line
search. For most forces, this is of little consequence. For self-
collisions, however, this poses a major performance hazard.
We note that when this occurs, the other components of E
become very large, too. We first compute all contributions to
E except self-collisions. Since our self-collision potential has
a global minimum of zero, the real E will be at least as large

as the estimate. If this partial E is larger than EðxxðiÞÞ, we do
not compute self-collisions at all. While this presents a
discontinuity in E to the optimizer, it is safe to do so under
these conditions, since the optimizer will avoid the large
value in E by taking a smaller step along the search line.

4 FORCES

Our formulation is fairly insensitive to the underlying
forces, provided it has a continuous potential energy func-
tion. We use five forces in our simulations. The simplest of

Fig. 5. Line search showing the gradient descent direction (green), New-
ton direction (red), and effective line search path (blue). The constraint
is initially feasible (left), active (middle), and touching but inactive (right).
Constraints are projected if violated or active, but only inactive
constraints may separate.

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1107

these is gravity, which we addressed in Section 2.2. We also
employ a hyperelastic constitutive model (Section 4.1), a
Rayleigh damping model (Section 4.2), and two collision
penalty force models (Sections 5.2 and 5.3).

4.1 Elastic

A suitable hyperelastic constitutive model must have a
few key properties to be suitable for this integrator. The
most important is that it must have a potential energy
function defined everywhere, and this function must be
continuous. The constitutive model must be well-defined
for any configuration, including configurations that are
degenerate or inverted. This is true even if objects do not
invert during the simulation, since the minimization pro-
cedure may still encounter such states. Examples of suit-
able constitutive models are those defined by the
corotated hyperelasticity energy [27], [28], [29], [30], [31],
[32] (but see Section 3.3), and the fixed corotated hypere-
lasticity variant [26]. Stress-based extrapolated models
[33], [34] are unsuitable due to the lack of a potential
energy function in the extrapolated regime, but energy-
based extrapolation models [26] are fine. We use the fixed
corotated variant [26] for all of our simulations for its
combination of simplicity and robustness.

4.2 Damping

At first, one might conclude that requiring a potential
energy may limit our method’s applicability, since damping
forces cannot be defined by a potential energy function. A
very simple damping model is given by ff ¼ �kMMvvnþ1.
Eliminating the velocity from the equation yields

ffðxxnþ1Þ ¼ �kMM
xxnþ1 � xxn

Dt
ðk > 0Þ:

The scalar function

Fðxxnþ1Þ ¼ k

2Dt
ðxxnþ1 � xxnÞTMMðxxnþ1 � xxnÞ

has the necessary property that ff ¼ � @F
@xx. Note that this F

looks very similar to our inertial term in E, and it is simi-
larly bounded from below. That this F is not a real potential
energy function is evident from its dependence on xxn and
Dt, but it is nevertheless suitable for use in our integrator.
This simple drag force is not very realistic, though, so we do
not use it in our simulations.

A more realistic damping force is Rayleigh damping. Let
c be an elastic potential energy function. The stiffness

matrix corresponding to this force is � @2c
@xx@xx, and the Rayleigh

damping force and associated objective are

ff ¼ �k
@2c

@xx@xx
ðxxnþ1Þ

� �
vvnþ1 Fc ¼ k

Dt
ðxxnþ1 � xxnÞT @c

@xx
� c

� �
:

This candidate Fc has at least two serious problems. The
first is that second derivatives of Fc involve third deriva-

tives of c. The second is that @2c
@xx@xx may be indefinite, in

which case the damping force may not be entirely
dissipative. Instead, we approximate Rayleigh damping

with a lagged version. Let DD ¼ @2c
@xx@xx ðxxnÞ. Since DD does not

depend on xxnþ1, the lagged Rayleigh damping force

and associated objective are

ff ¼ �kDDvvnþ1 Fd ¼ k

2Dt
ðxxnþ1 � xxnÞTDDðxxnþ1 � xxnÞ:

This solves the first problem, since the second derivative of

Fd is just k
Dt DD. Since DD is not being differentiated, it is safe

to modify it to eliminate indefiniteness as described in [26],
[34]. This addresses the second problem. We did not use the

damping model found in [35], which uses cðxxnþ1Þ with xxn

used as the rest configuration, because it is not defined
when xxn is degenerate.

5 COLLISIONS

Collisions are a necessary part of any practical computer
graphics simulator. The simplest approach to handling
collisions is to process them as a separate step in the time
integration scheme. This works well for small time steps,
but it causes problems when used with large time steps
as seen in Fig. 10. Such arrangement often leads to the
collision step flattening objects to remove penetration and
the elastic solver restoring the flattened geometry by
pushing it into the colliding object. To get around this
problem, the backward Euler solver needs to be aware of
collisions. A well-tested strategy for doing this is to use
penalty collisions, and we do this for two of our three
collision processing techniques. Our other approach is to
add position constraints to the nonlinear solve.

