1 Lecture 12: Properties of the CG Algorithm

We showed that it is relatively easy to write an algorithm that satisfies properties 1 and 2 described in lecture 10. Namely we showed that if the search directions are A-orthogonal, then it naturally follows that the k^{th} iterate can be written as $x_k = x_{k-1} + \alpha_k p_k$ while simultaneously maintaining that x_k is the minimizer of ϕ over the span of all previous search directions. We still need to show that we satisfy property 3: $\text{span}\{p_1, p_2, \ldots, p_k\} = \mathcal{K}^k$. This is important because we know that the solution will be in the Krylov space after a reasonable number of iterations. Also, we would then be able naturally describe the convergence behavior of the method in terms of polynomials small over the spectrum of A.

We will inductively prove 4 properties of the CG algorithm described in the previous lecture. If the residual at the previous iteration is non-zero ($r_{k-1} \neq 0$), then:

- A. $\text{span}\{p_1, p_2, \ldots, p_k\} = \text{span}\{b, r_1, \ldots, r_{k-1}\} = \mathcal{K}^k$.
- B. $x_k = Q^k \lambda_k$ minimizes ϕ over \mathcal{K}^k.
- C. $p_i^T A p_j = 0$ if $i \neq j$ for $1 \leq i, j \leq k$.
- D. $r_i^T r_j = 0$ if $i \neq j$ for $1 \leq i, j \leq k$.

We will prove this inductively. First, this is trivially true when $k = 1$. Assume then that A-D are true for iteration $k - 1$ and that $r_{k-1} \neq 0$. We will now show that A-D all hold for the k^{th} iterate as well.

Property C. First, we will show C holds. Given that $r_{k-1} \neq 0$ and given the argument put forth in section 3.1 of lecture 12. We can conclude that $p_k^T A p_j = p_j^T A p_k = 0$ for $1 \leq j \leq k - 1$. And that is enough because the other indices hold from the induction assumption.

Property A. First, we want to show that the search directions are linearly independent. We know that search directions 1 through $k-1$ are linearly independent from our induction hypothesis (since \mathcal{K}^{k-1} is of dimension $k - 1$). We then just need to show that $p_k \notin \text{span}\{p_1, p_2, \ldots, p_{k-1}\}$. We can do this by contradiction. Assume $p_k \in \text{span}\{p_1, p_2, \ldots, p_{k-1}\}$. Now, since we just showed that property C holds at iteration k, we can conclude that although we construct the k^{th} iterate as $x_k = x_{k-1} + \alpha_k p_k$, we can still say that $x_k = P^k \lambda_k$ where λ_k is chosen to minimize ϕ over $\text{span}\{p_1, p_2, \ldots, p_k\}$. However, if $p_k \in \text{span}\{p_1, p_2, \ldots, p_{k-1}\}$ then $\text{span}\{p_1, p_2, \ldots, p_k\} = \text{span}\{p_1, p_2, \ldots, p_{k-1}\}$. Therefore, by property A at iteration $k - 1$ (which we are assuming is true in our induction hypothesis) we can conclude that $x_k = x_{k-1}$ since they are minimizers of ϕ (which are unique since A is full rank). Therefore, it must be true that $\alpha_k p_k = 0$. First, assume $p_k \neq 0$. In this case, $\alpha_k = \frac{r_{k-1}^T p_k}{p_k^T A p_k}$ must be equal to zero. Now, by the definition of p_k given in the previous lecture, we can see that $r_{k-1}^T p_k = p_k^T A p_k$. However, we just assumed $p_k^T A p_k \neq 0$ so this must not be possible. On the other hand, assume that $p_k = 0$. In this case (from the least squares definition of
that means Now, span r therefore since we can say R I.e. R

$$Ax$$

therefore we can say r true that r

$$\{$$

However, we still need to show they span K. Therefore, it must be true that the search directions p_i are linearly independent for $i = 1, 2, \ldots, k$. However, we still need to show they span K^k. First, the residuals are all of the form

$$r_i = r_{i-1} - \alpha_i Ap_i$$

therefore we can say

$$Ap_i = \frac{1}{\alpha_i} (r_{i-1} - r_i), \ i = 1, 2, \ldots, k - 1$$

In other words, \{Ap_1, Ap_2, \ldots, Ap_{k-1}\} \subset span $\{b, r_1, \ldots, r_{k-1}\}$. Therefore, since $p_k = r_{k-1} - Ap^{k-1}z^{k-1}$ (see lecture 11), $p_k \in$ span $\{b, r_1, \ldots, r_{k-1}\}$. More specifically, we can say $P^k = [b, r_1, \ldots, r_{k-1}]M$ with $M \in \mathbb{R}^{k \times k}$ and det$(M) \neq 0$ (since the columns of P^k are linearly independent). Therefore,

$$\text{span}\{p_1, p_2, \ldots, p_k\} = \text{span}\{b, r_1, \ldots, r_{k-1}\}.$$

Now, $r_{k-1} = b - Ax_{k-1}$ and $b \in K^k$ and $x_{k-1} \in K^{k-1}$ (by inductive hypothesis) and therefore $Ax_{k-1} \in K^k$ so since r_{k-1} is a sum of two vectors in K^k it is also in K^k. Therefore, $p_k = r_{k-1} - Ap^{k-1}z^{k-1} \in K^k$ since it is the sum of two vectors in K^k. Therefore,

$$\text{span}\{p_1, p_2, \ldots, p_k\} \subset K^k$$

and since we showed that the p_i are linearly independent, we can conclude that property A holds for the kth iteration.

Property B. This follows by the definition of α_k given that we have already established C (which lets us use only the previous iterate and the new search direction when finding a minimizer of all previous directions) and A.

Property D. If we minimize ϕ over a set of the form span$\{v_1, v_2, \ldots, v_k\}$ (i.e. $x_k = V^k y_k$, $y_k \in \mathbb{R}^{k \times k}$) that the residual $r_k = b - Ax_k$ is orthogonal to the columns of the matrix $V^k = [v_1, \ldots, v_k]$.

I.e.

$$\left(V^k\right)^T r_k = 0, \text{ therefore } \left(P^k\right)^T r_k = 0$$

Now, span$\{p_1, p_2, \ldots, p_k\} = \text{span}\{b, r_1, \ldots, r_{k-1}\}$ from property B (which we just showed), so that means

$$r_k^T r_i = 0, \ i = 1, 2, \ldots, k - 1$$

Therefore since we can say $r_j^T r_i = 0$ for $i, j = 1, 2, \ldots, k - 1$ from our induction hypothesis, it is true that $r_j^T r_i = 0$ for $i, j = 1, 2, \ldots, k$. Therefore property D holds by induction.
2 Lecture 13: Connection with Lanczos Version

The Lanczos version of the algorithm can be shown to be equivalent to the energy based version.