A Second Order Virtual Node Method for Poisson Interface Problems on Irregular Domains

Jacob Bedrossian∗,a, James H. von Brecht,a, Siwei Zhua, Eftychios Sifakis,a, Joseph M. Teran,a

aUniversity of California-Los Angeles, Department of Mathematics
520 Portola Plaza, Math Sciences Building 6363
Los Angeles, CA 90095

Abstract
We present a second order accurate, geometrically flexible and easy to implement method for solving the variable coefficient Poisson equation with interfacial discontinuities on an irregular domain. We discretize the equations using an embedded approach on a uniform Cartesian grid employing virtual nodes at interfaces and boundaries. A variational method is used to define numerical stencils near these special virtual nodes and a Lagrange multiplier approach is used to enforce jump conditions and Dirichlet boundary conditions. Our combination of these two aspects yields a symmetric positive definite discretization. In the general case, we obtain the standard 5-point stencil away from the interface. For the specific case of interface problems with continuous coefficients, we present a discontinuity removal technique that admits use of the standard 5-point finite difference stencil everywhere in the domain. Numerical experiments indicate second order accuracy in L^∞.

Key words: Elliptic interface problems, Embedded interface methods, Virtual node methods, Variational methods

1. Introduction

Elliptic interface problems such as

$$-\nabla \cdot (\beta(x)\nabla u(x)) = f(x), \quad x \in \Omega \setminus \Gamma$$

$$[u] = a(x), \quad x \in \Gamma$$

$$[\beta(x)\nabla u \cdot n] = b(x), \quad x \in \Gamma$$

$$u = p(x), \quad x \in \partial\Omega_d$$

$$\beta(x)\nabla u \cdot n = q(x), \quad x \in \partial\Omega_n$$

have a wide variety of applications in physics and engineering, and naturally arise when two dissimilar materials interact across a thin interface, either as quasistatic problems or in the discretization of time-dependent problems. Common examples include immiscible, incompressible fluids in contact and phase change problems. The interface Γ is generally a co-dimension one closed curve that divides the domain into an interior Ω^- and an exterior region Ω^+ such that $\Omega = \Omega^+ \cup \Omega^- \cup \Gamma \subset \mathbb{R}^2$. The scalar coefficient β and the source term f can exhibit discontinuities across Γ, but have smooth restrictions β^+, f^+ to Ω^+ and β^-, f^- to Ω^-. We let $n(x)$ denote the outward unit normal to Ω^- at a point $x \in \Gamma$, and define $[v](x) := v^+(x) - v^-(x) := \lim_{\epsilon \to 0^+} v(x + \epsilon n(x)) - \lim_{\epsilon \to 0^-} v(x - \epsilon n(x))$ as the “jump” of the quantity v across the interface Γ. The relevant physics generally determine the jumps in the solution (2) and in the flux (3), as well as the boundary conditions on $\partial\Omega$. Unless stated otherwise, we assume the curves Γ, $\partial\Omega$ are smooth.

Due to irregular geometry of the interface in many physical phenomena, a natural approach to the numerical approximation is the finite element method (FEM) with unstructured meshes that conform to the geometry of Γ.

*Correspondence to Jacob Bedrossian,
Email addresses: jacob.bedrossian@ucla.math.ucla.edu (Jacob Bedrossian), jub@math.ucla.edu (James H. von Brecht), siwei@math.ucla.edu (Siwei Zhu), sifakis@math.ucla.edu (Eftychios Sifakis), jteran@math.ucla.edu (Joseph M. Teran)
Figure 1: Graphical depiction of the problems (1-5). The image on the left depicts the relevant domains for interface problems, and the image on the right depicts the domain for embedded boundary problems.

[1, 2, 3, 4, 5, 6]. However, meshing complex interface geometries can prove difficult and time-consuming when the interface frequently changes shape (especially in 3D). Also, many numerical methods, such as finite differences, do not naturally apply to unstructured meshes. These concerns motivated the development of “embedded” (or, “immersed”) methods that approximate solutions to (1,2,3) on Cartesian grids or structured meshes that do not conform to the interface. Despite advances in this direction, embedded methods that retain higher order accuracy in L^∞ typically introduce relatively difficult linear algebra problems and complex implementations that sometimes require significant effort to adapt to general applications.

With these concerns in mind, we introduce a second order virtual node method for approximating the elliptic interface problem (1,2,3) with irregular embedded Neumann and Dirichlet boundaries on a uniform Cartesian grid. We use a regular Cartesian grid because it simplifies the implementation, permits straightforward Lagrange multiplier spaces and achieves higher order accuracy in L^∞. Our approach uses duplicated Cartesian bilinear elements along the interface to introduce additional “virtual” nodes that accurately account for the lack of regularity. The method is variational (to define the stencil on the interface cells in a symmetric way) and uses Lagrange multipliers to enforce embedded Dirichlet conditions and the jump conditions (2) weakly. In the general case, our choice of Lagrange multiplier space admits a symmetric positive definite discretization. For the special case of smooth β, we present a novel discontinuity removal technique to allow the use of the standard 5-point difference stencil everywhere in the domain. This is unlike the numerous FEM approaches that use similar virtual node representations on unstructured meshes [7, 8, 9, 10, 11, 12, 13, 14], as although some finite difference methods possess the notable advantage of discontinuity removal [15], to our knowledge a technique that retains the original system matrix is largely unexplored in the FEM frameworks. In all cases, our method yields the standard 5-point difference stencil away from the boundaries and interfaces. Numerical experiments indicate second order accuracy in L^∞.

The remainder of the paper proceeds as follows: we review existing embedded methods in §2; in §3 we detail the proposed numerical method by first introducing its application to embedded Neumann problems in §3.1, and then to embedded Dirichlet and embedded interface problems in §3.2 and §3.3, respectively; §3.3.1 details the special case of continuous β; lastly, we demonstrate the accuracy of the method with numerical experiments in §4 and conclude with a short summary and discussion.

2. Existing methods

The Immersed Interface Method (IIM) is perhaps the most popular finite difference method for approximating (1,2,3) to second order accuracy. LeVeque and Li first proposed the IIM for approximating elliptic interface problems in [16] and the term now applies to a widely researched and extensively applied class of finite difference methods [17, 18, 19, 20, 21, 22, 23]. See [15] and the references therein for a complete exposition of the method and its
numerous applications, and [24] for justification of the general IIM approach. Using generalized Taylor expansions, the original IIM adaptively modifies the stencil to obtain $O(h)$ truncation error along the interface. For smooth β, this reduces to the standard 5-point finite difference stencil, but otherwise results in a non-symmetric discretization that follows from locally solving constrained optimization problems that enforce a discrete maximum principle [25]. The IIM also generally requires the evaluation of higher-order jump conditions and surface derivatives along the interface. This can lead to difficulty in implementation, especially in 3D [26, 20, 15, 21]. The piecewise-polynomial interface method of [27] is a notable new approach to the IIM that does not require the derivation of additional jump conditions and accurately treats complex interfaces. The works of [28, 29, 30, 31, 15] describe other various attempts to improve the efficiency and reduce the complexity of the IIM.