Fig. 11 uses constraints for all collision body collisions
and demonstrates that our constraint collisions are effec-
tive with concave and convex constraint manifolds. Fig. 13
demonstrates our constraint collisions are effective for
objects with sharp corners. Fig. 7 is a classical torus drop
demonstrating that our self collisions are effective at stop-
ping collisions at the torus’s hole. Fig. 12 demonstrates our
self collisions method with stiffer deformable bodies with
sharp corners. Finally, Fig. 9 shows a more practical exam-
ple which uses all three types of collisions: self collisions,
constraint collisions (with ground) and penalty collisions
(against a bowl defined by a grid-based level set).

5.1 Object Collisions As Constraints

Our first collision processing technique takes advantage
of our minimization framework to treat collisions with
non-simulated objects as inequality constraints. Treating
collisions or contacts as constraints is not new and in
fact forms the basis for LCP formulations such as [36],
[37]. Unlike LCP formulations, however, our formulation
does not attempt to be as complete and as a result
can be solved about as efficiently as a simple penalty
formulation.

Our constraint collision formulation works reliably when
the level set is known analytically. This limits its applicabil-
ity to analytic collision objects. While this approach is feasi-
ble only under limited circumstances, these circumstances
occur frequently in practice. When this approach is applica-
ble, it is our method of choice, since it produces better
results (e.g., no interpenetration) for similar cost. When
this formulation is not applicable, we use a penalty collision
formulation instead.

1108 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

We begin by representing our collision objects (indexed
with b) by a level set, which we denote fb to avoid confusion
with potential energy. By convention, fbðxxÞ < 0 for points xx
in the interior of the collision object b. Our collision con-

straint is simply that fbðxxnþ1
p Þ � 0 for each simulation

particle p and every constraint collision object b. With such a
formulation, we can project a particle at xxp to the closest
point xx0

p on the constraint manifold using

xx0
p ¼ PbpðxxpÞ ¼ xxp � fbðxxpÞrfbðxxpÞ:

We show how to solve the resulting minimization problem
in Section 3.2.

We apply friction after the Newton solve. The total colli-
sion force felt by particles is

Dtffcol ¼ rE0ðxxnþ1Þ � rEðxxnþ1Þ ¼ rE0ðxxnþ1Þ � rE0ðP ðxxnþ1ÞÞ;
where E0 is the objective in the absence of constraints (See
Section 3.2). Only collision pairs that are active at the end of
the minimization will be applying such forces. We use the
level set’s normal and the collision force to apply Coulomb
friction to colliding particles. In particular, we use the rule

(vvnþ1
p ! v̂vnþ1

p)

nn ¼ rf vvnþ1
p;n ¼ nn � vvnþ1

p

� �
nn vvnþ1

p;t ¼ vvnþ1
p � vvnþ1

p;n

v̂vnþ1
p ¼ vvnþ1

p;n þmax 1� mDtðnn � ffp;colÞ
mkvvp;tk ; 0

� �
vvnþ1
p;t :

Our constraint collision formulation is not directly appli-
cable to grid-based level sets, since we assume that
PbpðPbpðxxpÞÞ ¼ PbpðxxpÞ and PbpðxÞ is continuous. Continuity

of PbpðxÞ can be achieved, for example, with C1 cubic spline
level set interpolation. However, it will not generally be
true that PbpðPbpðxxpÞÞ ¼ PbpðxxpÞ. Alternatively, the projection
routine can be modified to iterate the projection to conver-
gence, but then continuity is lost.

5.2 Object Penalty Collisions

When a collision object is not analytic, as will normally
be the case for characters for instance, we use a penalty
formulation instead. As in the constraint formulation, we
assume our collision object is represented by a level set
fb. The elastic potential energy FbpðxxpÞ of our penalty

force is FbpðxxÞ ¼ 0 if fbðxxpÞ > 0 and FbpðxxpÞ ¼ kfbðxxpÞ3
otherwise. Since Fbp is a potential energy, we must dif-
ferentiate it twice for our solver. It is important to com-
pute the derivatives of fb exactly by differentiating the
interpolation routine rather than approximating them

using central differences. While a C1 cubic spline inter-
polation is probably a wiser interpolation strategy since
it would avoid the energy kinks that may be caused by a
piecewise linear encoding of the level set, we found lin-
ear interpolation to work well, too, and we use linear
interpolation in our examples.

