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1 Background and Motivation

The constructive tendency in mathematics has deep roots. Most mathematicians prefer direct proofs
to indirect ones, though some classical theorems have no direct proofs. For example, the proof that
every limit point of AU B is either a limit point of A or a limit point of B cannot be direct, since the
hypothesis is insufficient to determine which of the two disjuncts of the conclusion must hold. What
one actually proves is that if p has a neighborhood N; missing A and a neighborhood N5 missing B,
then p has a neighborhood missing A U B. This trivial argument is entirely constructive from the
definition of “topological space,” but classical logic is needed to interpret it as a proof of the original
proposition.

Probably the most influential constructivist of the twentieth century was the intutionist L. E. J.
Brouwer, who believed that the Aristotelian law of excluded middle (A or not A) held only in situations
where the decision between the disjuncts could be made effectively. While Brouwer disapproved of
formal reasoning, his student A. Heyting developed intuitionistic logic and arithmetic as subtheories
of the corresponding classical theories; for this reason, intuitionistic arithmetic is called “Heyting
arithmetic.” Godel showed by a translation that these intuitionistic theories are equiconsistent with
the classical ones.

Other recognized varieties of constructive mathematics are finitism (Kronecker, Weyl), Russian
recursive mathematics (Markov), and cautious constructivism (Bishop, Bridges, Richman). Markov
and Bishop, like Brouwer, were especially interested in analysis. Bishop’s constructive analysis is a
subtheory of classical analysis; Markov’s and Brouwer’s are not. All are based on intuitionistic logic.

1.1 The B-H-K Interpretation

In order to recognize a statement as true, an intuitionist requires justification or proof. Tarski’s “truth
definition” for classical logic (see e.g. Kleene [1952] § 81) has an intuitionistic parallel, the Brouwer-
Heyting-Kolmogorov interpretation, which clarifies the relationship between acceptable justification
and logical structure.

1. To justify a prime sentence P is to recognize its truth.
2. To justify A & B is to justify A and B.
3. To justify AV B is to justify a specific one of A, B.

4. To justify A — B is to provide a construction which transforms every justification of A into a
justification of B.

5. To justify —A is to justify A — 1, where | is a known contradiction.

6. To justify VzA(z) where D is the intended range of the variable z, is to provide a construction
which associates with each d € D a justification of A(d).

7. To justify JzA(x) (with D as the range of x) is to justify A(d) for a specific d € D.



This is an explication, not a precise definition, as it relies on our intuitive understanding of words
like “recognize,” “construction” and “transforms.” In applications the variable x ranges over a specific
domain D, which need not be finite but must be structured so that a correct assertion of the form
d € D is self-justifying. For arithmetic, D is the collection N of natural numbers, understood as
generated from 0 by repeated application of the successor operation. For analysis, D is the collection
of infinitely proceeding sequences of natural numbers.

Ezercise 1.1. Assuming that every true statement can be justified (and that every recognizably
true statement is true), use the B-H-K interpretation to prove that every justifiable statement is true
according to the Tarski “definition” of classical truth.

1.2 Language and Logic

Brouwer expressed the view that mathematical objects (including proofs) are mental constructs, in-
dependent of language. Language is only a (sometimes untrustworthy) tool for communicating math-
ematical constructions. Logic is independent of language, but general logical principles which are
always capable of justification may be formalized and used as shortcuts in mathematical reasoning.

The languages of pure intuitionistic propositional and predicate logic are the same as for clas-
sical logic. The language of intuitionistic (Heyting) arithmetic is the same as for classical (Peano)
arithmetic. Only the logic is different.

The B-H-K interpretation gives each of the logical symbols &, V, —, =, V, 3 a distinct meaning,.
Classically, all the propositional connectives can be defined from & and —, while 9 can be defined
from V and —, so V, — and 3 are unnecessary. Intuitionistic logic, in contrast, makes full use of the
expressive power of the formal language.

2 Formal Systems for Intuitionistic Logic

2.1 Intuitionistic Propositional Logic Pp

We begin with a Hilbert-style formalism Pp, from Kleene [1952], for intuitionistic propositional logic.
The language L£(Pp) has distinct proposition letters Py, Py, P, ..., logical symbols &, V, —, = and
left and right parentheses (, ).

Definition. The prime formulas of L(Pp) are the proposition letters. The (well-formed) formulas
of L(Pp) are defined inductively as follows.

e FEach prime formula is a formula.
e If A, B are formulas so are (A & B), (AV B), (A — B) and (—A).

In general, we use A, B,C,... as metavariables for well-formed formulas, omitting parentheses on the
usual convention that — binds closer than &, V which bind closer than —. Thus -A & B - BV C
abbreviates (((—=A) & B) — (B V C)) and will be treated as well formed, while A - BV C — A is

ambiguous and hence not well formed.

Pp has one rule of inference:
R1 (Modus Ponens). From A and A — B, conclude B.
The azioms of Pp are all formulas of the following forms:
X1. A— (B — A).
X2. (A-B) = (A= (B—=0C)) = (A—=0)).
X3. A— (B— A& B).
X4. A& B — A



X5. A& B — B.

X6. A— AV B.

X7. B— AV B.

X8 (A=-C)=»(B—=-C)—=(AvB—=Q).
X9. (A— B) = ((A— —-B) —» -A).

X10. -A — (A — B).

Definition. A proof in Pp is any finite sequence of formulas, each of which is an axiom or an
immediate consequence, by the rule of inference, of two preceding formulas of the sequence. Any proof
is said to prove its last formula, which is therefore a theorem of Pp. We write Fpp E (or in this
subsection just - F) to denote that E is a theorem of Pp.

Ezample. Here is a formal proof in Pp of A & B — B & A, with the reasons for some of the steps
omitted.

1. A& B — A. [axiom by X4]
2. (A&4B—-A)—-((A&B—-(A—-B&A) - (A& B — B & A)). [axiom by X2]
(A&B—-(A—-B&A)—> (A& B—B&A). by Rl from 1,2]

= W

B—(A—-B&A).
(B-(A—>B&A) (A& B—(B—(A—B&A)).
A& B — (B— (A— B & A)). [by Rl from 4,5]

N W

A & B — B. [axiom by X5]

8. A& B—+B)—» ((A&«B—-(B—(A—-B&A) > (A& B—(A— B&A)).
9. (A4B—-(B—-(A—-B&A))— (A& B— (A— B&A).

10. A& B— (A— B & A).

11. A& B — B & A. [by R1 from 3,10]

Ezercise 2.1. Provide reasons for steps 4, 5, 8, 9, 10 in the sample proof.

2.2 Deduction in Pp

The sample proof of A & B — B & A above suggests that formal proofs in Pp are slow and cumber-
some. However, the pattern of lines 4-6 can be used to justify the derived rule

e From B conclude A — B.

Using this rule, the sample proof could be shortened by one line. By considering deductions (or
derivations) instead of just proofs, we can simplify the situation still further. A deduction is simply a
proof from assumptions.

Definition. A deduction (or derivation) in Pp of a formula E from a collection I' of formulas is
a finite sequence of formulas, each of which is an axiom or a member of I' or follows immediately by
R1 from two formulas occurring earlier in the sequence. If such a deduction exists, F is said to be
deducible or derivable in Pp from I', and we write I' Fpp E (or in this section just I' - E).

Observe that if I' - E then there is a finite subset IV = {G1,...,Gy} of T such that I - E (also
written G1,...,G, F E). If n. =0 (so I" is empty) then - E. Sometimes, as in the following theorem,
it is convenient to write ', A F E instead of T' U {A} F E.



Theorem 2.1. (The Deduction Theorem for Pp) If ' A + B thenI' - (A — B).

Proof. Fix I" and A. We prove the theorem for every B, by induction on the length n of any given
derivation Ey, ..., E, of B from I', A (so E, is B).

If n = 1 then E4 is an axiom, a member of I', or A. In the first two cases we construct a new
deduction Fy, Fy, F3 of (A — E;) from I' following the pattern of the derived rule suggested at the
beginning of this subsection. If E; is A, construct a (five-line) proof of (A — A) in Pp.

Assuming the theorem holds for deductions of length < n where n > 1, consider a given deduction
Eq,...,E, from ', A. If E, is an axiom or a member of I', proceed as in the basis. If F, comes from
some F;, B, with j,k < n by Rl, where Ej, is (E; — E,), then by the induction hypothesis there
are deductions Fi,..., F, of (A — E;) from I, and F,11,..., Frys of (A — Ej) from I'. Extend the
deduction Fi, ..., F,14 by three lines to obtain a deduction of (A — E,,) from T

Ezercise 2.2. Complete the proof of the Deduction Theorem by providing Fy 11, Frisi2, Frists
for the induction step.