Extrapolation based finite difference schemes such as [32, 33, 34, 35, 36, 37] introduce fictitious points along coordinate axes and use the known jump conditions to determine their values. The Ghost Fluid Method (GFM) of [32] exemplifies such methods. For two and three dimensional problems, the GFM neglects the tangential flux terms $[\beta \nabla u \cdot \tau]$ in determining the fictitious values, resulting in a symmetric positive definite but first order [38] method. In fact, the GFM approach of Liu et. al. [32] motivated our approach. However, given the similarity of our final approach to another of Fedkiw’s methods, the virtual node algorithm [11, 12, 13], we describe our method accordingly. Our variational approach at duplicated interface cells prevents the loss of accuracy inherent in ignoring the tangential jumps. Various other approaches attain higher order accuracy by accounting for the tangential flux in other ways, often sacrificing simplicity and symmetry of discretization in the process. For instance, the Coupling Interface Method (CIM) proposed in [33] extends the GFM to higher dimensions by using a second order extension at most grid points, but reverting to a first order method at grid points where the second order extension cannot apply. The method couples jump conditions in different directions to express the tangential derivatives, and the use of one-sided differences results in a non-symmetric discretization. Similarly, the Matched Interface and Boundary (MIB) method [34] uses higher order extrapolations of the solution matched with higher order one-sided discretizations of the jump conditions to determine the values at fictitious points. The MIB method accounts for non-zero $[\beta \nabla u \cdot \tau]$ by differentiating the given jump conditions using one-sided interpolations. This widens the stencil in several directions that depend on the local geometry, and results in a non-symmetric discretization. The work of [39] extended the MIB to handle high curvature geometry, and [40] provides a 3D version. In [41] Hou and Liu also use techniques seemingly inspired by the analysis of the original GFM approach done in [38]. They develop a second order variational GFM by altering finite element interpolating functions to capture the jump conditions in the solution. Their approach is remarkably robust to non-smooth interface geometry, but results in a non-symmetric discretization in the general case.

Ideas similar to the extrapolation based finite difference schemes have also seen extensive use in FEM, for instance in the fictitious domain methods for embedded boundary problems [42, 43, 44, 10, 45, 46, 47, 48] or the ‘extended finite element methods’ (XFEM) [49, 50, 51, 52, 53, 54, 55] [56]. Fictitious domain methods handle embedded boundaries by including every element that intersects the interface into the discretization. This naturally introduces “virtual nodes” (or “ghost nodes”) into the resulting discretization. The XFEM “enriches” the standard finite element basis with additional discontinuous basis functions, thereby introducing new degrees of freedom. These basis functions exist only at the nodes of elements that intersect the interface, and usually are the standard basis elements multiplied by a generalized Heaviside function. The methods of [7, 8, 9, 10, 13, 14] introduce a related virtual node concept to provide the additional degrees of freedom required to represent the discontinuities. The most straightforward implementation of this virtual node concept [8, 9, 10] yields a representation equivalent to the standard Heaviside enrichment of the XFEM. However, this approach generalizes to the slightly richer representations of [11, 12, 14] that attain more geometric detail, particularly when dealing with coarse grids and non-smooth interfaces. Moreover, virtual node representations are considered more geometrically intuitive and easier to incorporate into existing FEM code [10, 9, 14] than traditional Heaviside enrichment.

The solution spaces of these FEM approaches generally do not satisfy the embedded boundary or interface conditions. Thus, these methods impose linear constraints with either penalty methods or Lagrange multipliers to enforce the conditions in some weak sense. For example, see [42, 43, 44, 10] and the references therein. When using Lagrange multipliers, the Ladyzhenskaya-Babuška-Brezzi inf-sup conditions place stringent limitations on the types of constraints that will retain optimal convergence rates of the approximation spaces [58, 59, 47, 60, 55, 44]. Such

1See [57] for corrections to IIM convergence estimates
inf-sup restrictions generally limit the strength of the Lagrange multiplier space relative to the solution approximation space. For certain elements, designing the proper approximation spaces is a non-trivial task [55, 53]. Moreover, the use of Lagrange multipliers requires the solution of an indefinite saddle point system that can potentially introduce significant cost. Applying stabilization through a consistent penalty method, such as Nitsche’s method, presents an alternative approach [10, 48, 44, 8]. However, these can have adverse effects on conditioning and require the determination of the stabilization parameters. Instead of using Lagrange multipliers or stabilization, the methods of [61, 62, 63, 64, 41] alter the basis functions to either satisfy the constraints directly, or simplify the process of doing so. In this regard, such methods represent the finite element analogues of the IIM, especially [41, 63, 64].

The method of [65] offers a finite volume approach to embedded boundary problems. Like some fictitious domain methods, XFEM and our virtual node method, this method uses partially empty cells along the boundary. However, the one-sided quadratic interpolations used to compute the fluxes along the boundary yield a non-symmetric system. See [66] for a more recent 3D version applied to Poisson’s equation and the heat equation. In [67], Oevermann and Klein proposed a second order finite volume method for interface problems, and simplified and extended their method to 3D in [68]. In an approach similar to ours, any Cartesian cell that intersects the interface yields a distinct bilinear (or trilinear) representation of the solution. The jump conditions are then built into the difference stencil by locally solving constrained overdetermined systems. An asymptotic technique resolves the problem of vanishing cell volumes, though it requires specific treatment for each possible cell geometry. The resulting system is non-symmetric for the general case of $\beta \neq 0$.

When $\beta \neq 0$ the majority of these second-order methods do not retain a symmetric positive definite stencil. While the FEM approaches that use stabilization do retain a symmetric positive definite discretization [10], generally the FEM that use Lagrange multipliers, such as [51], result in a symmetric indefinite discretization. Although we use Lagrange multipliers, we present a simple method of reducing the indefinite system to a symmetric positive definite system using a null-space method. On the other hand, when the coefficient β is smooth across the interface, methods such as the original IIM achieve second order accuracy by only altering the right side of the system. For this case, we present a method that uses the virtual node framework that also retains the original left hand side.

3. Description of Numerical Method

Our method naturally handles both interfacial discontinuities and irregular domains embedded in a Cartesian grid. In fact, a slight modification of our approach to embedded boundary conditions yields our method for interfacial discontinuities. Furthermore, our treatment of embedded Dirichlet boundary conditions is just a slight modification of our treatment of embedded Neumann boundary conditions. Therefore, we first present our method for embedded Neumann boundary conditions followed by our method for Dirichlet boundary conditions and then finally present our approach to interfacial discontinuities.

3.1. Embedded Neumann

Our approach to solving embedded Neumann problems is very similar to that proposed by Almgren et. al. in [45]. Some XFEM approaches also use similar treatments, see e.g. [51]. Similar to [45], we discretize the embedded Neumann problem,

$$\nabla \cdot (\beta(x) \nabla u(x)) = f(x), \quad x \in \Omega$$ \hspace{1cm} (6)

$$\beta(x) \nabla u \cdot n = q(x), \quad x \in \partial \Omega,$$ \hspace{1cm} (7)

over a regular Cartesian grid (one that does not have to conform to $\partial \Omega$) using the energy minimization form of (6,7):

$$\text{over all } u \in H^1(\Omega), \text{ minimize}$$

$$E(u) = e(u) - (f, u)_{\Omega} - (q, u)_{\partial \Omega} = \int_{\Omega} \frac{1}{2} \nabla u \cdot \beta \nabla u dx - \int_{\Omega} f u dx - \int_{\partial \Omega} q u dS.$$ \hspace{1cm} (8)