As in the constraint case, we apply friction after the New-
ton solve. The total collision force felt by a particle due to
object penalty collisions is obtained by evaluating the pen-
alty force at xxnþ1 and using this force as the normal direc-
tion. That is,

ffcol ¼ � @Fbp

@xx
ðxxnþ1Þ fp;n ¼ kffp;colk nn ¼ ffp;col

fp;n

vvnþ1
p;n ¼ nn � vvnþ1

p

� �
nn vvnþ1

p;t ¼ vvnþ1
p � vvnþ1

p;n

v̂vnþ1
p ¼ vvnþ1

p;n þmax 1� mDtfp;n
mkvvp;tk ; 0

� �
vvnþ1
p;t :

5.3 Penalty Self-Collisions

We detect self-collisions by performing point-tetrahedron
inclusion tests, which we accelerate with a bounding box
hierarchy. If a point is found to be inside a tetrahedron but
not one of the vertices of that tetrahedron, then we flag the
particle as colliding.

Once we know a particle is involved in a self collision, we
need an estimate for how close the particle is to the bound-
ary. If this particle has collided before, we use the primitive
it last collided with as our estimate. Otherwise, we compute
the approximate closest primitive in the rest configuration
using a level set and use the current distance to this surface
element as an estimate.

Given this upper bound estimate of the distance to the
boundary, we perform a bounding box search to conser-
vatively return all surface primitives within that distance.
We check these candidates to find the closest one. Now
we have a point-primitive pair, where the primitive is the
surface triangle, edge, or vertex that is closest to the point
being processed. Let d be the square of the point-primi-
tive distance. The penalty collision energy for this point is

F ¼ kd
ffiffiffiffiffiffiffiffiffiffiffi
dþ �

p
, where � is a small number (10�15 in our

case) to prevent the singularities when differentiating.
Note that this penalty function is approximately cubic in
the penetration depth. This final step is the only part that
must be differentiated.

As with the other two collision models, we apply fric-
tion after the Newton solve. In the most general case, a
point n0 collides with a surface triangle with vertices n1,
n2, and n3. As with the object penalty collision model, col-

lision forces are computed by evaluating Fðxxnþ1Þ and its
derivative. The force applied to n0 is denoted ff ; its direc-
tion is taken to be the normal direction nn. The closest
point on the triangle to n0 has barycentric weights w1, w2,

and w3. Let w0 ¼ �1 for convenience. Let QQ ¼ II � nnnnT ,

noting than QQ2 ¼ QQ. If we apply a tangential impulse QQjj
to these particles, their new velocities and kinetic energy
will be

v̂vnþ1
ni

¼ vvnþ1
ni

þ wim
�1
ni
QQjj KE ¼

X3
n¼0

1

2
mni v̂vnþ1

ni

� �T

v̂vnþ1
ni

:

We want to minimize this kinetic energy to prevent friction
from causing instability. Since M is positive definite, we see
that KE is minimized when

rKE ¼ QQvvþm�1QQjj ¼ 0vv ¼
X3
n¼0

wivv
nþ1
ni

m�1 ¼
X3
n¼0

wim
�1
ni
wi:

If we let jj ¼ �mQQvv then rKE ¼ 0 and QQjj ¼ jj. This leads to
the friction application rule

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1109

v̂vnþ1
ni

¼ vvnþ1
ni

þ wim
�1
ni
min

mkffk
kjjk ; 1

� �
jj:

Note that all three friction algorithms decrease kinetic
energy but do not modify positions, so none of them can
add energy to the system, and thus stability ramifications
are unlikely even though friction is applied explicitly.
This approach to friction can have artifacts, however,
since friction will be limited to removing kinetic energy
from colliding particles. This limits the amount of friction
that can be applied at large time steps. An approach simi-
lar to the one in [36] that uses successive Quadratic Pro-
gramming solves could possibly be applied to eliminate
these artifacts. However [38] found existing large-scale
sparse QP solvers to be insufficiently robust, and thus we
did not use this method.

6 ACCELERATING MATERIAL POINT METHOD

(MPM)

In this section we describe the application of this optimi-
zation approach to the snow simulation from [23]. Their
approach to simulating snow uses the material point
method, a hybrid Eulerian-Lagrangian formulation that
uses unstructured particles as the primary representation
and a background grid for applying forces. They used an
energy-based formulation to facilitate a semi-implicit
treatment of MPM. While this leads to a significant time
step improvement over more standard explicit treat-
ments, it still requires a small time step in practice to
remain stable. We show how to modify their original for-
mulation so that we are able to take time steps on the
order of the CFL condition. We also provide an improved
treatment of collisions with solid bodies that naturally
handles them as constraints in the optimization.
Although the optimization solve is for grid velocities, we
show that a backward Euler (rather than forward Euler)
update of particle positions in the grid based velocity
field automatically guarantees no particles penetrate
solid bodies. In addition to the significantly improved
stability, we demonstrate in Section 7.1 that in many
cases a worthwhile speedup can be obtained with our
new formulation.

