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Brouwer’s (destructive) “First Act of Intuitionism” questioned the
universal applicability of the classical laws of double negation and
excluded third. The resulting limitation to intuitionistic
(constructive) reasoning made possible – and was justified by –
Brouwer’s “Second Act of Intuitionism” which accepted arbitrary
choice sequences of natural numbers as legitimate mathematical
objects, and required every function defined on all choice
sequences to be continuous in the initial segment topology.

In the 20th century Heyting, Kleene, Vesley, Kreisel, Troelstra, and
others clarified Brouwer’s intuitionistic logic and mathematics by
means of formal axiomatic systems; finally choice sequences could
be compared with classical number-theoretic functions, and
Brouwer’s universal spread with classical Baire space. We explain
this development, with the advantages of considering Brouwer’s
choice sequences as individual objects in the process of generation,
spreads as structured sets, and species as extensional properties.



The “First Act of Intuitionism”

Brouwer (1908, “The unreliability of the logical principles”)
accepted the universal validity of ¬¬(A ∨ ¬A) but not A ∨ ¬A.
He wrote: “Consequently the theorems which are usually
considered as proved in mathematics, ought to be divided into
those that are true and those that are non-contradictory.”

Brouwer (1923, “Intuitionist splitting of the fundamental notions
of mathematics”) distinguished between the classical meaning of
negation as falsity (justifying ¬¬A → A), and his interpretation of
negation as absurdity (justifying only ¬¬¬A → ¬A).

Heyting (1930) axiomatized intuitionistic propositional and

predicate logic as subsystems of classical systems with axioms for
&,∨,→,¬,∀ and ∃. He characterized intuitionistic negation by
(A → B) → ((A → ¬B) → ¬A) and (¬A → (A → B)), and gave a
formal proof of ¬¬(A ∨ ¬A) (whence ∀x¬¬(A(x) ∨ ¬A(x))).

¬¬∀x(A(x) ∨ ¬A(x)) is unprovable (Kleene, Nelson 1945-7).



Brouwer’s “First Act of Intuitionism” was not so much limiting as
liberating. It made possible

◮ a faithful translation of classical arithmetic,

◮ subtle distinctions which are lost with classical logic, and

◮ divergent mathematical views.

Intuitionistic first-order arithmetic IA, with full mathematical
induction, differs from classical (Peano) arithmetic PA only in its
logic. If IA is consistent, so is PA (which contains it), since PA

can be faithfully translated into IA. (Gödel 1933)

Classical ∀ and ∃ can be expressed intuitionistically by ∀¬¬ and
¬¬∃ respectively. (P. Kraus)

Markov’s Principle MP: ∀x(A(x) ∨ ¬A(x)) & ¬¬∃xA(x) → ∃xA(x)
is independent of intuitionistic logic and arithmetic. (Kreisel 1959)

IA + MP + CT is consistent and proves ¬∀x(D(x , x)∨ ¬D(x , x)),
where D(z , x) expresses {z}(x) ↓ and CT is “Church’s Thesis”
∀x∃yA(x , y) → ∃z∀x [{z}(x) ↓ &A(x , {z}(x))]. (Kleene-Nelson)



Brouwer’s early treatment of the continuum

In his 1907 dissertation, Brouwer represented the rational numbers
by pairs of integers with a decidable equivalence relation. Rational
arithmetic is unchanged by intuitionistic logic.

Real numbers can be approximated arbitrarily closely by rationals.
The constructive reals do not exhaust the continuum; they form a
“scale” of the same order type η as the rationals.

Brouwer wrote “Mathematics can deal with no other matter than
that which it has itself constructed;” and “all or every . . . tacitly
involves the restriction: insofar as belonging to a mathematical

structure which is supposed to be constructed beforehand.”

Brouwer’s primitive intuition of continuity or “fluidity” allowed him
to complete a dense scale of order type η to the “measurable
continuum,” and “to state properties of the continuum as a ‘matrix
of points to be thought of as a whole’.” He could quantify over
the continuum, but were all its elements mathematical objects?



