1. (i). Define the greatest common divisor $\gcd(a, b)$ of two non-zero integers a and b.

(ii). Show that if a is an odd integer and b is an even integer then $\gcd(a, b) = \gcd(a + b, a - b)$. Show that the statement may be false if a and b are both odd.

2. State the Chinese Remainder Theorem, and write down all integers x which satisfy the congruences $x \equiv 3 \pmod{17}$, $x \equiv 8 \pmod{13}$.

3. State the fundamental theorem of arithmetic. Using it prove that the equation $x^2 = 3$ has no solution in the rationals.

4. If n is a positive integer, and a_1, \cdots, a_{n+1} are $n+1$ integers, then at least two of them are congruent to each other modulo n. Prove that there are n integers b_1, \cdots, b_n that are all incongruent modulo n.

5. Show that every non-zero element $x \in \mathbb{Z}_p$ for p a prime has a multiplicative inverse, i.e. there is a $y \in \mathbb{Z}_p$ such that $xy = 1$. Using this show that $(p - 1)! = -1 \pmod{p}$.

6. Prove that if for $a \in \mathbb{Z}_p$, $a^n = 1 \pmod{p}$ for some integer n with $(n, p - 1) = 1$, then a is 1 modulo p.

7. (i) If p_1, \cdots, p_r all > 3 are primes congruent to 3 modulo 4, show that $4p_1 \cdots p_r + 3$ is not divisible by any of the p_i, and nor by 3.

(ii) Prove that if a, b are integers with ab congruent to 3 modulo 4, then one of a or b is 3 modulo 4.

(iii) Deduce that there are infinitely many primes congruent to 3 modulo 4.

8. Show that if p is 3 modulo 4, then it remains irreducible in $\mathbb{Z}[i]$.
9. Prove that the number of elements of order 2 in $\mathbb{Z}_{p_1 \cdots p_r}^*$ is 2^r where p_i are distinct odd primes.

10. Does the polynomial $x^2 + 10x + 1$ have roots modulo 31? Justify your answer.