We begin by embedding the domain Ω in a regular Cartesian grid G^h with grid-spacing $\Delta y = \Delta x = h$. We include all Cartesian cells (or elements) c_k that intersect Ω in the discretization, and refer to this set $C^h = \{c_k \cap \Omega \neq \emptyset\} \subset G^h$.
as the “computational domain” (see Figure 2). Also, we define the set of all cells that intersect the boundary as \(\mathcal{C}_h^b = \{ c_k \cap \partial \Omega \neq \emptyset \} \subset \mathcal{C}_h \). We define the solution space \(V^h \subset H^1(\Omega) \) as the space of continuous functions that are bilinear over each cell \(c_k \in \mathcal{C}_h^b \). This approximation includes some partially empty cells that intersect the boundary and introduces “virtual” grid nodes (and virtual degrees of freedom) that lie outside of the domain. See Figure 3 for a diagram labeling the degrees of freedom along a typical boundary. We refer to the portion of the cell that lies in the domain \(\Omega \) as the “material” region, and use the term “material” nodes to describe grid nodes lying inside \(\Omega \). Figure 2: Embedding \(\Omega \) in a Cartesian grid. The computational domain \(\mathcal{C}_h \), shown in red, consists of all cells \(c_k \in \mathcal{C}_h^\beta \), shown in black, that intersect \(\Omega \). This procedure introduces virtual degrees of freedom into the discretization, i.e. degrees of freedom that lie on cells in the computational domain but do not lie in \(\Omega \) itself.

Using the virtual node representation, we define a discrete energy \(E^h(u^h) \) over \(u^h \in V^h \). Although we could discretize the energy directly with the piecewise bilinear representation, this would result in a second-order 9-point stencil away from the interface (as in [45]). To retain the standard 5-point difference stencil away from the interface (as in [45]), we define the discretization and corresponds to the number of grid nodes that compose the cells of \(\mathcal{C}_h^b \).

\[
E^h(u^h) = \sum_{c_k \in \mathcal{C}_h^b \setminus \mathcal{C}_h^\beta} e^{c_k}(u^h) - (f, u^h)_{\Omega} + \sum_{c_k \in \mathcal{C}_h^\beta} \tilde{e}^{c_k}(u^h) - (f, u^h)_{\Omega} - (g, u^h)_{\tilde{\Omega}^a}, \tag{9}
\]

where the superscripts denote restriction to cell \(c_k \). Over cells \(c_k \in \mathcal{C}_h^b \setminus \mathcal{C}_h^\beta \) that do not intersect the boundary, we define \(e^{c_k}(u^h) \) as

\[
e^{c_k}(u^h) = \frac{\beta h^2}{4} \left(\frac{u_{i+1,j} - u_{i,j}}{h} \right)^2 + \left(\frac{u_{i,j+1} - u_{i,j}}{h} \right)^2 + \left(\frac{u_{i+1,j+1} - u_{i+1,j}}{h} \right)^2 + \left(\frac{u_{i+1,j+1} - u_{i,j+1}}{h} \right)^2 \right). \tag{10}
\]

Here \(\bar{\beta} \) denotes the cell average, and \(\{ u_{p,q} \} \) denote the degrees of freedom at the four corners of the cell. If a cell \(c_k \in \mathcal{C}_h^\beta \) i.e. the cell intersects the boundary, then we use the Cartesian bilinear representation to define \(\tilde{e}^{c_k}(u^h) \). If we let \(\{ N_{p,q} \} \) denote the bilinear basis functions associated with the four corners of the cell, this yields the discretization

\[
\tilde{e}^{c_k}(u^h) = \frac{1}{2} \sum_{r,s,r',s'=0}^{1} u_{ir',jrs'} \int_{\Omega \cap \partial \Omega} \bar{\beta} \nabla N_{ir,jrs} \cdot \nabla N_{ir',jrs'} dx. \tag{11}
\]

We evaluate the integrals analytically using the divergence theorem based on a polygonal representation of \(\partial \Omega \) as in Almgren et. al. [45] (see Figure 4). The tilde denotes the different discretizations of the energy over cells that intersect the boundary. Notice we evaluate each integral only over the portion of the cell that lies within the domain. Similarly,
Figure 3: Illustration of the interior and boundary stencils. The green degrees of freedom have a modified stencil; the stencil is unaltered at the yellow degrees of freedom. On the left, the nodes marked with an X contribute a non-zero entry to the stencil for the center node via the cell-wise energies. The right figure depicts the sparser stencil for the center node that results from the definition of e^c_{ki}.

as in [67, 68] we define the cell average $\bar{\beta}$ as the average only over $c_k \cap \Omega$. We discretize the other forms cell-wise as

$$ (f, u^h)_\Omega = \sum_{r,s \in \{0,1\}} u_{i+r,j+s} \int_{c_k \cap \Omega} \bar{f} N_{i+r,j+s} dx \quad (12) $$

$$ (q, u^h)_\partial\Omega = \sum_{r,s \in \{0,1\}} u_{i+r,j+s} \int_{c_k \cap \partial\Omega} \bar{q} N_{i+r,j+s} dS \quad (13) $$

Here \bar{f} is the average source over $c_k \cap \Omega$ and \bar{q} is the average normal flux over $c_k \cap \partial\Omega$. Again, we evaluate the integrals analytically, applying the divergence theorem where necessary. We minimize the discrete energy (9) by solving the linear system

$$ A \vec{u} = \vec{f} \quad (14) $$

$$ A_{ij} = \frac{\partial^2}{\partial u_i \partial u_j} E^h(u^h), \quad (15) $$

$$ f_i = \frac{\partial}{\partial u_i} ((f, u^h)_\Omega + (q, u^h)_\partial\Omega) \quad (16) $$

for the vector \vec{u}. We use the standard FEM term “stiffness matrix” to refer to the matrix A, and it is clear from the derivation that A is symmetric and positive semi-definite. With this approach, our definition of the energy (11) results in a slightly denser stencil near the boundary, as all four degrees of freedom in a cell couple together if $\partial\Omega$ passes through that cell. See Figure 3 for a graphical depiction of the stencil definitions and the sparsity pattern of the stiffness matrix. The conditioning of the stiffness matrix may deteriorate when cells have very small material regions. This arises from the increasing irrelevance of virtual degrees of freedom (see the upper right node in Figure 4). The respective row and column in A and the corresponding entry in \vec{f} all approach zero simultaneously, however simple Jacobi preconditioning eliminated serious conditioning issues in our numerical experiments.

3.2. Embedded Dirichlet

A slight modification of our embedded Neumann approach allows us to solve embedded Dirichlet problems

$$ -\nabla \cdot (\beta(x) \nabla u(x)) = f(x), \quad x \in \Omega \quad (17) $$

$$ u = p(x), \quad x \in \partial\Omega. \quad (18) $$

In this case, we use the constrained minimization problem:
We compute the modified stencil analytically by using the divergence theorem on the material region \(\Omega \cap c_k \) in each cell. Here, \(p_n(x) \) and \(q_n(y) \) denote appropriate polynomials of order \(n \) in a single variable. Notice the relatively small area of the material region in the top, right cell. As this area approaches zero, the virtual node at the top, right of this cell introduces ill-conditioning into the stiffness matrix.