The next result is almost trivial, but useful nevertheless. We dignify it by calling it a theorem.
Part (a) is the converse of the Deduction Theorem, and part (b) essentially says that F is transitive.
As usual, I'; A are collections of formulas and A, B are formulas; note that I', A may overlap.

Theorem 2.2. In Pp:
(a) UT' + (A— B) then T, A + B.
(b) fT" F Aand A,A + BthenT,A + B.

Ezample. Here is a proof that - (A — B) & (B — C) — (A — C). The proof is constructive,
since the (constructive) proofs of the Deduction Theorem and Theorem 2.2 provide an algorithm for
converting this outline into a formal proof in Pp of (A — B) & (B - C) — (A — C).

1. (A= B)& (B—C) F (A— B). [by Thm. 2.2(a) from X4]
2. (A= B)& (B—C) F (B—C). [by Thm. 2.2(a) from X5]

3. ( B—=-C)F(A— (B—C(C)). [by Thm. 2.2(a) from X1]

5. (A= B),(B—C)F(A—C). [by Thm. 2.2(b) from 3,4]

6. A—-B)&(B—C),(B—C) F (A—C). [by Thm. 2.2(b) from 1,5]

)

)

)

4. (A= B),(A— (B— C)) (A — C). by Thm. 2.2(a) twice, from X2]
)

) &

7. (A= B) & (B—C) I (A— C). [by Thm. 2.2(b) from 2,6]

8 F(A—-B)& (B—C)— (A— C). [by Thm. 2.1 from 7]

FEzercise 2.3. Use Theorems 2.1 and 2.2 to prove that - ((A — B) = (=B — —A4)).

Theorems 2.1 and 2.2 are metatheorems (theorems about the formal system, proved construc-
tively). Another metatheorem which should be completely obvious is the fact that Pp has the single
substitution property: If I' + E, and if IV, E' come from I, E respectively by replacing every occurrence
of a particular proposition letter P by an occurrence of the formula A, then IV - E'.

Definition. Let E be a formula of £(Pp) containing at most the (distinct) proposition letters
Py,...,P,. Let Aq,..., A, be (not necessarily distinct) formulas of L(Pp). It E' comes from E by
simultaneously replacing each occurrence of P; in E by an occurrence of A;, for i = 1,...,n, then E’
is called a substitution instance of E in L(Pp).

Every such substitution instance of E can be viewed as the result of a finite sequence of single
substitutions, as follows. Suppose the list P,..., P, includes all the proposition letters occurring
in Ay,..., Ap. For i =1 to n, let B; come from A; by successively replacing every occurrence of P; by
an occurrence of Py, yy,yj, for j =1 to n. Then none of Pi,..., P, occurs in any of By,...,B,. Let F'
be the formula obtained from E by successively replacing every occurrence of P; by an occurrence of



B;, for i =1 to n. Finally, E' comes from F by successively replacing every occurrence of P14 by
an occurrence of P;, for 1 =1 to n.

Theorem 2.3. (The Substitution Property for Pp) If I' + FE. and if IV, E' come from T, E
respectively by simultaneously replacing every occurrence of P; by an occurrence of A;, fori =1,...,n,
then TV + FE'.

Ezercise 2.4. Show that if Axiom Schema 10 is replaced by the classical law of double negation
——A — A, then AV —A becomes provable for every formula A. [Hint: First show how to construct a
proof in Pp of =—(AV —A).]

It follows from Exercise 2.4 that the formal system ¢Pp which comes from Pp by strengthening
Axiom Schema 10 to —=—A — A (and defining Fcpp accordingly) is classical propositional logic. Clearly
cPp also has the substitution property, and the Deduction Theorem and Theorem 2.2 hold for cPp
by essentially the same proofs as for Pp.

Ezercise 2.5* Suppose that E, F' are formulas of £L(Pp) such that for every substitution instance
(E' - F') of (E — F): if Fepp E' then Fepp F'. Show that Fepp (E — F). [The * indicates a more
difficult exercise.]

A rule of the form “From any substitution instance of E, conclude the corresponding substitution
instance of F” which satisfies the hypothesis of this exercise with respect to a given formal theory
is called an admissible rule of the theory. Exercise 2.5* shows that every admissible rule of ¢Pp is
derivable in cPp. The corresponding statement for Pp is false; in fact, the collection of admissible,
nonderivable rules of Pp is recursively enumerable and infinite. A concrete enumeration proposed by
de Jongh and Visser was recently proved by Iemhoff [2001] to be correct and complete.

2.3 The Natural Deduction System NPp

We have just observed that a few derived rules can save much time and effort in constructing (outlines
of) formal proofs and derivations in Pp. Omne can go still further and abandon all axiom schemas
in favor of rules as in the following natural deduction system NPp (essentially from Kleene [1952]),
which differs from N-IPC of Troelstra and van Dalen [1988] only by having rules for — instead of L.
Formal derivations in a natural deduction system are labelled, rooted finite trees rather than finite
sequences of formulas. This feature makes it easier to see how each step depends on the assumptions.

Definition. A deduction D in NPp of a formula E from assumptions I' is a finite tree with a
formula attached to each node (in particular, formulas from I' attached to the leaves and E attached
to the root), defined inductively as follows.

(i) If E € T then -F is a deduction from T of E.

(ii) If D1, Dy and Djs are deductions from I' (and possibly the additional assumptions shown inside
square brackets), of their last formulas (shown explicitly), then new deductions from T' may be
constructed using the following rules. Assumptions shown inside square brackets are cancelled
when the indicated rule is applied. Each new deduction is a deduction of its last formula.

Dy Do Dy Dy
A B A& B A& B
&1 A% B &E, a1 &E; 5
[A] [B]
D, Dy Dy Dy D3
A B AV B C C
Ve avEe Vi ave VB c



D1 D1 Doy
T B R A— B A
A— B B
[A]  [4]
D1 D, Dy D,
B -B A -A
-1 — a1 E; 5

If T is a list of formulas and F a formula in the language £L(Pp), then I' Fnypp F means there is a
deduction D in NPp of E from I'. If I' is empty then D is a proof of E in NPp.

It follows from the definition that if D is a deduction from I' of E, and I" is the set of open
assumption formulas occurring at the leaves of D, then I C I" and for each A D I": D is a deduction
from A of F.

2.4 Equivalence of Pp with NPp

Theorem 2.4. If E is a formula, and I" a collection of formulas, of £(Pp), then
T |_Pp E if and only if T |—Npp E.

Proof for all I', E simultaneously, by induction on the definitions. If £ € I' there is nothing to
prove in either direction. For =, we first construct a proof in NPp of each axiom FE of Pp. As an
example, observe that

R
B— A
is a deduction of (B — A) from A, and hence
7[A] — 1
B— A 1
A— (B— A

is a proof of X1. There was no assumption B to cancel at the first — I. The assumption A was
cancelled by the second — 1.

Axioms X2-X10 are treated similarly, each using — I together with one other rule of NPp. Rule
— E of NPp justifies the rule R1 of Pp. Hence every deduction in Pp can be transformed into a
deduction in NPp, with the same assumptions and the same conclusion.

For <, we need to show that each rule of NPp is derivable in Pp. Theorem 2.1 takes care of
— I, and Theorem 2.2 of — E. For VE, suppose D; is an NPp-deduction from I'; A of C; Dy is an
NPp-deduction from I', B of C; and D3 is an NPp-deduction from I" of (A V B). By the induction
hypothesis, in Pp there are deductions of C' from I') A and of C from I', B, and also a deduction
Gi,...,Gp of (AV B) from I'. By the Deduction Theorem for Pp there are deductions Ei,..., Ej
of A— C from I'; and Fy,...,F, of B — C from I'. Extend FEy,...,E;, Fi,...,F,,Gy,...,G, by
three lines Hy, Ho, H3 to get a deduction of C' from I' in Pp, where H; is an axiom by X8, Hy comes
from Ej and Hy by R1, and H3 comes from F),, and Hs by R1.

Ezercise 2.6. Construct a labelled NPp-proof of Axiom X8 of Pp.
Ezercise 2.7. Construct labelled NPp-proofs of Axioms X9 and X10 of Pp.
Ezercise 2.8. Without using Theorem 2.4, prove that the rule -1 of NPp can be derived in Pp.



2.5 Some Formal Theorems of Intuitionistic Propositional Logic

In intuitionistic as well as in classical logic, A ++ B abbreviates (A — B) & (B — A). Many classical
equivalences fail intuitionistically; for example, as we shall see later, in parts (a),(b),(f)-(h) of the next
theorem the main — cannot be replaced by <.

Theorem 2.5. In Pp (or equivalently, in NPp), for all formulas A, B:
a) F (A— B)— (=B — —A).
b) F A— ——A.
C) F ———A <+ —A.
d F (A—-B)«
) (A V B) <+
) F (A V B)— (A— B).
) F (A— B)— —(A & —-B).
) F (mA V -B)— (A & B).
i) + (-—A & —-B) + —(A— B).

