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Kleene’s formalization of intuitionistic analysis FIM (Kleene and
Vesley [1965], as extended by Kleene [1969]) includes bar
induction, countable and continuous choice, but cannot prove that
the constructive arithmetical hierarchy is proper.

Veldman showed that in FIM the constructive analytical hierarchy
collapses at Σ1

2 .

These are serious obstructions to interpreting the constructive
content of classical analysis, just as the collapse of the arithmetical
hierarchy at Σ0

3 in HA + MP0 + ECT0 limits the scope and
effectiveness of recursive analysis.

Question: Can we do better by working within classical extensions
of nonclassical theories, or within classically correct theories
obeying e.g. Church’s Rule or Brouwer’s Rule?



We work in a two-sorted language L with variables over numbers
and one-place number-theoretic functions (choice sequences). Our
base theory M – the minimal theory used by Kleene [1969] to
formalize the theory of recursive partial functionals, function
realizability and q-realizability – extends Heyting arithmetic to the
two-sorted language, with extensional equality for functions.

M includes defining axioms for finitely many primitive recursive
function constants, a λ-reduction schema, and the function
comprehension schema ∀x∃!yA(x, y) → ∃α∀xA(x, α(x)).

An L-theory is a consistent axiomatic extension of M in the
language L (possibly enriched by additional primitive recursive
function constants). An L-theory may be intuitionistic, classical or
intermediate depending on its underlying logic.



The L-theories T which have been proposed so far to express parts
of constructive mathematics typically have one or more of the
following properties:

An explicit L-theory T provides explicit witnesses for existential
theorems:

(a) If ∃xA(x) is closed and `T ∃xA(x) then `T A(n) for some
numeral n.

(b) If ∃αA(α) is closed and `T ∃αA(α), then for some B(α) with
only α free:

`T ∀α[B(α) → A(α)] & ∃!αB(α).

A Brouwerian L-theory T satisfies Brouwer’s Rule:

“If `T ∀α∃βA(α, β) then
`T ∃σ∀α[∀x∃y({σ}[α](x) ' y) & A(α, {σ}[α])].”



A recursively acceptable L-theory T satisfies Markov’s Rule:

“If `T ¬¬∃xA(x) & ∀x[A(x) ∨ ¬A(x)] then `T ∃xA(x)”

and Church’s Rule:

“If `T ∃αA(α) with ∃αA(α) closed, then
`T ∃e[∀x∃!yT(e, x, y) &

∀α[∀x∀y[T(e, x, y) → α(x) = U(y)] → A(α)]].”

If T is both recursively acceptable and explicit, then T evidently
satisfies the Church-Kleene Rule:

“If `T ∃αA(α) where ∃αA(α) is closed, then for a suitable e:
`T ∃α[∀x(α(x) ' {e}(x)) & A(α)].”

No classical L-theory has any of these properties (except, of
course, closure under Markov’s Rule).



FIM has all these properties. So do the L-theory FIM + MP1 and
its (classically correct) L-subtheory T1 ≡ M + BI1 + MP1, which
prove that the constructive arithmetical hierarchy is proper. Here
BI1 is the bar induction schema and MP1 is

∀α(¬¬∃xα(x) = 0 → ∃xα(x) = 0).

In addition to “saving the constructive arithmetical hierarchy,” T1

has “more classical sequences” than FIM, in the following sense. If
T is an L-theory and

`T ¬¬∃αA(α),

then we say “a sequence α satisfying A(α) is unavoidable over T.”

Only recursive sequences are unavoidable over FIM (JRM [1971])
but the characteristic functions of all arithmetical relations (with or
without sequence parameters), and of all classically ∆1

1 relations,
are unavoidable over FIM + MP1 and over T1 (Solovay, JRM, in
JRM [2003]).