Figure 4: Polygonal representation of \(\partial \Omega \). We compute the modified stencil analytically by using the divergence theorem on the material region \(\Omega \cap c_k \) in each cell. Here, \(p_n(x) \) and \(q_n(y) \) denote appropriate polynomials of order \(n \) in a single variable. Notice the relatively small area of the material region in the top, right cell. As this area approaches zero, the virtual node at the top, right of this cell introduces ill-conditioning into the stiffness matrix.

over all \(u \in H^1(\Omega) \), minimize

\[
E(u) = e(u) - (f, u)_\Omega \quad \text{such that} \quad (u, \mu)_{\partial \Omega} = (p, \mu)_{\partial \Omega} \quad \forall \mu \in H^{-1/2}(\partial \Omega). \tag{19}
\]

We discretize the energy (19) exactly as in the Neumann case, so the only difference comes in discretizing the constraints (20). We proceed by selecting a finite dimensional subspace \(\Lambda^h \subset H^{-1/2}(\partial \Omega) \), and enforce (20) for all \(\mu^h \in \Lambda^h \).

Not all plausible choices will yield an acceptably accurate approximation, as in general \((\Lambda^h, V^h) \) must satisfy an inf-sup stability criterion to retain the optimal convergence rates of the approximation spaces [59]. One suitable choice for \(\Lambda^h \), used for instance by the XFEM [56], defines \(\mu^h \) as piecewise-constant over the intersection of \(\partial \Omega \) with each Cartesian cell (see Figure 5). In other words, we define \(\mu^h \in \Lambda^h \) as

\[
\mu^h(x) = \sum_{c_i \in C^h_{\partial \Omega}} \mu_i \chi_{c_i \cap \partial \Omega}(x),
\]

where the sum ranges over all Cartesian cells \(c_i \) that intersect the boundary \((c_i \in C^h_{\partial \Omega}) \) and the characteristic functions \(\chi_{c_i \cap \partial \Omega} \) are given by

\[
\chi_{c_i \cap \partial \Omega}(x) = \begin{cases}
1 & x \in c_i \cap \partial \Omega \\
0 & x \notin c_i \cap \partial \Omega
\end{cases}
\]

With this choice of \(\Lambda^h \), satisfying (20) for all \(\mu^h \) yields a set of sparse linear constraints \(Bu = p \) on the coefficient vector of the approximate solution \(u^h \). Each row of the matrix \(B \) corresponds to a Cartesian cell \(c_i \in C^h_{\partial \Omega} \) (see Figure 5), and enforces the condition

\[
\int_{c_i \cap \partial \Omega} u^h(x) \, dS = \int_{c_i \cap \partial \Omega} p(x) \, dS.
\]

Therefore, if \(C^h_{\partial \Omega} = \{c_1, \ldots, c_m\} \) and \(u \in \mathbb{R}^n \), then \(B \in \mathbb{R}^{m \times n} \) and

\[
B_{ij} = \int_{c_i \cap \partial \Omega} N_j(x) \, dS
\]
Figure 5: Lagrange Multiplier spaces. On the left: functions in Λ^h are piecewise constant over the intersection of the shaded cells $c_i \in C^h$ with the boundary $\partial \Omega$. On the right: functions in Λ^{2h} are piecewise constant over the intersection of the coarser shaded cells $\hat{c}_i \in \hat{C}^h$ with the boundary $\partial \Omega$. In the image on the right, the bold black lines mark the cells $\hat{c}_i \in \hat{G}^h$.

for each Cartesian bilinear basis function $N_j(x)$. The corresponding entry in \vec{p} is

$$p_i = \int_{c_i \cap \partial \Omega} p(x) \, dS.$$

Again, we compute these integrals analytically. Discretizing (19,20) thus gives rise to the quadratic program:

$$\begin{align*}
\text{minimize over } & \vec{u} \in \mathbb{R}^n \\
E_h(u^h) &= e(u^h) - (f, u^h)_\Omega = \frac{1}{2} \vec{u}^t A \vec{u} - \vec{f}^t \vec{u} \\
\text{subject to } & B \vec{u} = \vec{p}.
\end{align*}$$

(21)

The matrix A and the vector \vec{f} carry over exactly from the embedded Neumann case described in §3.1.

Unfortunately, solving this problem efficiently can require some care. While many approaches exist for solving minimization problems of the form (21) or the equivalent saddle-point system

$$\begin{pmatrix} A & B \\ B^t & 0 \end{pmatrix} \begin{pmatrix} \vec{u} \\ \vec{\lambda} \end{pmatrix} = \begin{pmatrix} \vec{f} \\ \vec{p} \end{pmatrix},$$

we use a null-space method to retain a symmetric positive definite discretization. See [69] for a survey of alternative approaches. For any matrix Z whose columns span the null-space of B, and any vector \vec{c} satisfying $B\vec{c} = \vec{p}$,

$$\vec{u} = \vec{c} + Z(Z'AZ)^{-1}Z'(\vec{f} - A\vec{c})$$

(22)

uniquely solves (21). Therefore, given a null-basis Z and a particular solution $\vec{c} \in \mathbb{R}^n$ satisfying $B\vec{c} = \vec{p}$, we solve the quadratic program (21) by solving the symmetric positive definite system $Z'AZ\vec{v} = Z'(\vec{f} - A\vec{c})$. The null-space of A is spanned by the vector $(1, 1, ..., 1) \in \mathbb{R}^n$ and the entries of B are all non-negative so $\ker(A) \cap \ker(B) = \{0\}$. Therefore, $Z'AZ > 0$ so we can use straightforward methods such as Conjugate Gradient to solve the symmetric positive definite linear algebra problem. However, obtaining Z through computational methods such as QR factorization or the SVD can prove costly, and moreover produce dense representations of Z.

A fundamental basis presents an alternative to numerical factorization [69]. The matrix B is full rank if and only if an ordering of the degrees of freedom exists so that $B = (B_m | B_{n-m})$ for some $m \times m$ non-singular matrix B_m. Any such ordering gives the corresponding fundamental basis

$$Z = \begin{pmatrix} -B_m^{-1}B_{n-m} \\ I_{n-m} \\ 0 \end{pmatrix}.$$

(23)
Clearly, $BZ = 0$ and $\vec{c} = \begin{pmatrix} B_m^{-1} \vec{p} \\ 0 \end{pmatrix}$ satisfies $B \vec{c} = \vec{p}$. Therefore, if we can solve systems of the form

$$B_m \vec{x} = \vec{d}, \quad (24)$$

efficiently, we can store the factors B_m, B_{n-m}, A sparsely and compute the action of $Z'AZ$ readily (e.g. for use in Conjugate Gradient). Note that, regardless of the choice of B_m, the symmetric positive definite stencil defined by $Z'AZ$ coincides with the standard 5-point stencil for all degrees of freedom sufficiently far from the interface.