6.1 Revised MPM Time Integration

In [23, Section 4.1], the original method is broken down into
10 steps. From the original method, Steps 3-6 and 9-10 are
modified. We begin by summarizing these steps as they
apply to our optimization-based MPM integrator.

1) Rasterize particle data to the grid. First, mass and

momentum are transferred from particles to the grid

using mn
ii ¼ P

p mpw
n
iip and mn

ii vv
n
ii ¼ P

p vv
n
pmpw

n
iip.

Velocity is then obtained by division using
vvnii ¼ mn

ii vv
n
ii =m

n
ii . Transferring velocity in this way

conserves momentum.
2) Compute particle volumes. First time step only. Our

force discretization requires a notion of a particle’s
volume in the initial configuration. Since cells have
a well-defined notion of volume and mass, we can
estimate a cell’s density as r0ii ¼ m0

ii =h
3 and

interpolate it back to the particle as r0p ¼
P

ii r
0
iiw

0
iip.

Finally, we can define a particle’s volume to be

V 0
p ¼ mp=r

0
p. Though rather indirect, this approach

automatically provides an estimate of the amount
of volume that can be attributed to individual
particles.

3) Solve the optimization problem. Minimize the objective
(2) using the methods of Section 3. This produces a
new velocity estimate vvnþ1

ii on the grid. This step
replaces Steps 3-6 of the original method.

4) Update deformation gradient. The deformation gradi-
ent for each particle is updated as FFnþ1

p ¼ ðIIþ
Dtrvvnþ1

p ÞFFn
p , where we have computed rvvnþ1

p ¼P
ii vv

nþ1
ii ðrwn

iipÞT . Note that this involves updates for

the elastic and plastic parts of FF . See [23] for details,
as they are unchanged.

5) Update particle velocities. Our new particle velocities
are vvnþ1

p ¼ ð1� aÞvvnþ1
PICp þ avvnþ1

FLIPp, where the PIC

part is vvnþ1
PICp ¼

P
ii vv

nþ1
ii wn

iip and the FLIP part is

vvnþ1
FLIPp ¼ vvnp þ

P
iiðvvnþ1

ii � vvnii Þwn
iip. We typically used

a ¼ 0:95.
6) Update particle positions. Particle positions are

updated using xxnþ1
p ¼ xxn

p þ Dtvvðxxnþ1
p Þ as described in

Section 6.3. This step replaces steps 9-10 of the origi-
nal method.

6.2 Optimization Formulation

The primary modification that we propose is to use the
optimization framework in place of the original solver.
For this, we must formulate their update in terms of
an optimization objective E. The original formulation
defined the potential energy FðxxiiÞ conceptually in terms
of the grid node locations xxii. Here we use the index ii to
refer to grid node indices. Their grid is a fixed Cartesian

grid and never moves, and they solve for vvnþ1
ii . We will

follow the same conceptual formulation here. This leads
to the objective

EðvviiÞ ¼
X
ii

1

2
miikvvii � vvnii k2 þF xxn

ii þ Dtvvii
� �

; (2)

where mii is the mass assigned to grid index ii. Our final

vvnþ1
ii is computed so that Eðvvnþ1

ii Þ is minimized. We solve
this minimization problem as in Section 3. Note that we
apply plasticity explicitly as in the original formulation.

Using larger time steps causes our linear systems to
become slower to solve. In the case of MPM, we found it
beneficial to use the diagonal preconditioner

LLiiii ¼
X
p

diag mpwiipII þ Dt2V 0
p HH

� �
;

where

HH ¼ ð�p þ mpÞrwiiprwT
iip þ mprwT

iiprwiipII:

This preconditioner approximates the diagonal of the stiff-
ness matrix at the rest configuration. This works well since
snow is unable to deform much without hardening or frac-
turing. We use an approximation to the diagonal, rather

1110 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

than the exact diagonal, because we never explicitly form
the matrix. This approximation suffices for preconditioning
and is more efficient.

The original method performed solid body collisions
while computing new grid velocities. We treat body col-
lisions using constraints in our optimization problem.
We assume sticking collisions and let P ðvviiÞ ¼ 00 for all
grid nodes ii that lie inside a collision object. Note that
we do not permit separation during optimization,
though separation may occur during other steps in the
algorithm.

6.3 Particle Position Update

One of the difficulties with running the method of [23] with
larger time steps is the particle-based solid body collisions.
They were needed under the old formulation to prevent set-
tling into the ground, but at the same time they cause
bunching of particles at collision objects. These problems
are exacerbated at larger time steps, and another approach
is required. Instead, we show that altering the way we
update particle positions can avoid the need for a separate
particle collision step.