Proof of (b). A,—mAF A and A,—AF —A trivially. Use the —I rule of NPp to conclude A F ——A.
Then use — 1.

Proof of (e). We use NPp. By &I and — T we only need to derive (—A & —B) from —(A V B),
and conversely. Here are the two derivations:

—~

B — -A).
~A & —B).

N AN~

4, Bl
r l
AV B -(AV B) AV B -(AV B)
-A B -B o
(A& —B) Ll
-A & -B &, -A & —-B &E,
[A] -A [B] -B
[AV B ~(AV B) ~(AvE)
[AV B] “(AV B) M

=1, cancelling AV B (twice)

~(AV B)

Proof of (g). By — I it will be enough to derive =(A & —B) from (A — B) in NPp, as follows.

[A & —B]
A B A ¥Br JA&-B] L
B —F B
(A & -B) B

Ezercise 2.9. Prove (c) and (f) of Theorem 2.5. [Hint: Exercise 2.3 established part (a), and part
(b) is proved above. Hence in proving (c) you may use (a) and (b) (for any formulas A, B).]

A natural deduction system NcPp for classical propositional logic comes from NPp By changing
the intuitionistic —-elimination rule —E; to the following rule expressing the classical law of double
negation:

D
_|_|A
A
The proof of Theorem 2.4 can easily be adapted to show that derivability in NcPp is equivalent
to derivability in cPp.

-E,



2.6 Intuitionistic First-Order Predicate Logic Pd

Again taking Kleene [1952] as a guide, we begin with a Hilbert-style formal system Pd which contains
Pp as a subsystem. Formal theorems of Pp (such as the parts of Theorem 2.5) will hold in Pd for all
formulas A, B of the extended language. The Deduction Theorem for Pd will need additional justifi-
cation. Metatheorems whose hypotheses involve the deducibility relationship have to be reexamined
whenever new axioms and/or rules are added to a formal theory.

The language £(Pd) has individual variables a1, as, as, . . ., and countably infinitely many distinct
predicate letters of arity n for each n = 0,1,2,3,.... The O-ary predicate letters are the proposition
letters Py, Py, ... of L(Pp). The unary predicate letters are P;(-), P»(-),... , the binary ones are
Pi(-,-),Py(-,),... , and in general the n-ary ones are F;(-,...,:) for i = 1,2,... where -,... - is a
sequence of n placeholders. The logical symbols of L(Pd) are those of L(Pp), together with the
universal quantifier V and the existential quantifier 3.

Definition. The terms of L(Pd) are the individual variables. If P(-,...,-) is an n-ary predicate
letter and t1,...,t, are terms, then P(tq,...,t,) is a prime formula of L(Pd). The (well-formed)
formulas of L(Pd) are defined inductively as follows:

e Each prime formula is a formula.
e If A, B are formulas so are (A & B), (AV B), (A — B) and (—A).
e If Ais a formula and z an individual variable, then (VxA) and (3zA) are formulas.

In general, z,y, z, w, 1, Y1, . . . will be used as metavariables for individual variables, and A, B, C, ...
as metavariables for formulas. Anticipating applications (e.g. to arithmetic) where the terms may be
more complicated, we use t,u,v,t1,... as metavariables for terms. In omitting parentheses, Vx and
Jz are treated like —, so 3x—A — B abbreviates ((3z(—A)) — B). If z is a variable and A a formula,
we may write A(z) for A (even if z does not actually occur in A), as in the following definition.

Definition. The scope of an outermost Vz or 3z, in a formula of the form (VzA(z)) or (IzA(z)),
is the subformula A(z). An occurrence of a variable z in a formula B is bound in B if it is the = of a
quantifier Vx or 3z, or is within the scope of such a quantifier (with the same x). An occurrence of x
in B which is not bound in B, is free in B. A bound occurrence of z in B is bound by the outermost
quantifier of the smallest subformula of B of the form (VxC(x)) or (3xzC(x)) (with the same z) to
which it belongs. In Pd and all the applications to be considered in these notes, any occurrence of a
variable z in a term ¢ is free in t.

Ezample. In the formula Va,(Jas(Pi(a1,a2) — JayPy(ay,a2))) & Pi(ay), the first and second
occurrences of a; are bound by the Va;. The third and fourth occurrences of a; are bound by the Ja;.
The fifth occurrence of ay is free.

Definition. If A(x) is a formula, z a variable, and ¢ a term, then A(¢) is the result of substituting
an occurrence of ¢ for each free occurrence of z in A(z). The substitution is free if no free occurrence
in ¢ of any variable becomes bound in A(t), and in this case we say t is free for x in A(z).

Ezample. Suppose A(z, z) is Vy(P(z,y) — JzQ(x, z)) where P(z,y) and Q(z, z) are prime formulas
with exactly the indicated variables free (where z,y, z are distinct individual variables). Then y is not
free for x in A(z, z), since the new occurrence of y in A(y, z) will be bound by the Vy. But z is free
for z in A(z,z), since A(z, z) is Vy(P(z,y) — JzQ(x,z)) with the new occurrence of z free.

Ezercise 2.10. For the A(z, z) of the example, answer each of the following questions.

(a) What are the scopes of the quantifiers Vy and Jz7

(b) Is z free for z in A(z,2)? Is y free for z in A(z,2)?

This use of the notations A(z), A(t) requires some care. If y is free for = in A(z), B(y) is (the
same formula as) A(y), and B(z) is derived from B(y) by substituting an occurrence of x for every
free occurrence of y in B(y), then B(z) may differ from A(xz). For example, let A(x) be Pj(z,y) where
z,y are distinct variables. Then y is free for z in A(x), and A(y) is Pi(y,y). If B(y) is Pi(y,y) then
z is free for y in B(y), and B(z) is P(z, ).



However, if y is xz, or if y is free for 2 in A(x) and does not occur free in A(z), then z is free for
y in A(y) and does not occur free in A(y) (unless z is y). In either of these cases the sequence of

substitutions = — 3 Ly  leads from A(z) to A(y) and back to A(z). (Note that distinct metavariables
x,Y, 2, W, T1,... need not always denote distinct individual variables.)

In addition to R1, Pd has two new rules of inference:
R2. From C' — A(z) where z does not occur free in C, conclude C' — Vz A(x).
R3. From A(z) — C where z does not occur free in C, conclude 3zA(z) — C.

In addition to X1 - X10, Pd has two new aziom schemas, where A(z) may be any formula and ¢
any term free for z in A(x):

X11. VzA(z) — A(t).
X12. A(t) = 3z A(z).

Definition. A deduction (or derivation) in Pd of a formula E from a collection I' of formulas is
a finite sequence of formulas, each of which is an axiom by X1 - X12, or a member of I', or follows
immediately by R1, R2 or R3 from one or two formulas occurring earlier in the sequence. If such a
deduction exists, we may write I' Fpq F (or in this subsection just I' - E).

Definition. If Fy, ..., E, is a deduction from I" and G € T', then for each kK = 1,...,n we say that
E}, depends on G in the deduction if and only if one of the following holds:

e F; is G, and is justified as an assumption formula from I', or

e Ej is a consequence by R1 of two formulas E;, E; with 4,j < k, where one or both of E;, E;
depends on G, or

e Fj is a consequence by R2 or R3 of some formula E; which depends on G, where i < k.

If R2 or R3 is used in a deduction from I', with respect to a variable z which occurs free in at least
one assumption from I" on which the hypothesis of the rule depends, then z is varied in the deduction;
otherwise x is held constant in the deduction. To indicate that a deduction of E from I' exists in
which 21, ...,z are varied, we sometimes write I' 5" E (or in this subsection just I' F¥1-%k E).

Ezercise 2.11. Construct a deduction in Pd of 3z A(z) from Vz A(z), in which no variable is varied.

Ezercise 2.12* Let z be a variable, and A(z) a formula containing = free. Suppose that y is a
variable which does not occur free in A(z), suppose y is free for = in A(z), and let A(y) be the result
of substituting y for z in A(z). Let C be a formula not containing y free.

(a) Construct a deduction in Pd of (3zA(z) — C) from (A(y) — C).

(b) Which, if any, variables were varied in your deduction?

The next lemma collects a few easy facts about deduction in Pd. Parts (b) and (c¢) correspond to
Theorem 2.2(a) and (b).

Lemma 2.6. In Pd:

(a) f ' - (A — B) by a deduction in which only zi,...,z) are varied, then I'; A F+ B by a
deduction in which only z1, ...,z are varied.

(b) If ', A+ B by a deduction Ej,..., Fy in which B does not depend on A and only z1,...,z,
are varied, then some subsequence of F1, ..., E} is a deduction of B from I' in which no other variables
are varied.

(c) f T'+ A and A, A+ B by deductions in which no variables other than z1,...,z; are varied,
then I'y A F B by a deduction in which no other variables are varied.