Definition. T2 comes from FIM by adding

I. ¬¬∀x[A(x) ∨ ¬A(x)] for arithmetical A(x) (parameters of
both sorts allowed, but no sequence quantifiers).

II. “Only classically Σ1
1 sequences are unavoidable”:

∀α¬¬∃e∀x∀y[α(x) = y ↔ ¬¬∃β∀z¬T(e, x, y, β(z))].
III. “Every Π1

1 sequence is unavoidable”:

∀e[∀x¬¬∃y∀β∃zT(e, x, y, β(z))&
∀x∀y∀u(∀β∃zT(e, x, y, β(z))& ∀β∃zT(e, x,u, β(z)) → y = u) →

¬¬∃α∀x∀y[α(x) = y ↔ ∀β∃zT(e, x, y, β(z))]].

T2 is consistent by a classical realizability interpretation (a
modification of my old Grealizability) satisfying first-order Peano
arithmetic PA but not MP1.



Definition. A sequence ε agrees with an L-formula E as follows.

1. Every ε agrees with a prime formula P.

2. ε agrees with A & B, if (ε)0 agrees with A and (ε)1 agrees
with B.

3. ε agrees with A ∨ B, if (ε(0))0 = 0 implies that (ε)1 agrees
with A, while (ε(0))0 6= 0 implies that (ε)1 agrees with B.

4. ε agrees with A → B, if, whenever α agrees with A, {ε}[α] is
defined and agrees with B.

5. ε agrees with ¬A, if ε agrees with A → 1 = 0.

6. ε agrees with ∃xA(x), if (ε)1 agrees with A(x).

7. ε agrees with ∀xA(x), if, for each x , {ε}[x ] is completely
defined and agrees with A(x).

8. ε agrees with ∃αA(α), if {(ε)0} is completely defined and
(ε)1 agrees with A(α).

9. ε agrees with ∀αA(α), if, for each sequence α, {ε}[α] is
completely defined and agrees with A(α).



Definition. Let ε be a ∆1
1 sequence and E a formula of L with at

most Ψ free. Let Ψ be numbers and ∆1
1 sequences interpreting Ψ.

1. ε ∆1
1realizes-Ψ a prime formula P, if P is true-Ψ .

2. ε ∆1
1realizes-Ψ A & B, if (ε)0

∆1
1realizes-Ψ A and (ε)1

∆1
1realizes-Ψ B.

3. ε ∆1
1realizes-Ψ A ∨ B, if (ε(0))0 = 0 ⇒ (ε)1

∆1
1realizes-Ψ A,

and (ε(0))0 6= 0 ⇒ (ε)1
∆1

1realizes-Ψ B.

4. ε ∆1
1realizes-Ψ A → B, if ε agrees with A → B and, whenever

α ∆1
1realizes-Ψ A, {ε}[α] (is defined and) ∆1

1realizes-Ψ B.

5. ε ∆1
1realizes-Ψ ¬A, if ε ∆1

1realizes-Ψ A → 1 = 0.

6. ε ∆1
1realizes-Ψ ∃xA(x), if (ε)1

∆1
1realizes-Ψ, (ε(0))0 A(x).

7. ε ∆1
1realizes-Ψ ∀xA(x), if, for each x , {ε}[x ] is defined and

∆1
1realizes-Ψ, x A(x).

8. ε ∆1
1realizes-Ψ ∃αA(α), if {(ε)0} is defined and (ε)1

∆1
1realizes-Ψ, {(ε)0} A(α).

9. ε ∆1
1realizes-Ψ ∀αA(α), if ε agrees with ∀αA(α) and, for each

∆1
1 sequence α, {ε}[α] is defined and ∆1

1realizes-Ψ, α A(α).



Definition. A closed formula E is ∆1
1realizable if and only if some

∆1
1 sequence ε ∆1

1realizes E. An open formula is ∆1
1realizable if and

only if its universal closure is.

We need a number of lemmas, differing little from those for
Grealizability, e.g.

Lemma 4. For each formula E there is a primitive recursive
sequence εE which agrees with E.