The “Second Act of Intuitionism”

For a more analytic, less geometrical-algebraic, treatment of the
continuum, from (1918) on Brouwer developed the notions of
spread, choice sequence and species. In “Historical background,
principles and methods of intuitionism” (1952) he wrote:

The “Second Act of Intuitionism” explicitly recognizes “the
possibility of generating new mathematical entities:

“firstly in the form of infinitely proceeding sequences p1, p2, . . .
whose terms are chosen more or less freely from mathematical
entities previously acquired . . . ;

“secondly in the form of mathematical species, i.e. properties
supposable for mathematical entities previously acquired, and
satisfying the condition that, if they hold for a certain
mathematical entity, they also hold for all mathematical entities
which have been defined to be equal to it . . . ”



In “On the foundations of intuitionistic mathematics I” (1925)
Brouwer describes the concept of structured set (later spread):

“A set [menge] is a law on the basis of which, if repeated choices
of arbitrary natural numbers are made, each of these choices either
generates a definite sign series . . . or brings about the inhibition of
the process . . .; for every n > 1, after every . . . uninhibited
sequence of n − 1 choices, at least one natural number can be
specified that, if selected as the nth number, does not bring about
the inhibition of the process. Every sequence of sign series
generated in this manner by an unlimited choice sequence (and
hence generally not representable in a finished form) is called an
element of the set. We shall also speak of the common mode of
formation of the elements of a set M as . . . the set M.”

Brouwer reasoned that any process assigning a natural number
ν(α) to each element α of a spread must be continuous in the
initial segment topology. His universal spread (no restrictions) and
binary fan are intuitionistic versions of Baire and Cantor space.
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Somewhat anachronistically, we may say that an infinitely
proceeding sequence or “choice sequence” α is

◮ free or arbitrary as long as it is subject to no restrictions,

◮ lawlike (Brouwer) if all of its values are determined in advance
according to some fixed law,

◮ lawless (Kreisel) if no more than a finite initial segment can
ever be known in advance,

◮ hesitant (Troelstra) if it starts out free, but at any stage may
be restricted to continue as lawlike,

◮ relatively lawless if every lawlike predictor correctly predicts
some next values of α on the basis of values already chosen.

Cf. Kreisel’s “Lawless sequences of natural numbers” (1967);
Troelstra’s “Choice Sequences” (1977); JRM (1986-1996, 2015).

Apparently Brouwer did not express an opinion on Church’s Thesis
but it seems reasonable that all recursive sequences are lawlike,
and all lawlike sequences are definable in some sense.



After WWII Kleene was developing recursive function theory, on
the way to proving normal form and hierarchy theorems for
arithmetical and analytical relations. He defined a computational
interpretation (“number realizability,” 1945) to distinguish IA from
PA, and David Nelson verified its correctness. Gene Rose (1952)
found a propositional formula which was intuitionistically
unprovable although all its arithmetical instances were realizable;
so number realizability did not fully capture intuitionistic validity.

Kleene’s “Introduction to Metamathematics” (1952) treated
intuitionistic and classical logic and arithmetic in parallel,
consistently distinguishing constructive from classical reasoning in
mathematics and metamathematics. The continuum was omitted
– the publisher imposed a strict page limit – but in 1950 Kleene
visited Amsterdam and in 1952 Brouwer lectured in Canada and
the US, visiting Kleene in Wisconsin. By 1957 Kleene had a
function-realizability interpretation for part of intuitionistic analysis.



Formalizing intuitionistic analysis

Heyting’s (1930) formalization of analysis was as obscure as his
exposition of choice sequences and spreads in “Intuitionism: An
Introduction” (1956) was lucid. Heyting lectured in the US in 1958
(I heard him in Berkeley). The formal system FIM of Kleene and
Vesley (1965) and Kleene (1969) was guided by Heyting (1956).

FIM is a one-schema extension of a neutral subsystem B which
has the same mathematical axioms as a classical theory C of
numbers and number-theoretic functions, making comparisons
easy. Competing formal systems by Kreisel and Troelstra (1970)
and Myhill (1968, 1970) had variables over lawlike sequences.

Troelstra (1973) formalized Heyting’s arithmetic of species HAS,
but variables over intuitionistic species are not needed for
intuitionistic analysis. Detachable species S of numbers satisfy
∀n(n ∈ S ∨ ¬n ∈ S) and so have characteristic functions, while
properties of definable species can be expressed by schemas.



Kleene used type-0 variables m, n, . . . , x, y, z, m1 . . . over the
natural numbers and type-1 variables α, β, γ, . . . , α1, . . . over
infinitely proceeding sequences of numbers. Prime formulas are of
the form s = t where s, t are terms of type 0. Equality is
extensional: α = β abbreviates ∀x(α(x) = β(x)).

IA1 is two-sorted intuitionistic arithmetic, formalized using finitely
many primitive recursive function constants, parentheses denoting
function application, and Church’s λ binding a type-0 variable.