For each particle position xxp we solve the backward Euler
update equation

xxnþ1
p ¼ xxnp þ Dtvv xxnþ1

p

� �
vvðxxnþ1

p Þ ¼
X
ii

vvnþ1
ii Nh

ii ðxxpÞ;

where vvðxxnþ1
p Þ is the interpolated grid velocity at the par-

ticle location xxnþ1
p . These updates are independent per

particle and so are relatively inexpensive. A solution to
this backward Euler equation always exists nearby pro-
vided a suitable CFL condition is respected (no particle
moves more than Dxx in a time step). Note that pure PIC
velocities are used in the particle position updates. While
a combination of FLIP/PIC is still stored on particles (to
avoid excessive dissipation in subsequent transfer to
grid), PIC velocities for position updates lead to more
stable behavior.

The motivation for our modification can be best under-
stood in the case of sticking collisions. Inside a collision
object, we will have vvnþ1

ii ¼ 00 due to the collision constraints
imposed during optimization. If we then assume that we

will interpolate vvðxxnþ1
p Þ ¼ 00 here, then we can see from

xxnþ1
p ¼ xxn

p þ Dtvvðxxnþ1
p Þ that xxnþ1

p ¼ xxn
p . Note that if a particle

ends up inside the collision object, then it must have already
been there. Thus, it is not possible for particles to penetrate

collision objects. In our implementation, vvðxxnþ1
p Þ ¼ 00 will

only be true if we are slightly inside collision objects, but in
practice this procedure actually stops particles slightly out-
side collision objects.

We solve this equation with Newton’s method. Since
Newton’s method need not converge, some care is
required, though in practice nothing as sophisticated as
Section 3 is needed. We always use the Newton direction
but repeatedly halve the length of the Newton step
until the objective E ¼ kxxnþ1

p � xxn
p � Dtvvðxxnþ1

p Þk no longer
increases. (If halving the step size 14 times does not suf-
fice, we take the reduced step anyway.) Typically, only
one Newton step is required for convergence. We have
never observed this to fail.

We use a quadratic spline rather than the cubic of
the original formulation to reduce stencil width and
improve the effectiveness of the modified position
update. That is, we let

NðxÞ ¼
�x2 jxj < 1

2 ;
1
2x

2 � 3
2 jxj þ 9

8
1
2 � jxj < 3

2 ;
0 jxj � 3

2 :

8<
:

Using a quadratic stencil also has the advantage of being
more efficient. We do not use a linear spline since it is not
smooth enough for Newton’s method to be effective in the
particle position update.

Since MPM involves a grid, we limit our time step so that
particles do not travel more that one grid spacing per time
step. That is, we choose Dt so that n Dxx

Dt � maxpkvvnpk for
some n < 1. We chose n ¼ 0:6 for our examples. Although
the time step restriction is computed based on vvnp rather

than vvnþ1
p , this suffices in practice.

7 RESULTS

We begin by demonstrating how robust our solver is by
considering the two most difficult constitutive model
tests we are aware of: total randomness and total degen-
eracy. The attributes that make them tough constitutive
model tests also make them tough solver tests: high
stress, terrible initial guess, tangled configurations, and
the need to dissipate massive amounts of unwanted
energy. Fig. 6 shows the recovery of a 65� 65� 65 cube
(824k dofs) from a randomized initial configuration for

Fig. 7. A torus falls on the ground (constraint collisions) and collides with itself (penalty collisions).

Fig. 6. Random test with 65� 65� 65 particles simulated with
Dt ¼ 1=24 s for three stiffnesses: low stiffness recovering over 100 time
steps (top), medium stiffness recovering over 40 time steps (bottom
left), and high stiffness recovering in a single time step (bottom right).
The red tetrahedra are inverted, while the green are uninverted.

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1111

three different stiffnesses with Dt ¼ 1=24 s. Fig. 8 repeats
the tests with all points starting at the origin. The recov-
ery times vary from about 3 s for the softest to a single
time step for the stiffest. We were surprised to find that
a single step of backward Euler could untangle a ran-
domized cube, even at high resolution.

7.1 MPM Results

We demonstrate the advantages of using our optimiza-
tion integrator by applying it to the MPM snow formula-
tion from [23]. We run three examples using both the
original formulation and our modified formulation. We
compare with the snowball examples from the original
paper. In each case, for our formulation we use the CFL
n ¼ 0:6. Fig. 17 shows a snowball hitting a wall using
sticky collisions, which causes the snow to stick to the
wall. Fig. 14 shows a dropped snowball hitting the
ground with sticky collisions. Fig. 16 shows two snow-
balls colliding in mid air with sticky collisions against
the ground. On average, we get a speed up of 3.5 times
over the original method. These results are tabulated in

Fig. 18. Notably, we are able to take significantly larger
time steps, however some of the potential gains from
this are lost to an increased complexity per time step.
Nonetheless, we provide a significant computational sav-
ings with minimal modification to the original approach.