![Figure 6: Upper triangular ordering. The blue numbers indicate the ordering of the cells $c_k \in C_h \partial \Omega$. The green circles then indicate the proper ordering of the degrees of freedom. This ordering of cells and nodes depicted graphically above produces B with an upper triangular sub-matrix B_m. A typical sparsity pattern is also represented.](image)

We now show that the rows and columns of the matrix B can be re-ordered to produce a non-singular, upper triangular matrix B_m. Specifically, ordering the cut-cells $[c_1, \ldots, c_m] = C_{\partial \Omega}^h$ lexicographically, and then selecting the lower-left node of the i^{th} cut-cell as the i^{th} degree of freedom (thus reordering the rows in A, B and \vec{u}), gives $B = (B_m | B_{n-m})$ with B_m upper triangular and non-singular (see Figure 6). Unfortunately, despite the convenient triangular structure of B_m, prohibitively large numerical error persists when solving (24), even on relatively coarse grids. As the interface in a given cell recedes from the lower-left node of that cell (for instance, cells and nodes 1,4,5,9,11,14,17,18,19,21,22,23, or 29 in Figure 6), the corresponding row in B_m has off-diagonal entries with substantially larger magnitude than the diagonal entry of that row. Generally, enough rows of this type exist so that B_m...
behaves much like the matrix
\[
C = \begin{pmatrix}
1 & 2 & 0 & 0 & \cdots & 0 \\
0 & 1 & 2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 2 & 0 \\
0 & \cdots & \cdots & 0 & 1 & 2 \\
0 & \cdots & \cdots & \cdots & 0 & 1
\end{pmatrix}
\]

Considering the linear system \(Cx = e^m_m \) with \(e^m_m = (0, \ldots, 0, 1)^t \) illuminates the source of this error. Indeed, in this case \(\|C^{-1}e^m_m\|_\infty \) grows like \(2^m \). The forward substitutions with \(B^m_m \), needed for \(Z^l \) multiplies, also exhibit this behavior. As \(m \) increases under grid refinement, these behaviors quickly (in some cases, anything finer than a 64x64 grid) dominate machine precision. In practice, scalar multiples of \(e^m_m \) always appear in \(B^{n-m}_n \), making such a \(B_m \) practically unusable in a null-space method. Moreover, this problem persists in all similar constructions of \(B_m \) (different orderings, node choices, etc).

![Diagonal ordering scheme](image)

(a) Figure 7: Diagonal ordering scheme. Above, our choice of Lagrange multiplier space allows us to easily construct an ordering to produce \(B \) with a diagonal sub-matrix \(B_m \) (typical sparsity pattern also depicted). Note that this gives a slightly denser \(B^{n-m}_n \), since now as many as 9 degrees of freedom may contribute to a given row for embedded Dirichlet problems.

For this reason, we use an alternative approximation to \(H^{-1/2}(\partial \Omega) \) that produces a different set of linear constraints. Our choice permits an ordering of \(B \) with a nonsingular, diagonal sub-matrix \(B_m \). If we enforce one constraint per cell as above, then in general there do not exist \(m \) degrees of freedom that each only participate in one constraint, so that no ordering could produce a diagonal matrix \(B_m \). Motivated by this observation, we approximate \(H^{-1/2}(\partial \Omega) \) using
\(\Lambda^2 \), the space of Lagrange multipliers corresponding to the grid \(G^2 \). That is, for every \(\mu \in \Lambda^2 \),

\[
\mu(x) = \sum_{\hat{c} \in C^2_{G}} \mu_{\hat{c}} \chi_{\hat{c} \cap \partial \Omega}(x).
\]

Thus, each row of \(B \) now enforces the condition

\[
\int_{\hat{c} \cap \partial \Omega} u^b(x) \, dS = \int_{\hat{c} \cap \partial \Omega} p(x) \, dS,
\]

for each of the cells \(\hat{c} \in C^2_{G} = \{ \hat{c}_1, \hat{c}_2, \ldots, \hat{c}_m \} \) (see Figure 5) that intersect the boundary. In the figure, each of the cells in the grid \(G^2 \) is the union of 4 cells in the grid \(G^1 \), so that at the center of each cell \(\hat{c}_k \in G^2 \) lies a degree of freedom \(u_k \) whose associated nodal basis function \(N_k \) vanishes outside the cell \(\hat{c}_k \). Therefore for each cell \(\hat{c}_k \in C^2_{G} \) we choose this central degree of freedom as the \(k \)th in our reordering. As such,

\[
\int_{\hat{c}_k \cap \partial \Omega} N_k dS = 0, \quad \forall i \neq k, \quad 1 \leq i \leq m.
\]

(25)

See Figure 7 for a pictorial description of this ordering. Clearly, this gives \(B = (B_0B_m) \) with \(B_0 \) diagonal and nonsingular. We then use the corresponding fundamental basis (23) to trivially reduce the saddle-point problem to the symmetric positive definite system \(Z^T A Z v = Z^T (f - A \bar{c}) \) by applying the null-space method (22).

3.3. Embedded Interface

To handle the full elliptic interface problem (1,2,3), we combine our embedded Neumann and embedded Dirichlet approaches in a straightforward way. We consider the equivalent minimization form of the problem (1,2,3):

over all \(u \in V = \{ u : u^b \in H^1(\Omega^b) \} \), minimize

\[
E(u) = e(u) - (f,u)_{\Omega} - (b,\bar{u})_{\Gamma} = \int_{\Omega} \frac{1}{2} \nabla u \cdot \nabla v u dx - \int_{\Omega} f u dx - \int_{\Gamma} b \bar{u} dS
\]

such that \(\{ [u],\mu \} = (a,\mu)_{\Gamma} \quad \forall \mu \in H^{-1/2}(\Gamma) \).

(26)

(27)

Here \(\bar{u}(x)_{\Gamma} = (u^+ + u^-)/2 \). As before, we define discretizations of \(V \) and \(H^{-1/2}(\Gamma) \) and then solve the resulting discrete saddle-point problem. To define \(V^h \subset V \), we separately discretize \(H^1(\Omega^b) \) and \(H^1(\Omega^\Gamma) \) using the same virtual node representation used to discretize the embedded Neumann problem. This will naturally introduce duplicate Cartesian cells that intersect the boundary, with independent copies associated with the interior and exterior discretizations (see Figure 8). This discretization results in the block diagonal stiffness matrix for the interface problem,

\[
A = \begin{bmatrix}
A^+ & 0 \\
0 & A^-
\end{bmatrix},
\]

where \(A^+ \) is the stiffness matrix associated with the embedded Neumann problem on \(\Omega^b \) and \(A^- \) is the stiffness matrix associated with the embedded Neumann problem on \(\Omega^\Gamma \), as described in §3.1.

Similarly, along the interface we make the same choice of discrete Lagrange multiplier space as before, so that over every cell \(\hat{c}_k \in C^2_{\Gamma} \),

\[
\int_{\hat{c}_k \cap \Gamma} [u^b] dS = \int_{\hat{c}_k \cap \Gamma} a dS.
\]

This results in the block interface constraint matrix \(B = (B^+ \Gamma - B^- \Gamma) \), where \(B^\pm \) is respectively the constraint matrix associated with the embedded Dirichlet problem on the exterior or interior of the interface. In other words, \(B_{ij} = \int_{\hat{c}_k \cap \Gamma} \text{sign}(j) N_j(x) dx \), where \(\text{sign}(j) = 1 \) if degree of freedom \(j \) is associated with \(u^{+h} \) and \(\text{sign}(j) = -1 \) if degree of freedom \(j \) is associated with \(u^{-h} \). These discretization choices give the saddle-point problem

\[
\begin{bmatrix}
A^+ & 0 & B^{+\Gamma} & u^2 \\
0 & A^- & -B^{-\Gamma} & u^2 \\
B^+ & -B^- & 0 & \bar{a} \\
\end{bmatrix}
\begin{bmatrix}
f^+ \\
f^- \\
\bar{a}
\end{bmatrix} = \begin{bmatrix}
\bar{f} \\
\bar{a}
\end{bmatrix},
\]

(28)
where \vec{u} contains the degrees of freedom associated with the nodal values of the exterior discretization and \vec{u}^- contains the degrees of freedom associated with the nodal values of the interior discretization. We once again solve the saddle-point system using the null-space method described above in §3.2 by defining an ordering $B = (B_m|B_{n-m})$ with B_m diagonal. Given any ordering for the constraints, we choose the virtual degree of freedom at the center of the ith cell $\hat{c}_i \in C^{2h}_\Gamma$ as the ith degree of freedom in our ordering. See Figures 7, 8 and section §3.2 for more information. There are always at least two degrees of freedom associated with the center node. We choose the virtual degree of freedom as this results in a system Z^tAZ with significantly better conditioning in practice.