Ezercise 2.13. Prove that if I' Fpgq A(z) by a deduction in which none of y1,...,y,, is varied,
and z does not occur free in any assumption from I" on which the conclusion A(x) depends, then
' Fpa Yz A(z) by a deduction in which none of y1, ..., y,, is varied.



Ezercise 2.14. [This is part of the proof of Theorem 2.7.] Prove that in Pp:
(a) (A—-(C—-D)) F (A& C — D) and
(by (A& C— D) + (A— (C— D)).

Theorem 2.7. (The Deduction Theorem for Pd) If ', A Fpgq B by a deduction in which all
variables occurring free in A are held constant, and only z1,...,z,, are varied, then I" Fpq (A — B)
by a deduction in which no variables except x1,...,Z, (and possibly only some of these) are varied.

Proof. Fix T" and A, and suppose Ei,...,E, is a given deduction of B from I', A in which all
variables occurring free in A are held constant and only z1, ...,z are varied. There are four new
cases to add to the inductive proof of Theorem 2.1, and in the case for R1 we must consider which
variables are varied.

For n =1 the two new axiom schemas X11, X12 are treated exactly as X1 - X10 were before. If F;
is a member of I' then (A — Ej) is derivable from I' by a three-line deduction in which no variables
are varied.

Assuming the theorem holds for deductions of length < n where n > 1, consider a given deduction
Ey, ..., E, from ', A in which all variables free in A are held constant, and only z1,.. ., x,, are varied.
If F,, is an axiom or a member of I', proceed as in the basis, observing that no variables are varied in
the resulting deduction of (A — E,) from I'. Now consider the three rules of inference.

Rule 1. 1f E, comes from some Ej;, Ej; with j,k < n by R, recall the proof of Theorem 2.1.
We may assume that no variables other than z1,...,x,, were varied in the (independent) deductions
Fi,...,F, of (A — Ej) and Fyy1,..., Frys of (A — Ej) from T provided by the induction hypothesis.
If y is another variable occurring free in some formula of I' which appears as assumption F; for some
1 <4 < r, then none of Fj;1,...,F, was justified by applying R2 or R3 (with y as the variable) to

any formula depending on Fj, and none of F,1,...,F,;s depends on any of Fi,...,F,. Hence y is
not varied in Fi,..., Fr4s. Since the new steps Fyysi1, Frysto, Frisy3 use only propositional logic,
no variables other than z1,...,z,, are varied in the resulting deduction of (A — E,,) from T

Rule 2. If E, comes from some F; with j < n by R2, then E,, is of the form (C' — VYzD(z)) where
E; is (C — D(z)) and z does not occur free in C. There are two possibilities, depending on whether
or not F; depends on A in the given deduction.

Case 1. E; depends on A. Then z is not free in A (otherwise it would have been varied in
deriving E,, from E; by R2). By the induction hypothesis there is a deduction Fi, ..., F, of (A — Ej)
from T' in which no variables other than x1,...,x,, are varied. By the result of Exercise 2.14 this
deduction can be extended to Fi,..., F. s, using only X1-X10 and R1 in the new part, so that F,,
is (A & C — D(x)). Since z is not free in A & C, by R2 from F, ;s we conclude (A & C — VzD(x)),
which is F,ys11. More propositional steps lead to (A — (C — VzD(x))), which is (A — E,). In the
resulting deduction no variables have been varied which were not already varied in F1,..., E,.

Case 2. E; does not depend on A. Then neither does E,,, so by Lemma 2.6(b) from the induction
hypothesis there is a deduction of E, from I' in which no variables other than z1,..., z,, are varied.
Extend this to a deduction of (A — E,) from I' in the usual way, using only X1 and R1.

Rule 3. If E, comes from some E; with j < n by R3, then E, is of the form (JzD(z) — C)
where E; is (D(z) — C), and z does not occur free in C. If E; does not depend on A then neither
does E,, and we argue as in Case 2 for R2. If F; depends on A then z is not free in A. By the
induction hypothesis there is a deduction G1, ..., G, of (A — E;) from I" in which no variables other
than z1,...,z,, are varied. Then G1y,...,G, can be extended by propositional steps to Gy, ..., G
where G, is (D(z) = (A — C)). Since z is not free in (A — C), by R3 from G, we can conclude
(3zD(z) = (A — C)), from which (A — E,,) follows by propositional logic.

2.7 The Natural Deduction System NPd

A rule-based formal system NPd equivalent to Pd begins by extending the framework and rules of
NPp to L(Pd). Four new quantifier rules correspond to R2, X11, X12 and R3, with restrictions on
the variables reflecting the fact that dependence on assumption formulas is determined by the tree
form of a deduction.
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Definition. A deduction D in NPd of a formula F from assumptions I' is a finite tree with a
formula attached to each node, as follows.

(i) If E € T then -F is a deduction from T of E.

(ii) If Dy, Dy and Dj are deductions from I' (and possibly the additional assumptions shown inside
square brackets), of their last formulas (shown explicitly), then new deductions from T' may be
constructed using the rules of NPp and also the following rules, if the restrictions on their use
are satisfied. Assumptions shown inside square brackets are cancelled when the indicated rule is
applied. Each new deduction is a deduction of its last formula.

Restrictions: For VE and 31, ¢ is a term free for z in A(z). For VI, z is not free in any open
assumption of Dy. For JE, z is not free in C or in any open assumption of Dy except A(z).

Dy Dy
A(x) VzA(x)
T VoA () YE 0
[A(2)]
Dy Dy Ds
. A(t) JzA(x) C
dzA(z) B C

If T is a list of formulas and E a formula of £(Pd), then I' Fypg E means that there is a deduction
D in NPd of E from I'. If " is empty then D is a proof of E in NPd.

It follows from the definition that if D is a deduction from I' of E, and I is the set of open
assumption formulas occurring at the leaves of D, then IV C T" and for each A D T”: D is a deduction
of E from A.

Ezample. Here is a proof in NPd of Vz A(z) — VyA(y) if A(z) is a formula such that y is free for

x in A(x), and y does not occur free in A(x) (unless y is ). The second condition guarantees that y
is not free in Vz A(z), justifying the VI.

[VzA(z)]
A(y)
VyA(y) v

Ve A(z) — VyA(y)

Ezercise 2.15. Construct a proof in NPd of 3xA(z) — JyA(y) if A(x) is a formula such that y is
free for = in A(z), and y is not free in Iz A(z).

— 1

Definition. Two formulas A,B are congruent if (as strings of symbols) they differ only in the
identity of their bound variables, in the sense that

(i) Every bound occurrence of a variable in either formula corresponds to an occurrence of a variable,
bound by the same quantifier, in the other formula.

(ii) Every free occurrence of a variable in either formula corresponds to a free occurrence of the same
variable in the other formula.

By the Replacement Theorem (in the next section) with the sample proof and Exercise 2.15, if
A and B are congruent formulas then Fpgq A <+ B. It follows that every formula has an equivalent
congruent in which no variable occurs both bound and free.
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2.8 Equivalence of Pd with NPd, and the Replacement Theorem for Pd

Theorem 2.8. If E is a formula, and T" is a collection of formulas, of £(Pd), then the following are
equivalent:

(a) T Fpgq E by a deduction in which no variable is varied.

Proof of (a) = (b), for all T', E simultaneously, by complete induction on the length of a given
Pd-deduction of E from I' in which no variable is varied. The proof of Theorem 2.4 = provides
NPd-proof schemas for the propositional axioms X1-X10 of Pd. It is easy to construct NPd-proof
schemas for X11 and X12, using the — rules with VE and 3I (which have the same restrictions as X11
and X12 of Pd). The rules require more care.

Suppose Fi,..., Fy,, Fj,11 is a deduction in Pd from I' in which no variable is varied, and Fj,; is
a consequence by R1, R2 or R3 of one or two formulas occurring earlier in the deduction. Suppose
the induction hypothesis holds for each Pd-deduction of length < n, so for each j < n and each A: If
G1,...,Gj is a deduction in Pd from A in which no variable is varied, then A Fnpa Gj. There are
three possibilities.

Case 1. Fy 1 is a consequence by R1 of F; and F; with 4,57 < n where F; is Fj — F, ;. By the
induction hypothesis there are NPd-deductions Dy, Dy of F;, F; respectively from I'. Combine these
using — E to get an NPd-deduction of F,, 1 from I'.

Case 2. Fpi1 is (C — VzA(z)), where z is not free in C, and F,,;1 is a consequence by R2 of
some F; with ¢ <n. Then F; is (C — A(z)), and z is not free in any assumption from I on which F;
depends (otherwise 2 would be varied by the use of R2). Then by Lemma 2.6(b) some subsequence
of F,...,F; is a Pd-deduction of (C' — A(z)) from a subcollection I'' of I in which z does not occur
free. By the induction hypothesis there is an NPd-deduction Dy of F; from I". Extend it as follows
to an NPd-deduction of F, 1 from T (hence also from T'). The use of VI is justified because z is
not free in C nor in any open assumption formula of Dj, since every open assumption formula of D,
belongs to I".