8 CONCLUSIONS

We have demonstrated that backward Euler solved with
Newton’s method can be made more robust by recasting
the resulting system of nonlinear equations as a nonlinear
optimization problem so that robust optimization techni-
ques can be employed. The resulting method is extremely
robust to large time step sizes, high stress, and tangled
configurations.

Fig. 8. Point test with 65� 65� 65 particles simulated with Dt ¼ 1=24 s
for three stiffnesses: low stiffness recovering over 120 time steps (top),
medium stiffness recovering in five time steps (bottom left), and high
stiffness recovering in a single time step (bottom right).

Fig. 9. 125 tori are dropped into a bowl at five time steps per frame, resulting in significant deformation and tough collisions.

Fig. 10. Sphere dropping hard on the ground with Dt ¼ 1=24 s with constraint collisions (top) and collisions as a post-process (bottom). Penalty
collisions produce a result very similar to constraint collisions, though some penetration with the ground occurs. Note that the post-processing
approach leads to inversion during recovery from the collision.

Fig. 11. A torus is pushed through a hole (constraint collisions).

1112 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

Runtimes and other performance-related information for
all of our sims are provided in Fig. 15. All Lagrangian simu-
lations were run single-threaded on a 3:1-3:5GHz Xeon
core, the MPM simulations were run with 10 threads for
Fig. 16 and 12 threads for Fig. 14 and 17. Our solver’s perfor-
mance is competitive with a standard Newton solver for
those examples where both were run. In general, we take
more Newton steps but spend less time on each, and the
resulting runtime for typical examples is about the same for
the two solvers, though our solver is faster for all of the dif-
ficult examples in this paper. Taking a large time step size

can actually be slower than taking a smaller one, even with
the same solver. For time integrators (like backward Euler)
that have a significant amount of damping at large time
steps, constitutive models are often tuned to take into
account the numerical damping. If the integrator is forced
to simulate a portion of a simulation at a smaller time step,
the dynamic behavior can change noticeably. Solving with
constraints is about the same speed as using penalty
collisions.

Note that Figs. 9 and 7 were run with smaller time
steps sizes to avoid collision artifacts. This indicates that
a self-collision scheme that is more tolerant of large time
steps is required. The scheme does not have problems
with collisions between different objects at the frame rate
as long as they are not too thin. Continuous collision
detection could perhaps be used. We leave both of these
problems for future work.

The current method has a couple disadvantages com-
pared with current techniques. It requires a potential

Fig. 12. A stack of deformable boxes of varying stiffness is struck with
a rigid kinematic cube (constraint collisions) with Dt ¼ 1=24 s. The
green boxes are 10 times as stiff as the blue boxes.

Fig. 13. An armadillo is squeezed between 32 rigid cubes (constraint col-
lisions) with Dt ¼ 1=24 s. When this torture test is run at one, two, four
and eight steps per frame the average runtime per frame is 46, 58, 88,
and 117 seconds respectively.

Fig. 14. Our approach works naturally with the material point method simulations from [23]. Here we demonstrate with a snowball that drops to the
ground and fractures. Notably, we provide a new treatment of particle position updates that naturally prevents penetration in solid objects like the
ground.

Fig. 15. Time step sizes and average running times for the examples in
the paper. The last column shows the average number of linear solves
per time step. Each of the Newton’s method examples fails to converge
at the frame rate. For fairer comparison, timing information for all but the
one marked � is shown at the frame rate and the stable time step size.
The stress tests marked þ spend the majority of their time on the first
frame or two due to the difficult initial state.

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1113

energy to exist (which is how most constitutive models
are defined anyway) and is sensitive to discontinuities in
this energy. The method also occasionally fails to make
progress due to valley shaped kinks in our collision
processing. In practice, this only occurs when the system
is already fairly close to a solution, since otherwise any
energy kinks are overwhelmed by the strong gradients
in the objective. From a practical perspective, this means
this sort of breakdown can be dealt with by simply
ignoring it. This does, however, prevent the method
from being absolutely robust. We leave this weakness to
be addressed in future work.

Our method was derived and implemented on top of a
backward Euler integrator, which is known for being
very stable but quite damped. The nonlinear system of
equations for other A-stable integrators such as trapezoid
rule and BDF-2 can also be readily converted into minimi-
zation form and solved similarly. Being second order
schemes, their use would reduce damping at large time
steps, though trapezoid rule’s oscillatory properties
should be taken into account.

ACKNOWLEDGMENTS

The authors would like to acknowledge Shunsuke Saito
and Yuwei Jiang for their suggestions regarding optimiza-
tion. They were partially supported by the US National
Science Foundation (NSF) (CCF-1422795), the US

Department of Energy (DOE) (09-LR-04-116741-BERA),
ONR (N000140310071, N000141010730, N000141210834)
and Intel STCVisual Computing Grant (20112360).

REFERENCES

[1] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proc.
SIGGRAPH, 1998, pp. 43–54.