3.3.1. Virtual node discontinuity removal

In general, our proposed method requires the solution of the symmetric positive definite system Z^tAZ. However, if the coefficient β is smooth, the IIM and similar methods achieve uniform second order accuracy without altering the original 5-point difference stencil. In this section, we demonstrate how the virtual node framework similarly allows the use of the 5-point difference stencil for continuous coefficients. For simplicity of exposition, we assume $\beta(x) \equiv 1$ for the rest of this section.

Suppose $c(x) \in V$ is constructed to satisfy the jump conditions (2,3) and $u(x)$ is the exact solution. Then as $[\beta] = 0$, the difference $w(x) := u(x) - c(x)$ satisfies $[\beta \nabla w \cdot n] = \beta[\nabla w \cdot n] = 0$ and $[w] = 0$. Since w satisfies homogeneous jump conditions $[\nabla w \cdot n] = 0$ and $[w] = 0$, we do not require virtual nodes to capture any discontinuities across Γ. In this manner, solving for w presents an appealing alternative as the presence of virtual nodes no longer adversely affects the subsequent linear algebra problem. Therefore, when $[\beta] = 0$ we recover an approximation to (2,3) by separately discretizing w and c, then setting $u = w + c$.

Figure 8: In (a), the degrees of freedom lying on red cells define u^{-h} and in (b) the degrees of freedom lying on blue cells define u^{+h}. Applying our embedded Neumann approach on the red and blue grids defines the matrices A^- and A^+, respectively. Degrees of freedom associated with u^{-h} and u^{+h} are collocated along the interface as shown in the overlapping regions of figure (c). In (d), these representations couple together in shaded cells $\hat{c}_i \in C^{2h}_\Gamma$ via the matrix B.

12
We discretize w over the unduplicated grid \mathcal{G}^h using $H^1(\Omega)$ Cartesian piecewise bilinear elements. Consequently, if the grid \mathcal{G}^h contains r material degrees of freedom, then $\mathcal{V}^h \in \mathbb{R}^r$ contains the coefficients in terms of the bilinear basis. We discretize u and c using the full virtual node basis V^h as they possess lower regularity across Γ. With these choices, we can represent the coefficient vector $\mathbf{u} \in \mathbb{R}^n (n > r)$ of the approximate solution u^h in the basis of V^h as $\mathbf{u} = \mathbf{c} + T\mathbf{w}$, where the matrix $T \in \mathbb{R}^{nxr}$ maps from the bilinear basis to the virtual node basis. We determine this change of basis by a simple identification of virtual and material nodes, as a function $v^h \in V^h$ satisfies homogeneous jump conditions if and only if the value of the function v^h at a virtual node always equals its value at the associated material node. Therefore, T maps the value at a given node in the original grid to every node, virtual or material, associated with the same location in the virtual node basis.

Although any ordering of degrees of freedom will suffice to construct T, for simplicity assume that

$$\mathbf{u} = (u_1, u_2, \ldots, u_{n_r}, u_{n_r+1}, u_{n_r+2}, \ldots, u_{2n_r}, u_{2n_r+1}, \ldots, u_n)^T.$$

Here, $[u_k]_{k=1}^n$ represent the $n_r := n - r$ total coefficients of the virtual degrees of freedom; $u_{n_r+k}, 1 \leq k \leq n_r$, represents the coefficient of the real degree of freedom corresponding to the same physical node as u_k; the remaining $[u_k]_{k=2n_r+1}^n$ degrees of freedom do not lie on any cut-cells. Then

$$T = \begin{pmatrix} I_{n_r} & 0 \\ I_{n_r} & 0 \\ 0 & I_{n-2n_r} \end{pmatrix}.$$ \hfill (29)

More generally, each column of T corresponds to a material node in the grid, and each row of T corresponds to either a material node or a virtual node. Then the column of T corresponding to a material node x_i simply has a one in the column corresponding to x_i, a one in the column corresponding to any virtual node in the same physical location (i.e. coordinates) as x_i, and zeros otherwise.

Determining w^h now proceeds in a manner analogous to the null-space method used to solve (21): we wish to minimize the energy over all vectors of the form $\mathbf{u} = \mathbf{c} + T\mathbf{w}$. For the following discussion, suppose we define the discrete energy (26) using the Cartesian bilinear representation everywhere in the domain. Then substituting the expression for \mathbf{u} into the energy (26) gives

$$E_h(\mathbf{u}) = \frac{1}{2} \mathbf{w}^T T' \mathbf{A} T \mathbf{w} - \mathbf{f}^T T \mathbf{w} + \mathbf{w}^T T' \mathbf{A} \mathbf{c} + \frac{1}{2} \mathbf{c}^T \mathbf{A} \mathbf{c} - \mathbf{f}^T \mathbf{c},$$ \hfill (30)

which defines an energy only over the original, material degrees of freedom $\mathbf{w} \in \mathbb{R}^r$. Differentiation with respect to w_i then leads to the linear system

$$T' \mathbf{A} T \mathbf{w} = T'(\mathbf{f} - \mathbf{A} \mathbf{c})$$ \hfill (31)

$$\mathbf{u} = \mathbf{c} + T \mathbf{w}. \hfill (32)$$

Remarkably, the matrix $T' \mathbf{A} T$ is the straightforward discretization over the material degrees of freedom, i.e. a 9-point, second order approximation to the Laplacian. Moreover, as \mathbf{w} corresponds to the material nodal values on a regular grid, we may operate on it instead with the standard 5-point difference stencil Δ^h and solve the system

$$\Delta^h \mathbf{w} = T'(\mathbf{f} - \mathbf{A} \mathbf{c})$$ \hfill (33)

to provide an approximate solution at all of the relevant real degrees of freedom. This approach allows the application of efficient, black-box solvers for Δ^h and only requires constructing the right-hand side of (33). Thus, the lack of regularity in the problem no longer adversely affects the linear algebra.

In principle, many different constructions could result in a satisfactory particular solution c. To minimize the computational effort, we construct a c supported only along the interface. The time required to generate such a particular solution contributes negligibly to the overall computational cost. We assume that Ω^- does not intersect the computational boundary and construct a particular solution c that vanishes on the exterior region. That is, $c_{\Omega^-} = 0$ so that $c_{|\partial\Omega} = 0, [c] = -c^- = a, \beta [\nabla c \cdot n] = -\beta [\nabla c^- \cdot n] = b$. Therefore, we need only to define c^- over those interior material and interior virtual nodes along the interface, and do so by straightforward extrapolation.
4. Numerical Examples

In this section we present the results of selected numerical experiments to demonstrate the observed accuracy of the method applied to a variety of interface problems. We ran all of the examples on a sequence of $N \times N$ grids, for $80 \leq N \leq 800$. Each grid ranges from $-1 \leq x \leq 1$, $-1 \leq y \leq 1$. The error plots depict $\log_{10} \|e\|_{L^\infty}$ versus $\log_{10} N$. We give examples both with level set representations and Lagrangian representations of the interface. For interfaces that have more detail than the background grid can resolve, using a level set introduces non-negligible geometric regularization. See §5 for a discussion of the geometric precision of our method.