D,
(CoA@) (]
ﬂ VI
VzA®) 1 cancelling C
(C — VzA(z))

Case 3. Fpyq is (JzA(x) — C) where z is not free in C, and F, ;1 is a consequence by R3 of
some F; with ¢ <n. Then F; is (A(z) — C), and z is not free in any assumption from I on which F;
depends (otherwise 2 would be varied by the use of R3). Then by Lemma 2.6(b) some subsequence
of F,...,F; is a Pd-deduction of (A(z) — C) from a subcollection I'' of I in which z does not occur
free, so by the induction hypothesis there is an NPd-deduction D; of F; from IV. Extend D; to an
NPd-deduction of F, ;1 from I'' (hence also from T') as follows.

D,
(A(z) = C)  [A(2)]

—E
JE, cancelling A(z); no free z in I or C
— 1, cancelling 3z A(z)

BaA(z)]

C
(FzA(z) = C)

Proof of (b) = (a). Assume D is an NPd-deduction from I' of E, and assume the induction
hypothesis holds for the subdeduction(s) from I" of the hypothesis (or hypotheses) of the last rule used
to deduce E. If the last inference was by a propositional rule, proceed as in the proof of Theorem 2.4,
using Lemma 2.6(a) and Theorem 2.7 to justify the — rules. If the last inference was by a quantifier
rule, there are four possibilities.
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Case 1. E is VzA(z), which follows by VI from the conclusion A(z) of a deduction D; in which z
is not free in any open assumption. Let I be the collection of all assumptions from I" which are open
in Dy, so z is not free in I and D; is a NPd-deduction from I” of A(z). By the induction hypothesis,
I Fpq A(z) by a deduction in which no variable is varied, and z is not free in any assumption from
I on which A(z) depends. Apply the result of Exercise 2.13.

Case 2. The last inference was by JE, so E is C without z free, and D has subdeductions D; of
JzA(z) from ', and D of C from I', A(z), such that z is not free in any open assumption of Dy other
than A(z). Let I be the collection of all assumptions from I' which are different from A(z) and are
open in Dy, s0 Dy is a deduction of C' from IV, A(z) and z is not free in IV. By the induction hypothesis
I, A(z) Fpq C with no variables varied, so by the Deduction Theorem IV Fpq (A(z) — C) with no
variables varied. Since z is not free in C or in I, we can use R3 to conclude IV Fpq (FzA(z) — O)
with no variables varied.

Cases 3 and 4. The last inference was by VE or by JI. These cases are easy, using X11 and X12
with the induction hypothesis.

Theorems 2.7 and 2.8 provide flexibility in establishing facts about provability and deducibility
in intuitionistic predicate logic. Propositional arguments carry over naturally to £(Pd), holding all
variables constant, as in the following example. Quantifier arguments are often easier in NPd than
in Pd, as in the next two exercises.

Ezample. The Replacement Theorem for Pd needs the lemma (A <> B) Fpq (AVC) < (BVC),
with no variables varied. Theorem 2.8 allows us to prove (A <> B) Fnpq (AVC) < (BV C) instead.
Remember that (A <> B) abbreviates (A — B) & (B — A), for any formulas A, B. The following
deduction establishes (A <+ B),(AV C) Fnpq (BVO):

A< B &E,
(A= B) [A]
5 — E [C]
VI, VI
AVC BvC BvC VE, cancelling A and C
BvC

and (A < B),(BV C) Fnpd (AV C) by a similar deduction. Use — I (twice) and &I to complete
the argument in NPd.

Ezercise 2.16. Prove that Vz(A(x) < B(z)) Fpa (3zA(z) < JzB(x)) with all variables held
constant. [Hint: Use Theorem 2.8.]

Ezercise 2.17. Prove that if z,y are distinct, and F is any formula, then Fpgq VaVyFE < YyVz E.
Ezercise 2.18% Prove that if z1,...,z) all occur free in E, then E Fpi 7" V...V, E.

Definition. If E(xq,...,zy) is a formula of £(Pd) with exactly the distinct variables z1, ...,z
free, where the first free occurrence of z; precedes the first free occurrence of z;; for each 1 <14 < k,
then the universal closure VE of E is Yz ... VaxpE(z1,. .., xf).

By Exercise 2.17, the order of the initial quantifiers in VE is in some sense unimportant. That
sense is made clearer by the following theorem, which is tedious to prove (by induction on the depth
of the occurrence of A in Cj4, using Theorem 2.8 with Exercise 2.18* and a lot of lemmas like the
sample proof and Exercise 2.16). We state it correctly, following Kleene [1952], and move on.

Theorem 2.9. (The Replacement Theorem for Pd) Suppose A and B are formulas of £(Pd),
and C'4 and Cp are formulas which differ only in that Cp results from C4 by replacing a particular
occurrence of the subformula A of C'4 by an occurrence of B. Suppose z1, ...,z are all the distinct
free variables of A or B which belong to a quantifier of Cy having the specified occurrence of A within

its scope. Then
(A B) Fpi7™ (Ca > Cp).
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2.9 Some Formal Theorems of Intuitionistic Predicate Logic

The next theorem lists some equivalences and implications which hold in intuitionistic predicate logic.
The proofs of equivalences are simplified by the observation that if £ Fnpgq F and F' Fnpg F, then
also Fnpa (F < F) by — T and &I. In parts (a), (d), (g) and (h) the — cannot be replaced by <.

Theorem 2.10. In Pd (or equivalently, in NPd), for all formulas A(z), B(z), C' such that z is not
free in C"

(a) F (VzA(z) Vv C) = Vz(A(x) Vv CO).
(b) + (FzA(z)V IzB(z)) + Jz(A(z) V B(x)).
(¢) F Vz(A(z) & B(x)) + (VzA(z) & VzB(x)).
(d) F Fz(A(z) & B(z)) — (3zA(z) & JzB(x)).
(e) F Vz(A(z) = C) + (FzA(z) — O).
(f) F Vz(C — A(z)) + (C = VzA(x)).
(g) F Jz(A(x) = C) = (VzA(z) — C).
(h) F Jz(C — A(z)) — (C — FzA(x)).
(i) F (32C ¢ C) and F (V2C ¢ O).
Proof of (a). By — I from the following NPd-deduction, which shows that (VzA(z) V C) Fnpa
Va(A(z) v O):
[VzA(z)]
Nl a
vzA(z) v O A) VO r A)VC VE, cancelling Vx A(z), C
A(z)vC ’ ’

VI, no free x in VzA(z) vV C

Vz(A(z) v C)

Proof of (e). Here is an informal argument that Vz(A(z) — C) Fnpa (3zA(z) — C). First,
Vz(A(z) = C) Fnpa (A(z) — C) by VE. Hence by Theorem 2.8 there is a deduction in Pd of
(A(z) — C) from Vz(A(z) — C) in which no variable is varied. Extend this deduction using R3,
so Vz(A(z) — C) Fpa (FzA(z) — C) with all variables held constant. Now use Theorem 2.8.
[Alternatively, use the prooftree given in Case 3 of the inductive proof of (a) = (b) in Theorem 2.8,
interpreting D; as the immediate deduction of A(z) — C from Vz(A(z) — C) by VE.]

We prove directly that (3zA(z) — C) Fnpa Vz(A(z) = C):

AW
dzA(z) - C dzA(z)
C —E
————— — 1, cancelling A(z)
A(z) = C

VI, no free z in 3zA(z) — C
Va(A(z) = C)

Ezercise 2.19. Prove (f) of Theorem 2.10.
Ezercise 2.20. Prove (g) of Theorem 2.10.

The proof theory of Pp and Pd has been studied extensively, building on work of Godel [1932]
and Gentzen [1934-35] which established constructively that Pp (like cPp) is decidable, although Pp
has no finite truth-table interpretation. Good references are Chapter 15 of Kleene [1952], Chapter 10
of (volume 2 of) Troelstra and van Dalen [1988], and Troelstra and Schwichtenberg [2000]. Godel and
Gentzen independently found negative translations of ¢cPp into Pp, and of ¢Pd into Pd, showing
that in each case the intutionistic system is as strong as the classical one.

We have already considered in detail how to prove statements intuitionistically, and how to extend
each intuitionistic system to the corresponding classical one by strengthening one axiom schema or
one rule. Since the purpose of these notes is to provide a logical basis for the study of constructive
mathematics, the next topic will be (not more proof theory, but) semantics for intuitionistic logic.