Lemma 7. Let E contain free only Ψ. Then E is ∆1
1realizable if and

only if there is a recursive partial functional ϕ[Ψ, γ] ' λt.ϕ(Ψ, γ, t)
such that, for some ∆1

1 sequence δ: ϕ[Ψ, δ] is completely defined
and agrees with E for every choice of Ψ , and if every sequence in
the list Ψ is ∆1

1 then ϕ[Ψ, δ] ∆1
1realizes-Ψ E.

The ϕ[Ψ, δ] given by Lemma 7 is called a ∆1
1realizer for E.



Lemma 9. (a) For each arithmetical formula A(β, x1, . . . , xk) with
no free variables other than β, x1, . . . , xk , and for each ∆1

1

sequence β, there is a ∆1
1 function ϑβ of t, x1, . . . , xk such that if

ϑ[x1, . . . , xk ] = λt.ϑβ(t, x1, . . . , xk) then for all x1, . . . , xk :

(i) ϑ[x1, . . . , xk ] agrees with A(β, x1, . . . , xk).

(ii) ϑ[x1, . . . , xk ] ∆1
1realizes-β, x1, . . . , xk A(β, x1, . . . , xk) if and

only if, under the intended classical interpretation,
A(β, x1, . . . , xk) is true-β, x1, . . . , xk .

(b) With the same conditions on A(β, x1, . . . , xk) and β, there is a
∆1

1 sequence ψ which ∆1
1realizes-β

∀x1 . . .∀xk[A(β, x1, . . . , xk) ∨ ¬A(β, x1, . . . , xk)]. In particular, if
A(x1, . . . , xk) is purely arithmetical, then
A(x1, . . . , xk) ∨ ¬A(x1, . . . , xk) is ∆1

1realizable.



Theorem. If Γ `T2 E and the formulas Γ are ∆1
1realizable, so is E.

Proof. For each axiom E with only Ψ free we give a ∆1
1realizer

ϕ[Ψ, δ]. Then, assuming that a ∆1
1realizer exists for each premise of

a rule of inference, we give a ∆1
1realizer for the conclusion.E.g.

ϕ[Ψ ] ' ϕ[Ψ, λt.0] ' Λσλt.0 is a ∆1
1realizer for an instance of (I)

with only Ψ free, since Lemma 9(b) gives a ∆1
1realizer for

∀x[A(x) ∨ ¬A(x)], and (I) is the double negation of this formula.

ϕ ' ϕ[δ] ' ϕ[λt.0] ' ΛαΛπλt.0 is a ∆1
1realizer for the axiom (II)

asserting that every sequence is classically Σ1
1 . Agreement is

obvious; and for each ∆1
1 sequence α there exist numbers f and,

by the Spector-Gandy Theorem, also e so that for all x , y :
α(x) = y ⇔ (γ)(Ez)T (f , x , y , γ(z))

⇔ (Eβ ∈ ∆1
1)(z)T (e, x , y , β(z)).

ϕ ' ΛσΛπλt.0 ∆1
1realizes axiom (III).



Corollary 1. T2 is consistent, in fact every closed theorem of T2

has a recursive ∆1
1realizer.

Proof. In the proof of the theorem, the parameter δ used in
defining a ∆1

1realizer for an axiom of T2 can always be taken to be
recursive, and this property is preserved by the rules of inference.
0 = 1 is not ∆1

1realizable so T2 is consistent.

Corollary 2. T2 is Brouwerian and does not prove MP1.

Proof. T2 has Brouwer’s continuous choice principle as an axiom
schema. Vesley’s Schema VS, which (proves Brouwer’s creating
subject counterexamples and) is ∆1

1realizable, contradicts MP1.

Corollary 3. T3 = T2 + PA is a Brouwerian L-theory which is not
recursively acceptable.

Proof. T3 is consistent by ∆1
1realizability. T3 proves

∀x∃!y[y ≤ 1 & (y = 0 ↔ ∃zT(x, x, z))] and hence
∃α¬∃e∀x∃y(T(e, x, y) & U(y) = α(x)), so violates Church’s Rule.
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