The mathematical axioms of IA1 are (x = y → α(x) = α(y)),
the defining equations for the function constants, the schema of
mathematical induction for all formulas A(x), and the λ-reduction
schema (λx.u(x)) (s) = u(s).

IA1 has a classical model in which the sequence variables range
over all primitive recursive functions. IA1 proves that formulas
with no quantifiers, or only bounded number quantifiers, are
decidable (i.e., they satisfy the law of excluded middle).



Minimal Analysis M = IA1 + AC00! where AC00! is

∀x∃!yA(x, y) → ∃α∀xA(x, α(x)).

Here ∃! denotes “there is exactly one,” in the natural sense that
∃!yB(y) abbreviates ∃yB(y) & ∀x∀y(B(x) & B(y) → x = y).
M is strong enough to formalize the theory of recursive partial
functions and functionals (Kleene 1969).

By intuitionistic logic with the decidability of number-theoretic
equality, M ⊢ AC01! where AC01! is the comprehension schema

∀x∃!αA(x, α) → ∃β∀xA(x, (β)x)

where (β)x is λyβ(〈x, y〉) (the xth section of β).

With classical logic (but not intuitionistically by Weinstein 1979),
AC00! is equivalent to AC00: ∀x∃yA(x, y) → ∃α∀xA(x, α(x)).



Kleene’s Basic Analysis B = IA1 + AC01 + BI1 where AC01 is a
stronger countable choice principle:

∀x∃αA(x, α) → ∃β∀xA(x, (β)x)

and BI1 is the axiom schema of bar induction (w ranges over codes
〈a1, . . . , ak〉 for finite sequences, ∗ denotes concatenation):

∀α∃xρ(α(x)) = 0 & ∀w[ρ(w) = 0 → A(w)]

& ∀w[∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉).

Intuitionistic Analysis FIM = B + CC1, where CC1 is Kleene’s
algorithmic version of Brouwer’s continuous choice principle:

∀α∃βA(α, β) → ∃σ∀α[{σ}[α] ↓ & ∀β({σ}[α] = β → A(α, β))].

Classical Analysis C = B + (A ∨ ¬A).



“The Foundations of Intuitionistic Mathematics” (Kleene-Vesley
1965) was careful about credit. Kleene proved

1. FIM is consistent relative to B, by function realizability.

2. FIM proves ¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0).

3. If A is arithmetical (contains only number variables) then
A ∨ ¬A is consistent with FIM by a classical argument.
So FIM + PA is consistent relative to B + PA.

4. Markov’s Principle MP1: ¬∀x¬α(x) = 0 → ∃xα(x) = 0

is consistent with, but unprovable in, FIM. The proof used
“special realizability,” inspired by the “modified realizability”
Kreisel used to prove MP independent of HA.

He also gave

5. a proof that the recursive sequences do not form a classical
model for B, and

6. a counterexample in FIM to the classical (nonmonotone)
version of the bar theorem.



In FIM Vesley gave a precise, comprehensive formal development
of Brouwer’s intuitionistic continuum, based on Heyting (1956),
Brouwer’s (1930) “Die Struktur des Kontinuums,” etc., including

7. a definition of canonical real number generators as infinitely
proceeding sequences α of (numerical codes for) dual fractions
satisfying the Cauchy condition ∀x |2α(x)− α(x)| ≤ 1,

8. a proof of Brouwer’s uniform continuity theorem,

9. a proof that the continuum is “ ‘indivisible’ . . . by any
predicate C (α) expressible by a formula C(α) of the system,”

10. proofs that the continuum is “dense in itself,” “everywhere
dense” and “separable in itself,” and that [0,1] is “freely
connected” and negatively compact.

This careful formal treatment verified that Kleene and Vesley had
captured Brouwer’s mature theory of the continuum, but was so
detailed it was considered hard to read.



Kleene’s “Formalized Recursive Functionals and Formalized
Realizability” (1969) was even harder to read. It established

11. If ⊢FIM ∃xA(x) where ∃xA(x) is closed, then ⊢FIM A(n) for
some numeral n.

12. If ⊢FIM ∃αA(α) where ∃αA(α) is closed, then there is a gödel
number e of a general recursive function ϕ such that
⊢B ∀x{e}(x) ↓ and ⊢FIM ∀α(∀x{e}(x) ≃ α(x) → A(α)).