[2] G. Hirota, S. Fisher, C. Lee, H. Fuchs et al.,, “An implicit finite ele-
ment method for elastic solids in contact,” in Proc. 14th Conf. Com-
put. Animation, 2001, pp. 136–254.

[3] P. Volino and N. Magnenat-Thalmann, “Comparing efficiency of
integration methods for cloth simulation,” in Proc. Comput. Graph.
Int., 2001, pp. 265–272.

[4] S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross,
“Example-based elastic materials,” ACM Trans. Graph., vol. 30,
no. 4, p. 72, 2011.

[5] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, “Fast simulation
of mass-spring systems,” ACM Trans. Graph., vol. 32, no. 6, p. 214,
2013.

[6] C. Kane, “Variational integrators and the newmark algorithm for
conservative and dissipative mechanical systems,” Ph.D. disserta-
tion, Caltech, Pasadena, CA, USA, 1999.

[7] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of col-
lisions, contact and friction for cloth animation,” ACM Trans.
Graph., vol. 21, no. 3, pp. 594–603, 2002.

[8] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of clothing
with folds and wrinkles,” in Proc. Symp. Comput. Animation, 2003,
pp. 28–36.

[9] M. Hauth and O. Etzmuss, “A high performance solver for the
animation of deformable objects using advanced numerical meth-
ods,” Comput. Graph. Forum, vol. 20, no. 3, pp. 319–328, 2001.

[10] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” in Proc.
ACM SIGGRAPH Courses, 2005, p. 1.

Fig. 18. Performance comparison of our modified MPM snow formulation (“Ours”) with the original formulation (“Orig”).

Fig. 16. The extension of our method to [23] is robust to large deformation and collisions scenarios. Here we demonstrate this for with two snowballs
that smash into each other and fall to the ground.

Fig. 17. A snowball smashes into a wall and sticks to it.

1114 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015

[11] B. Eberhardt, O. Etzmuß, and M. Hauth, Implicit-Explicit Schemes
for Fast Animation with Particle Systems. New York, NY, USA:
Springer, 2000.

[12] A. Stern and E. Grinspun, “Implicit-explicit variational integration
of highly oscillatory problems,” Multiscale Model. Simul., vol. 7,
no. 4, pp. 1779–1794, 2009.

[13] D. Michels, G. Sobottka, and A. Weber, “Exponential integrators
for stiff elastodynamic problems,” ACM Trans. Graph., vol. 33,
pp. 7:1–7:20, 2013.

[14] D. Parks and D. Forsyth, “Improved integration for cloth simu-
lation,” in Proc. Eurographics, 2002, http://diglib2.eg.org/EG/
DL/Conf/EG2002/short

[15] J. Su, R. Sheth, and R. Fedkiw, “Energy conservation for the simu-
lation of deformable bodies,” IEEE Trans. Vis. Comput. Graph.,
vol. 19, no. 2, pp. 189–200, Feb. 2013.

[16] J. C. Simo, N. Tarnow, and K. Wong, “Exact energy-momentum
conserving algorithms and symplectic schemes for nonlinear
dynamics,” Comput. Methods Appl. Mech. Eng., vol. 100, no. 1,
pp. 63–116, 1992.

[17] C. Kane, J. E. Marsden, and M. Ortiz, “Symplectic-energy-momen-
tum preserving variational integrators,” J. Math. Phys., vol. 40,
p. 3353, 1999.

[18] A. Lew, J. Marsden, M. Ortiz, and M. West, “Variational time inte-
grators,” Int. J. Num. Meth. Eng., vol. 60, no. 1, pp. 153–212, 2004.

[19] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P.
Schr€oder, and M. Desbrun, “Geometric, variational integrators for
computer animation,” in Proc. Symp. Comput. Animation, 2006,
pp. 43–51.

[20] M. Gonzalez, B. Schmidt, and M. Ortiz, “Force-stepping integra-
tors in lagrangian mechanics,” Int. J. Num. Meth. Eng., vol. 84,
no. 12, pp. 1407–1450, 2010.

[21] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grins-
pun, “Efficient simulation of inextensible cloth,” ACM Trans.
Graph., vol. 26, no. 3, p. 49, 2007.

[22] T. F. Gast and C. Schroeder, “Optimization integrator for large
time steps,” in Proc. Eurograph./ACM SIGGRAPH Symp. Comput.
Animation, pp. 31–40, 2014.

[23] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, “A
material point method for snow simulation,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 102:1–102:10, Jul. 2013.

[24] A. Pandolfi, C. Kane, J. Marsden, and M. Ortiz, “Time-discretized
variational formulation of non-smooth frictional contact,” Intl. J.
Num. Meth. Engng., vol. 53, pp. 1801–1829, 2002.