14



3 Semantics for Intuitionistic Logic

In order to show, for example, that Fpp, =—A — A does not hold for all formulas A of Pp, we need an
interpretation with respect to which Pp is sound (so every theorem of Pp is verified by the semantics),
and an instance of =——A — A which is not verified by the semantics. For similar reasons, we need a
semantics for Pd. One solution is the “possible world” semantics of Kripke [1965]. An earlier solution
found by Beth [1956, 1959] is discussed in Chapter 13 of Troelstra and van Dalen [1988]. We turn now
to Kripke’s semantics, giving first a simplified version for Pp and then the full interpretation for Pd.

3.1 Kripke Semantics for Pp

We first provide a Kripke semantics, based on finite rooted trees, with respect to which Pp is sound
and complete. Using the decidability of Pp, this interpretation is constructive. From the classical
viewpoint, on the other hand, the decidability of Pp is an easy corollary of the Kripke completeness
theorem. Compactness considerations lead to a simple version of Kripke’s interpretation for a language
with finitely many symbols.

Definition. If E is a formula of £L(Pp), then sf(E) is the (finite) set of all subformulas of E,
including F itself. If T' is a class of formulas of L(Pp), then sf(T") is the union of the sets sf(E) for all
E € T'. The subset of sf(E) consisting of all prime subformulas of E is psf(E), and similarly for I'. A
class A of formulas of L(Pp) is closed under subformulas if sf(A) C A.

Definition. A tree T is a set of finite sequences of natural numbers such that the empty sequence
()y e T, and if (n1,...,nk11) € T then (nqy,...,ng) € T. In the second case, (ni,...,ng) is called

the immediate predecessor of (ni,...,ngr1) in T, and (ny,...,nk 1) is an immediate successor of
(n1,...,ng) in T. More generally, for each i < k, (n1,...,n;) is a predecessor of (ni,...,ngy1) in T
and (ny,...,nEy1) is a successor of (n,...,ng).

The elements of a tree are called nodes. A node which has no immediate successors (hence no
successors) in T is a leaf of T, and () is the root.

A tree T is finitary or finitely splitting if each (ny,...,n;) € T has only finitely many immediate
successors in T (possibly none). Note that a finitary tree may be finite or infinite.

We may use w, u, v, wr, ... as metavariables for finite sequences of natural numbers. If £,/ > 0 and
N1y--y Ny M1, ..., m are natural numbers, the concatenation of (nq,...,ng) with (mq,...,my) is
<’n1,... ,nk> * <m1,... ,ml> = <n1,... sy Ny M1y ... ,ml).

Using this notation, a tree is a set T of finite sequences of natural numbers such that () € T and, for
each w and n, if w* (n) € T then w € T. The tree is finitely splitting if for each w € T there are only
finitely many n (perhaps none) such that w x (n) € T.

Note. Sometimes it is useful to interpret (nq,...,ny) as a primitive recursive code for the sequence
ni,..., Nk, for example
_ ni+1 nk—i—l
(ni,...,mg) = pi' - py

where p; is the ith prime, counting 2 as the first. Then if w and u code sequences, w * u codes their
concatenation.

Definition. A propositional Kripke model KC over a finite list Py,..., P, of proposition letters is a
pair
K = ((K,<),%)

where K is a tree, < is the partial ordering of the nodes of K determined by
u < v if and only if u = v or u is a predecessor of v,
and « is a function from K to the set of all subsets of {P,...,P,} such that if (z1,...,2;41) € K

then H((ZBl,... ,ZBj)) Ck (<ZB1,...,.’L‘J‘+1>).
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The forcing relation I+ on K is completely determined by x and the structure of (K,<). If u € K
and F is a formula such that psf(E) C {P,..., P,}, then u |- E is defined as follows by induction on
the logical form of E. (As always, the defined relation I is the least fixed point of the induction.)

1. If E is prime, then u I E if (and only if) E € k(u).
2. ulF (A& B)if ulFk AandulF B.

(
3. ulk(AVB)if ulkAorul- B.
4. ulF (A — B) if, for each v € K with u < v: if v IF A then v IF B.
(

5. ulk (=A) if, for each v € K with u < v, it is not the case that v I A.

Lemma 3.1. (Monotonicity) If £ = ((K, <), ) is a propositional Kripke model over P, ..., P,,
and F is a formula with psf(E) C {P,..., P,}, then for each u,v € K:

if ulF E and v <wv then vk E.

Exercise 3.1. Prove Lemma 3.1 by induction on the logical form of E.

Remark. By monotonicity, if () IF E then u IF E for every u € K. We say E is valid in IC, and
write K I+ E, if () IF E.

Theorem 3.2. (Soundness for Pp) If E is a formula such that Fpp E by a proof Fi,..., Fy, such
that psf(F;) C {Py,...,P,} for each i = 1,...,m, then for every propositional Kripke model K over
{P,...,P,}: KIFE.

Proof, by complete induction on the length m of Fy,..., F,,, where F, is E. If m = 1 then E
is an axiom of Pp. For example, if £ is A — (B — A) by X1, then for every u € K: if u I- A and
u < v, then (whether or not v IF B) also v |- A by monotonicity. The arguments for X2 and X3 also
use monotonicity. Axiom schemas X4-X7 need only the definition of IF. For X8, if u < v € K and
ulk (A — C) and v Ik (B — C), then for every w € K with v < w such that w Ik (A V B):

(a) wlF (A — C) and w I+ (B — C) by monotonicity, and

(b) w Ik A or wIF B, so in either case

(c) wlk C.

For X10, if u IF =A and u < v € K, then v If A and so u I (A — B) vacuously.

If m > 1 and E is not an axiom of Pp, then E follows by R1 from two earlier formulas F;, F}
where Fj is (F; — E). By the induction hypothesis, ( ) IF F; and () IF F}, so by the definition of I-
clearly () IF E.

Ezercise 3.2. Argue the case for X9 in the proof of Theorem 3.2.

Soundness gives us a way to show that a formula E is unprovable in Pp, by providing a Kripke
countermodel (a Kripke model K over psf(E) such that IC If E). Completeness (the next theorem)
will guarantee that every unprovable formula of Pp has such a countermodel.

Ezample. Here is a two-node Kripke countermodel K to (P; V = Py). Let Ky = {(),{ 0 )}, let
k1((0)) = {P1} and k1(( )) = 0. Then () I P, but also () If =P, since () < (0 ) € K; and
(0) IF P;. Note that this is also a countermodel to =—P; — P;, showing that the converse of Theorem
2.5(b) is unprovable in Pp.

Ezample. Let Ko = ((Kg,<),k2) where Ko = K; = {(), (0 )}, but now x2({ 0)) = {P1, P} and
ko({)) = {P1}. Then K; is a Kripke countermodel to ~(P; & —P,) — (P, — P), showing that the
converse of Theorem 2.5(g) is unprovable in Pp.

Ezample. A three-node countermodel to (P; — (P, V P3)) = (P1 — Py)V (P — P3) is K3 =
(s, <), 53) where Ky = {( ), (0) { 1)} and sa({)) = 0, 55((0)) = {Py, Py} and (1)) = { Py, Py}.

Ezercise 3.3. Provide a Kripke countermodel for a formula of the form (=B — -A) — (4 — B),
showing that the converse of Theorem 2.5(a) is unprovable in Pp.

Ezercise 3.4. Show that the converse of Theorem 2.5(f) is unprovable in Pp.
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Definition. If T'; A are collections of formulas of L(Pp), then ' is A-saturated if
(i) T is consistent.
(i) T C A.
(i) f A, Be AandI'Fp, (AVB) then AcT' or Bel.

Note that if I' is a A-saturated collection of formulas and I' Fp, A where A € A, then A € ' by
(iii) with B = A. Thus every A-saturated set is a deductively closed subset of A.

Lemma 3.3. (Saturation Lemma for Pp)

(a) If E is a formula of L(Pp) such that pp E, then there is a (finite) Iy C sf(E) such that I'y
is sf(E)-saturated and Ty t/pp F.

(b) If £ is a formula of L(Pp), and if C € sf(£) and A C sf(E) such that A I/pp C, then there is
a (finite) I' C sf(E) such that T is sf(E)-saturated, A CT, and T t/pp C.

Proof of (a). List all the subformulas F1, ..., Fj of E (in any order, without repetitions). Consider
Fi. If Fitpp E define I'\ =0, and if F, t/pp E set '\ = {F}.

Given T where I < i < k, consider Fi1. If T)U{F;j1} bpp E define I'j"" =T}, and if
Ty U{Fi11} pp E put T4 =T U{F;p}.

Finally, define Tg = [J;<,<,Ij- By construction with the assumption that E is unprovable,
Lo /pp E and Ty C sf(E), so (i) and (ii) of the definition of sf(E)-saturated are satisfied.