So intuitionistic analysis can only prove the existence of individual
recursive sequences, while Brouwer’s bar and fan theorems fail if all
sequences are assumed to be recursive.

Bishop’s “Foundations of Constructive Analysis” (1967) developed
a neutral, informal theory of numbers and number-theoretic
functions with roughly the principles of Kleene’s M + AC01.
In the JSL review (1970) Myhill wrote “An important difference
[from Brouwer] is that the notion of ‘free choice sequence’ is
dropped and the only sequences used are lawlike.”



Kreisel and Troelstra’s “Formal systems for some branches of
intuitionistic analysis” (1970) described a minimal system EL of
“elementary analysis” like Kleene’s M but with variables a, b, c,
. . . over lawlike rather than arbitrary choice sequences, with
two-sorted intuitionistic arithmetic, full mathematical induction
and a function-existence axiom AC-NN! like AC00!:

∀x∃!yA(x, y) → ∃a∀xA(x, a(x)).

Troelstra’s “Metamathematical Investigations of Intuitionistic
Arithmetic and Analysis” (1973) redefined EL, weakening AC-NN!
by restricting it to quantifier-free formulas A(x, y). This final
version of EL can still prove the existence of every general
recursive function, but unlike the earlier EL (or Kleene’s M) it
cannot prove that every decidable property of natural numbers has
a characteristic function (Vafeiadou 2012). Veldman is currently
investigating reverse intuitionistic mathematics over a minimal
system BIM, like EL but with variables over choice sequences.



For bar induction Kreisel and Troelstra let e vary over the class K
of “Brouwer-operations” (lawlike monotone neighborhood
functions coding continuous functionals on the universal spread).
The theory of inductive definitions IDB extended EL by the
axioms for K , and IDB1 = IDB + AC-NF.

For comparison with FIM, they added choice sequence variables
α, β, . . ., extending IDB to ELC, and formulated new principles:

A (analytic data): A(α) → ∃e(∃β(e|β = α) & ∀βA(e|β)),

BC-C (bar-continuity): ∀α∃βA(α, β) → ∃e∀αA(α, e|α),
(like continuous choice CC1 but with a lawlike modulus) and

BC-F!: ∀α∃!bA(α,b) → ∃e∃b∀αA(α, (b)
e(α)).

Troelstra proved that CS = ELC + A + BC-C + BC-F! is a
conservative extension of IDB1 and a conservative extension of
FIM, and that CS ⊢ ∀α¬¬∃b(α = b).



Kreisel (1968, “Lawless sequences of natural numbers”) proposed
a different conservative extension LS of IDB1, with the variables
α, β, . . . ranging over intensionally lawless (rather than arbitrary
choice) sequences. The new axioms were

LS1 (density): ∀w∃α (α(lh(w)) = w),

LS2 (discreteness): ∀α∀β (α = β ∨ ¬(α = β)),

LS3 (open data): A(α) → ∃n∀β (β(n) = α(n) → A(β))

and LS4 (lawlike continuous choice BC-F, like BC-F! without !).
Troelstra observed that in LS3 and LS4 the α must be required to
be distinct from any other free lawless variables.

Other notions of choice sequence are based on projections of
lawless sequences; cf. Chapter 12 of Troelstra and van Dalen,
“Constructivism in Mathematics” (1988), which shows how to
eliminate choice sequence variables from CS and LS. The authors
observe that IDB1 is compatible with CT but Kleene’s B is not.



However, even FIM is compatible with “weak Church’s Thesis”

WCT: ∀α¬¬∃e∀x ({e}(x) ≃ α(x))

by JRM (1971). While IDB1 requires all continuous functionals to
have lawlike moduli, B does not. And LS2 is essentially intensional.

For an extensional alternative, I added lawlike sequence variables a,
b,. . . to Kleene’s language and a lawlike comprehension axiom
ACR

00! to B, then defined a choice sequence α to be relatively

lawless – R-lawless where R is the class of lawlike sequences – if
each lawlike predictor correctly predicts α somewhere. Formally:

RLS(α) ≡ ∀b[∀wSeq(b(w)) → ∃xα ∈ α(x) ∗ b(α(x))].

As in Fourman’s 1981 Brouwer Symposium talk, α and β are
independent if their merge [α, β] is relatively lawless.

The formal system RLS has a relative density axiom in place of
Kreisel’s discreteness axiom, and the α in open data and lawlike
continuous choice must satisfy an independence restriction.