4.1. Embedded Neumann

We demonstrate the method applied to the embedded Neumann problem

$$\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega,$$

$$\beta \nabla u \cdot n = q(x), \quad |x| = .35.$$

Here $\beta(x) = 2 + x^2 + y$. We chose the parameters q and f using the exact solution

$$u = \cos(x^2 - y^2).$$

The embedded Neumann boundary $\partial \Omega_n$ is given by $|x| = .35$, represented with a level set. See Figure 9 for the error plot. A least squares regression estimates the order of accuracy as 1.98.

![Figure 9: Numerical results for Example 4.1](image)

(a) Estimated order: 1.98

4.2. Embedded Neumann

We demonstrate the method applied to the embedded Neumann problem

$$\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega,$$

$$\beta \nabla u \cdot n = q(x), \quad \forall x \in \partial \Omega_n.$$

Here $\beta(x) = 4 + x + y$. We chose the parameters q and f using the exact solution

$$u = (x^3 - y^3) \cos(x + y).$$
The embedded Neumann boundary, $\partial \Omega_n$, is given by the 5-pointed star with vertices

\[
t_0 = .1243 \\
r_i = .35 + .3(i \mod 2) \\
X_i = r_i \cos(\frac{\pi i}{5} + t_0) \\
Y_i = r_i \sin(\frac{\pi i}{5} + t_0),
\]

for $1 \leq i \leq 10$, represented as a Lagrangian curve. See Figure 10 for the error plot. A least squares regression estimates the order of accuracy as 1.95.

![Figure 10: Numerical results for Example 4.2](image)

(a) Estimated order: 1.95

(b)

4.3. Embedded Dirichlet

We demonstrate the method applied to the embedded Dirichlet problem

\[
\Delta u = 0, \quad \forall x \in \Omega, \\
u = p(x), \quad \forall x \in \partial \Omega_d = \partial \Omega.
\]

We chose the Dirichlet condition p using the chosen exact solution

\[
u = x^2 - y^2.
\]

The embedded boundary $\partial \Omega$ is given by the curve

\[
t_0 = .00132 \\
r_0 = .02 \sqrt{5} \\
r(t) = .5 + .2 \sin(5t) \\
X(\theta) = r_0 + r(t + t_0) \cos(\theta + t_0) \\
Y(\theta) = r_0 + r(t + t_0) \sin(\theta + t_0),
\]

represented as a Lagrangian curve. See Figure 11 for the error plot. A least squares regression estimates the order of accuracy as 1.86.
4.4. Embedded Interface

The following example was taken from [32]. We solve the interface problem

\[\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega \setminus \Gamma, \]

\[[u] = a(x), \]

\[[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma. \]

Here \(\beta^+ = 10 \) and \(\beta^- = 1 \). We chose the parameters \(a, b \) and \(f \) using the exact solution

\[u^- = x^2 + y^2 \]

\[u^+ = .1(x^2 + y^2)^2 - .01 \ln(2\sqrt{x^2 + y^2}). \]

The interface is given by the curve

\[t_0 = .00132 \]

\[r_0 = .02 \sqrt{5} \]

\[r(t) = .5 + .2 \sin(5t) \]

\[X(\theta) = r_0 + r(\theta + t_0) \cos(\theta + t_0) \]

\[Y(\theta) = r_0 + r(\theta + t_0) \sin(\theta + t_0), \]

for \(0 \leq \theta \leq 2\pi \), represented using a Lagrangian curve. See Figure 12 for the error plot. A least squares regression estimates the order of accuracy as 1.94.
4.5. Embedded Interface

We solve the interface problem

\[\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega \setminus \Gamma, \]
\[[u] = a(x), \]
\[[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma. \]

Here \(\beta^+ = 10 \) and \(\beta^- = 1 \). We chose the parameters \(a, b \) and \(f \) using the exact solution

\[u^- = x^2 + y^2 \]
\[u^+ = .1(x^2 + y^2)^2 - .01 \ln(2 \sqrt{x^2 + y^2}). \]

The interface is given by the curve

\[t_0 = .00132 \]
\[r_0 = .02 \sqrt{5} \]
\[r(t) = .5 + .2 \sin(5t) \]
\[X(\theta) = r_0 + r(\theta + t_0) \cos(\theta + t_0) \]
\[Y(\theta) = r_0 + r(\theta + t_0) \sin(\theta + t_0), \]

for \(0 \leq \theta \leq 2\pi \), represented using a Lagrangian curve. See Figure 13 for the error plot. A least squares regression estimates the order of accuracy as 1.90.

4.6. Embedded Interface

We solve the interface problem

\[\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega \setminus \Gamma, \]
\[[u] = a(x), \]
\[[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma. \]
Here $\beta^+ = 2 + \sin(x + y)$ and $\beta^- = 3 + x + y$. We chose the parameters a, b and f using the exact solution

\[u^- = x^2 + y^2 + 1\]
\[u^+ = \cos(x + y)\].

The interface is given by the curve

\[t_0 = .0231\]
\[a = .40378, \quad b = .400178\]
\[m = 2, \quad n = 6\]
\[t(\theta) = \theta + t_0\]
\[X(\theta) = a + b \cos(mt) \sin(nt) \cos(t)\]
\[Y(\theta) = a + b \cos(mt) \sin(nt) \sin(t),\]

for $0 \leq \theta \leq 2\pi$, represented using a level set. See Figure 14 for the error plot. A least squares regression estimates the order of accuracy as 1.80.

4.7. Discontinuity Removal

In this example we demonstrate the discontinuity removal technique in the case of a smoothly varying coefficient. We solve the interface problem

\[\nabla \cdot \beta(x) \nabla u = f, \quad \forall x \in \Omega \setminus \Gamma,\]
\[[u] = a(x),\]
\[[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma.\]

Here $\beta(x) = 2 + \cos(x + y)$. We chose the parameters a, b and f using the exact solution

\[u^- = 1 + \cos(x + y)\]
\[u^+ = x + y.\]
The interface is given by the curve

\[t_0 = .00132 \]
\[r_0 = .02 \sqrt{5} \]
\[r(t) = .5 + .2 \sin(5t) \]
\[X(\theta) = r_0 + r(\theta + t_0) \cos(\theta + t_0) \]
\[Y(\theta) = r_0 + r(\theta + t_0) \sin(\theta + t_0) \],

for \(0 \leq \theta \leq 2\pi \), represented with a level set. See Figure 15 for the error plot. A least squares regression estimates the order of accuracy as 1.89.
4.8. Discontinuity Removal

We next demonstrate the effectiveness of the discontinuity removal technique on a C^0 Lipschitz segmented curve. We solve the interface problem

$$\Delta u = f, \quad \forall x \in \Omega \setminus \Gamma,$$

$$[u] = a(x),$$

$$[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma.$$

We chose the parameters a, b and f using the exact solution

$$u^- = \cos(y) \sin(x),$$

$$u^+ = 1 - x^2 - y^2.$$

The interface is the segmented 5-pointed star with vertices

$$t_0 = .1243$$

$$r_i = .35 + .3(i \mod 2)$$

$$X_i = r_i \cos \left(\frac{\pi i}{5} + t_0 \right)$$

$$Y_i = r_i \sin \left(\frac{\pi i}{5} + t_0 \right),$$

for $1 \leq i \leq 10$, represented with a Lagrangian curve. See Figure 16 for the error plot. A least squares regression estimates the order of accuracy as 1.96.