For (iii), suppose I'g Fpp (AV B) where A, B € sf(E), but A € T'g and B ¢ T'y. Since both A, B
appear in the list F1, ..., Fj, but neither belongs to any Ff), it must be the case that T'¢U{A} Fpp E and
I'yU{B} Fpp E. By VE (which holds for Pp as well as for NPp by Theorem 2.4): T'\U{AVB} Fpp E.

But then I'g Fpp E, which is impossible.

Proof of (b). Similarly, except now I'® = A, and for 0 < i < k: assuming I C sf(E) has been
constructed so that T tpp C, consider Fy . If MU {Fi} Fpp C, set [+l =T, Otherwise, set
It =T1U {Fij1}. Define T' = Jye;p I

By construction, T't/pp C and A CT C sf(E). If A, B € sf(E) and T’ Fpp AV B, then not both
IF'U{A} Fpp C and T'U{B} Fpy C, so since both A, B occur in the list F1,..., F}, at least one of A, B
must be a member of I'. So I is sf(E)-saturated.

Remark. Lemma 3.3 holds constructively because the relation {C1,...,C;} Fpp D is effectively
decidable. Thus (iii) can be proved by constructive cases: either I'¢cU{A} Fpp E, or ['ZU{B} Fpp E,
or neither holds (so both A, B € T'y by construction). The (classical) decidability of the relation Fpy
can also be deduced from (the proof of) the following theorem.

Theorem 3.4. (Completeness of Pp) If E is any formula of £L(Pp) such that t/pp E, then £
has a propositional Kripke countermodel.

Proof. Assume l/pp E, and let T'g be an sf(FE)-saturated subset of sf(E) given by Lemma 3.3(a).
Let I'y,...,I',, be a list (without repetitions) of all the sf(E)-saturated subsets of sf(E) such that
I'p €T for 1 <4 < m. Let K be the set of all sequences (i1, ...,i,) such that for 1 < j < n:
1 <i;j<m,and for 1 <j<mn: [;; CI,,. Then K is a rooted finite tree with root ( ) (the empty
sequence) representing I'g, and each node v = (41,...,1,) above () represents an increasing sequence
(Tiy,..., I, ) of sf(E)-saturated supersets of I'g, with every possible such sequence included. We say
that I’y is attached to the root (), and I';, is attached to the node (i1,...,i,) if n > 1.

We want to show that K = ((K, <), k) is a Kripke countermodel to E, where x(()) = I'oNpsf(E)

and for each n > 1 and each (i1,...,i,) € K:

K((i1y...,in)) =T, Npsf(E).

The proof depends on the fact that each node forces exactly those subformulas of ¥ which belong to
the sf(E)-saturated set attached to the node.
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Claim. For each node u = (i1,...,i,) of K, representing the increasing sequence (I';,,I';,,..., T )
of sf(E)-saturated sets with I';, = Iy, and for each subformula C of E:

ul-C ifand only if C €T .

Ezercise 3.5% Prove this claim, and use it to complete the proof of Theorem 3.4. [Hint. For the
case that C is (A — B) you will need Lemma 3.3(b). Note also that n may be 0, and then u = ().]

3.2 Consequences of the Kripke Soundness and Completeness of Pp

Theorem 3.5. For any distinct prime formulas P, Q, R of L(Pp), the following classically provable
formulas are unprovable in Pp:

(a) PV —P.

(b) =PV ——P.

(¢) =—P — P.

(d) (P=Q) = (-PVQ).

() ~(P&-Q)—= (P —Q).

(f) =(P & Q) = (=P V-Q).

(8) (=P —==Q) = (Q— P).

(h) (P=>QVR)—=(P—=>Q)V(P—R).

(i) "P—-QVR)— (-P—Q)V(-P—R).

(G) (P = Q) — P) — P (Peirce’s Law).

Proofs. Using Theorem 3.2 (Soundness), it will suffice to give a Kripke countermodel to each
formula. Countermodels K1, K9 and K3 to (particular instances of) (a), (e) and (h) were given as
examples in the previous subsection, while Exercises 3.3 and 3.4 asked for counterexamples to (g) and
(d). Only (b), (c), (f), (i) and (j) remain.

The two-node countermodel K; to (a) also works for (c). For a countermodel to (b), let Ky =
(K4, <),k4) where Ky = Kz = {(),(0) (1)} and 64({)) = k4 ({ 0)) =0, ka(( 1)) = (P). We leave
the rest as exercises for the reader.

Ezercise 3.6. Construct Kripke countermodels to (f), (i) and (j) of Theorem 3.5.

Without using the (recursive) decidability of Pp, we can deduce it from Theorems 3.2 and 3.4 as
follows. The last sentence of the proof uses Markov’s Principle, to be discussed in a later section.

Theorem 3.6. (Decidability of Intuitionistic Propositional Logic Pp) There is an effective
(recursive) procedure for deciding, given a formula E of £L(Pp), whether or not Fpp E.

Proof. Given a formula F of L(Pp), there are only finitely many distinct subsets Ao, ..., Ay, of
sf(E) (where Ag = 0)), and they are partially ordered by C. For each 0 < j < m there are only finitely
many H/ C {Ag,..., Ay} such that

(i) Aj S Hj, and
(ii) A; C A, for every A; € HY.

Each such H’ can be completely described by a finite tree HY whose root ( ) represents Aj, where
(i1, ... in) € HI if and only if Ay,,...,A; € H/ and A; C A;, © ... C A, Let H], H),.. ., Hij be
all the trees of this kind, with root representing A;. Define #7({ }) = A; N psf(E) and for n > 0
define &7 ((i1,...,in)) = Aj, N psf(£). Then for each 1 < j < m, for each 1 <1 < k;, the structure
Hlj = ((Hg , <), K is a propositional Kripke model over psf(E). By the proof of Theorem 3.4, if
/pp E then some H{ is a countermodel to E.

To check whether a given Hg is a countermodel to E, one needs to check finitely many forcing
conditions over a finite tree, and this can be done effectively. There are only finitely many H‘Z to

check. If some H{ is a countermodel to E, then I/p, E by Theorem 3.2. Otherwise, Fpp E, and a
proof of F£ can be found by recursively enumerating all the proofs in Pp.
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Theorem 3.7. For all formulas A, B,C of L(Pp):
(a) If |_Pp (A V B), then l—pp A or |_Pp B.
(b) If Fpp (=A— BV C), then Fpp (=A— B)V (=4 = C).

Proof of (a). We show that if I/pp, A and pp B then Ipp (AV B). Theorem 3.6 (which is
constructive except for the use of Markov’s Principle) then justifies (a).

Assume I/pp A and pp B. By Theorem 3.4, there are propositional Kripke countermodels K4
= ((K1,<),k1) to A and Ky = ((Kg, <), k2) to B. Construct a new model £ = ((K, <), k) as follows.
The elements of K will be () and all sequences of the forms (1) x u where u € Ky, and (2) * u where
u € Ko. k(({)) will be the intersection of x1({ )) with xk2({ )), and x({i) xu) = k;(u) for i = 1,2. Then
K is a propositional Kripke countermodel to A V B.

Ezercise 3.7*. Prove Theorem 3.7(b).

3.3 Kripke Semantics for Pd

Definition. Let Ry, ..., Rs be any distinct predicate letters of £L(Pd), where R; is n;-ary (1 < i < s).
A Kripke model K over Ry, ..., Rg is an (s + 3)-tuple

K = ((K’ S)aDa(saXla' <. 7Xs)
where K is a tree, < is the partial ordering of the nodes of K determined by
u < wv if and only if u = v or u is a predecessor of v,

D is a countable set with at least one element, J is a function with domain K such that
(i) for each u € K there is at least one d € 6(u), and
(i) if u,v € K with v < v then §(u) C §(v) C D,

and for each 1 <7 < s: x; is an (n; + 1)-ary function from K x D™ to {0, 1} such that for u,v € K
and all z;,...,zy,, € D:

(iii) if xi(u,1,...,2n;) =1 then z1,...,z,, € §(u), and
(iv) if u <w and x;(u,z1,...,2n;) = 1 then x;(v,21,...,2,,) = 1.

Remarks. There are good reasons for using characteristic functions yx; instead of (n; + 1)-ary
relations to interpret the R;. Most obviously, O-ary relation symbols and (k + 1)-ary relation symbols
are interpreted in a uniform way. And from the constructive point of view, since (K and D are
countable and) {0, 1} is finite, the question whether x;(u,z1,...,zn;) = 0 or 1 may be assumed to be
effectively decidable, while arbitrary relations on countable sets may not be. Conditions (ii) and (iv)
of the definition are the monotonicity requirements for a Kripke model over a predicate language with
finitely many relation symbols; and D is the domain of the model.

Definition. f K = ((K,<),D,d, x1,-..,Xs) is a Kripke model over Ry, ..., R, then every function
¢ from {aq,a9,...} to D is a possible assignment of values in D to the distinct individual variables
ai,as, ... of L(Pd). Each such assignment determines a forcing relation k4 on IC, as follows.

