Difference Equation Notes

1 Multistep for test equation

Multistep methods for the test equation have the following form

\[\mathcal{L}_n^N(Z) = \sum_{j=0}^{k} \alpha_j z^{n+1-j} - \Delta t \sum_{j=0}^{k} \beta_j \lambda z^{n+1-j} = \sum_{j=0}^{k} a_j z^{n+1-j}, \quad n = k - 1, k, \ldots, N - 1 \]

with \(a_j = \alpha_j - \Delta t \lambda \beta_j \) and \(Z \in \mathbb{C}^{N+1} \). Furthermore, we can say \(a_0 \neq 0 \) or else the multistep scheme would be useless in marching our discrete solution forward in time. Therefore,

\[z^{n+1} = -\frac{1}{a_0} \sum_{j=1}^{k} a_j z^{n+1-j} = \sum_{j=1}^{k} \hat{a}_j z^{n+1-j} \]

with \(\hat{a}_j = -\frac{a_j}{a_0} \).

2 Solutions of difference equation

Denote a solution \(Z_i \) to the equations \(\mathcal{L}_n^N(Z_i) = 0 \), \(n = k - 1, k, \ldots, N - 1 \) as

\[Z_i = \begin{pmatrix} z_0^i \\ z_1^i \\ \vdots \\ z_N^i \end{pmatrix} \]

and use \(\tilde{z}_i^n \) to denote

\[\tilde{z}_i^n = \begin{pmatrix} z_{i-k}^n \\ z_{i-k+1}^n \\ \vdots \\ z_i^n \end{pmatrix}. \]

With this notation, we have

\[a^T \tilde{z}_i^n = 0, \quad n = k, k+1, \ldots, N \]

where

\[a = \begin{pmatrix} a_k \\ a_{k-1} \\ \vdots \\ a_0 \end{pmatrix}. \]

2.1 Linear dependence of \(\tilde{z}_i^n \) → linear dependence of \(Z_i \)

Suppose we have solutions \(Z_i \) for \(i = 1, 2, \ldots, l \) with \(c_i \) such that

\[\tilde{z}_i^k = \sum_{i=1}^{l-1} c_i \tilde{z}_i^k. \]
Then,
\[
z_{l}^{k+1} = \sum_{j=1}^{k} \hat{a}_j z_{l}^{k+1-j} = \sum_{j=1}^{k} \hat{a}_j \sum_{i=1}^{l-1} c_i z_i^{k+1-j} = \sum_{i=1}^{l-1} c_i \sum_{j=1}^{k} \hat{a}_j z_i^{k+1-j} = \sum_{i=1}^{l-1} c_i z_i^{k+1}
\]
and thus since we can keep repeating this argument, we see that it must be true that

\[
Z_l = \sum_{i=1}^{l-1} c_i Z_i
\]

2.2 If \(Z_i \) is a (non-zero) solution, then \(\tilde{z}_i^k \neq 0 \)
If \(\tilde{z}_i^k = 0 \), then \(z_i^{k+1} = \sum_{j=1}^{k} \hat{a}_j z_i^{k+1-j} = 0 \). And similarly, \(z_i^{k+2} = 0, \ldots \) so if \(\tilde{z}_i^k = 0 \) then \(Z_i = 0 \) and we are assuming that isn’t true.

2.3 If \(Z_i, i = 1, 2, \ldots, M \) are linearly independent (non-zero) solutions, then \(\tilde{z}_i^n, i = 1, 2, \ldots, M \) are linearly independent and non-zero.
This is implied by the results of Sections 2.1 and 2.2.

2.4 There are at most \(k \) linearly independent \(\tilde{z}_i^n \) with \(a^T \tilde{z}_i^n = 0 \)
Since \(a \in \mathbb{C}^{k+1} \), the set of \(x \in \mathbb{C}^{k+1} \) with \(a^T x = 0 \) has dimension \(k \). If there were more than \(k \) linearly independent \(\tilde{z}_i^n = 0 \), this would contradict that.

2.5 There are at most \(k \) linearly independent \(Z_i \)
This holds from the results of Sections 2.4 and 2.3