![Figure 16: Numerical results for Example 4.8](image)
4.9. Discontinuity Removal

We solve the interface problem

\[\Delta u = f, \quad \forall x \in \Omega \setminus \Gamma, \]
\[[u] = a(x), \]
\[[\nabla u \cdot n] = b(x), \quad \forall x \in \Gamma. \]

We chose the parameters \(a, b \) and \(f \) using the exact solution

\[u^- = \cos(y) \sin(x) \]
\[u^+ = 1 - x^2 - y^2. \]

The interface is the curve given by

\[t_0 = 0.45234 \]
\[\theta(t) = t + \sin(4t) \]
\[r(t) = 0.60125 + 0.24012 \cos(4t + \pi/2) \]
\[(X(t), Y(t)) = (r(t + t_0) \cos(t + t_0), r(t + t_0) \sin(t + t_0)). \]

for \(1 \leq t \leq 2\pi \), represented with a level set. See Figure 17 for the error plot. A least squares regression estimates the order of accuracy as 2.04.

5. Discussion and conclusion

Our method uses a virtual node concept coupled with a Lagrange multiplier formulation to approximate the solution of the elliptic interface problem (1,2,3) and the related embedded Neumann and Dirichlet problems. Notably, the symmetric positive definite discretization and intuitive, geometric nature of the method make it easy to implement. Numerical examples demonstrate second order convergence in \(L^\infty \).

Certain FEM approaches that also use virtual nodes \([7, 8, 9, 10, 13, 14]\) parallel our work in spirit and implementation. Moreover, for typical geometric cases, virtual node representations yield the same space as those given by Heaviside enrichment XFEM approaches \([9]\). Such methods generally use lower-order triangular elements that do
not permit the obvious choice of Lagrange multiplier space Λ^h of one constraint per element. Unstructured triangular meshes generally do not achieve second order accuracy in L^∞ either. These facts motivate the interest in regular Cartesian bilinear elements that both achieve second order accuracy in L^∞ and permit straightforward Lagrange multiplier spaces. For instance, the XFEM approach of [56] that uses Cartesian bilinear elements with the Lagrange multiplier space Λ^h also demonstrated second order accuracy in L^∞.

By design, our choice of Lagrange multiplier space eases the computational effort and memory limitations imposed by the saddle-point problem at the cost of accuracy, as the pairing (V_{2h}^2, Λ^h) results in higher L^∞ error than the choice (V_h, Λ^h). Our numerical experiments indicate that our choice does not sacrifice second order convergence. Assume the pairing (V_{2h}^2, Λ^h) satisfies an inf-sup condition uniformly in h, that is, if there exist $\gamma_0, h_0 > 0$ such that, for all $h \geq h_0$,

$$\inf_{\mu \in \Lambda^h} \sup_{v \in V_{2h}^2} \alpha(\mu, v) \geq \gamma_0$$

for some function $\alpha : H^{-1/2} (\partial \Omega) \times H^1 (\Omega) \to \mathbb{R}$. Then whenever $2h \leq h_0$, as $V_{2h}^2 \subset V^h$

$$\gamma_0 \leq \inf_{\mu \in \Lambda^h} \sup_{v \in V_{2h}^2} \alpha(\mu, v) \leq \inf_{\mu \in \Lambda^h} \sup_{v \in V_h} \alpha(\mu, v),$$

so that our pairing (V_{2h}^2, Λ^h) satisfies the same inf-sup condition uniformly in h as well. Moreover, the above argument holds if we begin with satisfactory constraints on any grid coarser than G^h and then refine the corresponding space to obtain V^h. In practice, we begin with the matrix B that results from using (V^h, Λ^h), and then add together any constraints that lie in the same cell $\hat{c}_k \in G^{2h}$ to arrive at the constraints for the pairing (V_{2h}^2, Λ^h). The grid G^{2h} merely serves as an easy means of determining which rows to sum to obtain a diagonal submatrix B_m. In theory, we could sum rows in some other fashion, so long as the resulting constraint corresponds to an inf-sup stable constraint from a coarser grid.

Figure 18: Virtual node representation. On the left, a portion of an interface passes through the unduplicated grid. The images in the center column show the result of applying the duplications schemes of [8, 9, 10]. This gives at most two degrees of freedom per original node. The right column shows the richer representation given by the virtual node algorithm. The cell in the center contains two disconnected interface segments. In this case, these segments lie in distinct cells after duplication. Including both cells in the same constraint in B degrades accuracy.
In our numerical examples we give results using both a level set representation of the interface and a segmented Lagrangian representation of the interface. In principle, our method does not rely upon a particular representation of Γ. However, for high curvature interfaces such as the examples of Chen and Strain [27], using a Lagrangian representation results in an interface with significantly more detail than the background grid can resolve. This can result in a grid cell $c_k \in G^h$ that contains two or more disconnected segments of the interface (see Figure 18). We found that, in this case, enforcing one constraint per cell results in unsatisfactory accuracy, and we have yet to attempt to resolve this issue in full. For smooth interfaces, this will always vanish under refinement, and using a level set representation generally prevents this phenomenon. However, for complex interfaces, the transfer to a level set involves non-negligible regularization. Moreover, our numerical experiments suggest we actually must guarantee none of the cells $c_k \in G^h$ contain disconnected interface segments in order to retain optimal accuracy in the pre-asymptotic regime. As they do not rely on Lagrange multipliers, this does not present a challenge to either embedded Neumann or our discontinuity removal technique. For instance, in examples 4.2 and 4.8 we used the richer virtual node representation, illustrated in the right column of Figure 18, to appropriately handle the disconnected interface segments. The case of interface and embedded Dirichlet problems for non-smooth or poorly resolved curves will be treated in future research.

In our numerical examples, we solve the reduced saddle-point problem with a straightforward application of Conjugate Gradient with Jacobi preconditioning. However, the use of our method in practical applications, such as multiphase fluid dynamics, will require more efficient preconditioning. Moreover, we have not proposed a specific method for dealing with large jumps in β at the interface. Of course, in the discontinuity removal method of §3.3.1, conditioning does not present an issue.

Acknowledgements

We wish to thank Aleka McAdams and Jeffery Hellrung for their contributions. We would also like to thank Professor Tom Beale and Professor Ron Fedkiw for their helpful discussions. We used the SuiteSparse [70] numerics library with the Goto BLAS in the course of our research and to perform the extrapolations required for the discontinuity removal examples 4.7, 4.8 and 4.9. This work was supported in part by NSF DMS-0502315, NSF DMS-0652427, NSF CCF-0830554 and ONR N000140310071.

References

23

B. Vaughan, B. Smith, D. Chopp, A comparison of the extended finite element method with the immersed interface method for elliptic

[70] T. A. Davis, Suitesparseqr: Algorithm 8xx: Suitesparseqr, a multifrontal multithreaded sparse qr factorization package - submitted, ACM TOMS.