[25] J. Nocedal and S. Wright, Numerical Optimization, series Springer
series in operations research and financial engineering. New
York, NY, USA: Springer, 2006.

[26] A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran,
“Energetically consistent invertible elasticity,” in Proc. Symp. Com-
put. Animation, 2012, pp. 25–32.

[27] R. Schmedding and M. Teschner, “Inversion handling for stable
deformable modeling,” Vis. Comput., vol. 24, pp. 625–633, 2008.

[28] Y. Zhu, E. Sifakis, J. Teran, and A. Brandt, “An efficient and paral-
lelizable multigrid framework for the simulation of elastic solids,”
ACM Trans. Graph., vol. 29, pp. 16:1–16:18, 2010.

[29] M. M€uller and M. Gross, “Interactive virtual materials,” in Proc.
Graph. Interface, 2004, pp. 239–246.

[30] O. Etzmuss, M. Keckeisen, and W. Strasser, “A fast finite element
solution for cloth modeling,” in Proc. 11th Pac. Conf. Comput.
Graph. Appl., 2003, pp. 244–251.

[31] I. Chao, U. Pinkall, P. Sanan, and P. Schr€oder, “A simple geomet-
ric model for elastic deformations,” ACM Trans. Graph., vol. 29,
pp. 38:1–38:6, 2010.

[32] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and
E. Sifakis, “Efficient elasticity for character skinning with contact
and collisions,”ACMTrans. Graph., vol. 30, pp. 37:1–37:12, 2011.

[33] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements for
robust simulation of large deformation,” in Proc. Symp. Comput.
Animation, 2004, pp. 131–140.

[34] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust quasistatic
finite elements and flesh simulation,” in Proc. Symp. Comput. Ani-
mation, 2005, pp. 181–190.

[35] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. Marsden, and P.
Schr€oder, “Geometric, variational integrators for computer anima-
tion,” in Proc. Symp. Comput. Animation, 2006, pp. 43–51.

[36] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered
projections for frictional contact in multibody systems,” in ACM
Trans. Graph., vol. 27, no. 5, p. 164, 2008.

[37] J. Gasc�on, J. S. Zurdo, and M. A. Otaduy, “Constraint-based simu-
lation of adhesive contact,” in Proc. Symp. Comput. Animation,
2010, pp. 39–44.

[38] C. Zheng and D. L. James, “Toward high-quality modal contact
sound,” ACM Trans. Graph., vol. 30, no. 4, p. 38, 2011.

Theodore F. Gast received the BS degree in
mathematics from Carnegie Mellon University in
2010. He is currently working toward the PhD
degree at the University of California, Los
Angeles (UCLA). He is also at Walt Disney Ani-
mation Studios, where he is putting the techni-
ques used in this paper into production.

Craig Schroeder received the PhD degree in
computer science from Stanford University in
2011 and is currently a postdoctoral scholar at
the University of California, Los Angeles (UCLA).
He received the Chancellor’s Award for Postdoc-
toral Research in 2013, recognizing research
impact and value to the UCLA community. He
actively publishes in both computer graphics and
computational physics. His primary areas of inter-
est are solid mechanics and computational fluid
dynamics and their applications to physically

based animation for computer graphics. He began collaborating with
Pixar Animation Studios during the PhD degree and later collaborated
with Walt Disney Animation Studios during his postdoctoral studies. For
his research contributions he received screen credits in Pixar’s “Up” and
Disney’s “Frozen.”

Alexey Stomakhin received the PhD degree in
mathematics from the University of California,
Los Angeles (UCLA) in 2013. His interest is
primarily physics-based simulation for special
effects, including simulation of fluids, solids
and multimaterial interactions. He is currently
employed at Walt Disney Animation Studios in
Burbank, CA. He has received screen credits for
his work on Frozen (2013) and Big Hero 6 (2014).

Chenfanfu Jiang received the PhD degree in
computer science from the University of Califor-
nia, Los Angeles (UCLA) in 2015. He is currently
a postdoctoral researcher at UCLA, jointly
appointed in the Departments of Mathematics
and Computer Science. His primary research
interests include solid/fluid mechanics and phys-
ics based animation.

Joseph M. Teran is a professor of applied math-
ematics at the University of California, Los
Angeles (UCLA). His research focuses on numer-
ical methods for partial differential equations in
classical physics, including computational solids
and fluids, multi-material interactions, fracture
dynamics and computational biomechanics. He
is also with Walt Disney Animation applying sci-
entific computing techniques to simulate the
dynamics of virtual materials like skin/soft tissue,
water, smoke and recently, snow for the movie

Frozen. He received a 2011 Presidential Early Career Award for Scien-
tists and Engineers (PECASE) and a 2010 Young Investigator award
from the Office of Naval Research.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAST ET AL.: OPTIMIZATION INTEGRATOR FOR LARGE TIME STEPS 1115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