A formula of the language is restricted if its choice sequence
quantifiers vary over relatively independent R-lawless sequences,
e.g. ∀α(RLS([α, β]) → B(α, β)), ∃α(RLS([α, β]) & B(α, β)).

IRLS is B (extended to the new language) plus the axioms

ACR

00! ∀x∃!yA(x, y) → ∃b∀xA(x,b(x))

for A(x, y) restricted, with no choice sequence variables free.

RLS1: ∀w(Seq(w) → ∃α[RLS(α) & α ∈ w]).

RLS2: ∀w(Seq(w) → ∀α[RLS(α) → ∃β[RLS([α, β]) & β ∈ w]]).

RLS3: ∀α[RLS(α) → (A(α) →
∃w(Seq(w) & α ∈ w & ∀β[RLS(β) → (β ∈ w → A(β))]))].

RLS4: ∀α[RLS(α) → ∃bA(α,b)] →
∃e∃b∀α[RLS(α) → ∃n(e(α) = n & A(α, λx.b(〈n, x〉)))].

In RLS3,4 the A(α) and A(α,b) must be restricted, with no choice
sequence variables free but α.



IRLS proves ∀b∃α(b = α) and ∀α(RLS(α) → ¬∃b(α = b)), and
that the class of R-lawless sequences has nice closure properties.
In contrast, CS proves ∀α¬¬∃b(α = b), and in LS the class of
lawless sequences has no nice closure properties.

In IRLS every restricted formula E without free choice sequence
variables is equivalent to a formula τ(E) without choice sequence
variables. A lawlike subsystem IR of IRLS formalizes Bishop’s
analysis, and IR + MP + CT formalizes Russian recursive analysis.

Troelstra (1997) observed that the lawlike sequence variables could
range over the classical sequences, treated as completed objects.
Formally, let RLS = IRLS + RLEM, where for A(α) restricted and
with no choice sequence variables but α free:

RLEM is ∀α[RLS(α) → A(α) ∨ ¬A(α)].

In the language without choice sequence variables, R = IR + LEM
formalizes classical analysis. Assuming a particular definably
well-ordered subset of Baire space is countable, the common
extension FIRM of FIM and RLS is consistent.



Why it is still useful to consider choice sequences as individuals:

◮ By varying the logic, the lawlike part of Brouwer’s universal
spread can be viewed as constructive, recursive or classical.

◮ Bishop’s constructive sequences satisfy countable choice.

◮ The recursive sequences satisfy recursive countable choice but
not the bar or fan theorem.

◮ The classical sequences satisfy the bar theorem and countable
choice, but not continuous choice.

◮ Brouwer’s choice sequences satisfy the bar theorem, countable
choice and continuous choice.

◮ If the class R of lawlike sequences is countable “from the
outside” then there is a class of R-lawless sequences which is
disjoint from R and Baire comeager, with classical measure 0.

◮ The R-lawless sequences satisfy restricted open data and
continuous choice, but not the restricted bar theorem.



Endnotes:

◮ If the class R of lawlike sequences is countable, the R-lawless
sequences are all the generic sequences with respect to
properties of finite sequences of natural numbers which are
definable over (ω,R , ωω) by restricted R-formulas with
parameters from ω,R .

◮ Dragalin (1974, in Russian), van Dalen (1978, ”An
interpretation of intuitionistic analysis”) and Fourman (1982)
all suggested modeling lawless by generic sequences. Lawlike
predictors were my idea, but maybe not only mine.

◮ R-lawless and random are orthogonal concepts, since a
random sequence of natural numbers satisfies some lawlike
regularity properties (e.g. the percentage of even numbers in
its nth initial segment should approach .50 as n increases)
while an R-lawless sequence satisfies none.



Now a little reverse intuitionistic mathematics related to Veldman’s
work on Open Induction. A spread determined by a spread-law σ

will be called anchored if σ(w ∗ 〈0〉) = 0 whenever σ(w) = 0.

Observation. The principle of Open Induction on the binary fan is
a consequence, in IA1 + qf-AC00 (and equivalently in BIM or EL),
of the (detachable) fan theorem for an anchored Σ0

1 subfan of the
binary fan, which is equivalent to bar induction on a spread with at
most binary branching.

The proof is essentially Coquand’s proof of Open Induction on the
binary fan by bar induction on a spread with at most binary
branching. The point of the observation is that by allowing more
complicated fan “laws” – using the flexibility afforded by choice
sequence variables – we can reduce some bar induction arguments
to intuitionistically equivalent fan induction arguments.
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