Let £'(Pd) be the sublanguage of L(Pd) with only the distinct predicate letters Ry, ..., Rs (but
with all the individual variables aj, as,...). For each formula E in £'(Pd) and each u € K, we define
u Iy E by induction on the logical form of E.

1. If E is prime, E is Ri(y1,...,yn,;) for some 1 <1i <s, where y1,...,yn, are (not necessarily dis-
tinct) individual variables. Then u IFg Ri(y1, ..., yn,;) if (and only if) x;(u, ¢(y1), ..., ¢(yn;)) = 1.

2. ulby (A& B)if ulky Aand ulky B.
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3. ulkg (AV B) if ¢(y) € 6(u) for every variable y free in (AV B), and ulFy A or ul-4 B.

4. ulky (A — B) if ¢(y) € 6(u) for every variable y free in (A — B), and for each v € K with
u < ifvlky A then vy B.

5. ulky (mA) if ¢(y) € 6(u) for every variable y free in A, and for each v € K with u < v, it is not
the case that v Iy A.

6. ulky Vo A(z) if, for each v € K with v < v and every assignment 1) to the individual variables
such that (z) € 6(v) and (y) = ¢(y) for every y # x: v Iy A(x).

7. u kg JzA(z) if, for some assignment 9 to the individual variables which agrees with ¢ on all
variables other than z: w Ik A(z).

Ezercise 3.8. Prove that if u I, E then ¢(y) € 6(u) for every variable y free in E.

Ezercise 8.9. Show that if ¢ and 1) are assignments which agree on all the variables free in F, then
ulFg E if and only if u Iy, E.

Lemma 3.8. (Monotonicity) If £ = ((K,<),D,d, x1,...,xs) is a Kripke model over Ry, ..., R,
then for every formula E in the restricted language £'(Pd) with only the predicate letters Ry,..., R,
and every assignment ¢ of elements of D to the individual variables, for each u,v € K:

if ulby B and v <wv thenwvlky4 E.

Proof, by induction on the logical form of E. If E is prime, monotonicity is guaranteed by (iv) of
the definition. Cases 2 - 5 are like those for Lemma 3.1, using (ii) of the definition with Exercise 3.8.

Case 6. E is YV A(x) where the induction hypothesis holds for A(x). Assume u,v € K with u < v,
and u IFy VzA(z). Suppose w € K and v < w, and let ) be any assignment such that (z) € 6(w)
and 9 (y) = ¢(y) for all y # 2. Then w Iy, A(z) since u < v < w. So v kg VrA(z).

Case 7. E is 3xA(z) where the induction hypothesis holds for A(z). Assume u < v in K and
u lFg 3z A(x), so there is an assignment 1) which agrees with ¢ on all variables other than z and satisfies
P(x) € 0(u) and u Iky A(z). But then v Ik A(z) by the induction hypothesis, and 1 (z) € §(v) by (ii)
of the definition, so v -y Iz A(x).

Definition. If Ry, ..., R, are distinct predicate letters including all those which occur in a formula
E of L(Pd), and £ = ((K, <),D,d, x1,.-.,Xxs) over Ry,..., Ry is a Kripke model over Ry, ..., Ry, then
E is valid in IC (written K |- E) if () |-y E for every assignment ¢ of elements of D to the individual
variables which assigns elements of §(( }) to all the variables free in E. If E is valid in every Kripke
model over Ry,...,Rs then F is Kripke-valid (written IF E).

Theorem 3.9. (Soundness for Pd) If E is a formula of £(Pd) such that Fpq E by a proof
Fy, ..., F,, in which no predicate letters but Ry,..., R, may occur, then the universal closure VE of
E is valid in every Kripke model K over Ry,..., R;. Hence

if Fpq E then IF E,

since the question whether IC I E depends only on the interpretations of the predicate letters which
actually occur in E.

Proof, by complete induction on the length m of Fy,..., F,,, where F,, is E. Let K be a Kripke
model over a list Ry,..., Rs of distinct predicate letters including all those occurring in Fi, ..., Fp,.
We must show that () Ik, VE for every assignment ¢ of elements of D to the individual variables, or
equivalently that u Ik4 E for every u € K and every assignment ¢ such that

(x): ¢(y) € 6(u) for every y free in E.

If m =1 then E is an axiom of Pd. The arguments for X1 - X10 are as for Pp. If F is an axiom
by X11 then E is VzA(x) — A(y) where y is a variable free for z in A(x). Suppose u € K, and ¢ is an

20



assignment to the individual variables satisfying (x) such that u Ik Vo A(z). Then if z is free in A(z),
é(y) € 6(u) by (x), and so u IFy A(y). If z is not free in A(z) then A(y) is A(z), and u kg A(z). In
either case, VE is valid in K.

If E is an axiom by X12 then E is A(y) — 3z A(z) where y is a variable free for z in A(z). If
z is free in A(z) then y is free in 3z A(x) unless y is z. Hence, if u € K and ¢ is an assignment to
the individual variables satisfying (%) such that u -4 A(y), then either u I-y Iz A(x) (if y = =, for
example, or if x is not free in A(x)), or by defining ¥ (z) = ¢(y) and letting 1) agree with ¢ on all the
variables free in 3z A(z) we have u Iy, A(z). Therefore VE is valid in K.

If m > 1 and F is not an axiom of Pd, then E follows by R1, R2 or R3 from one or two earlier
lines in the proof. If E follows from F;, F; by R1, where F; is (F; — E), then VF; and VF} are valid in
KC by the induction hypothesis. If u € K and ¢ is an assignment to the variables such that ¢(y) € d(u)
for all y free in Fj, and if u Iy F}, then u by E. Therefore VE is valid in K.

If E follows from some F; with i < m by R2, then F; is of the form C' — A(x) where z is not free
in C, VF; is valid in K by the induction hypothesis, and E is C — Vz A(z). Suppose u € K and ¢ is
an assignment of elements of D to the variables satisfying (x), and suppose u Ik, C. Then for every
v € K with u < v, and every v which agrees with ¢ on all y # z and satisfies ¢(z) € §(v): u Iy C, so
v Ik, C by monotonicity, and v Ik F; by the induction hypothesis, so v Iy A(z). So VE is valid in K.

If E follows from some F; with j < m by R3, then F} is of the form A(z) — C where z is not free
in C, VF} is valid in K, and F is 3z A(z) — C. If u € K and ¢ satisfies (x) and u |-y Iz A(z), then for
some assignment ¢ which agrees with ¢ on all variables other than z: u Iy A(z), so u Iy C by the
induction hypothesis (noting that v (y) € 6(u) for each y free in F;). But then u I-y4 C also, since z is
not free in C.

Ezample. To show that the converse of Theorem 2.10(h) is unprovable in Pd we search for a
Kripke countermodel 1 = ((K1,<),D,d, x1, x2) to (P1 — JzPs(z)) — Jz(P1 — Pa(x)), where P; is
a O-ary predicate letter and P»(-) is a unary predicate letter (and z may be any variable) of £L(Pd).
The underlying tree of the model is K; = {( ),(0)} and the domain of individuals is D = {dp,d;},
with domain function 6({ )) = {do}, d((0)) = {do,d1}. The representing functions of P;, P5(-) in the
model are X1, x2 where

X1(< >) =0, X1(<0>) =1, X2(< )ad(]) = X2(< )adl) =0, X2(<0>ad0) =0, and X2(<0>ad1) =

Then for any assignment ¢ to the variables: () Ik, (Py = JzP5(x)) since () IFy Py and (0) I-4 Iz Pa(x),
but () IFy Jz(P1 — P»(x)) because the only witness di for 3z P(x) at node (0) does not belong to
the universe 0(( )) of the root (). So Ky If (P — JxPy(x)) — Jz(P1 — Pa(x)).

Ezample. Here is a Kripke countermodel to Yz——P;(z) — =—=Vz P (z), showing that this formula
is unprovable in Pd. Let D = {dy,d,ds,...} and let K be the tree consisting of all finite sequences
of 0s (so K = {( ), (0),(0,0),...}). If u is a sequence of Os of length n, define é(u) = {dp,...,d,} and
define xi(u,d;) =1 if and only if i < n. Thus

a) < linearly orders K, and

(a)
(b) x1((),d;) =0 for all 7, and
)

(c) for each u € K there is exactly one d; € d(u) for which x;(u,d;) = 0, and
(d) for each d; € D there is some u € K such that x1(u,d;) =1

Let ¢ be any assignment of elements of D to the individual variables. By (a) and (c), u -4 ~Vz P ()
for every u € K. By (a) and (d), u Ik Vz—=—P;(z). Hence () I}y Vo——Pi(z) = =~Vz P (z).

Ezercise 3.10. Show that the converse of Theorem 2.10(g) is unprovable in Pd by constructing a
Kripke countermodel to (VzP(z) = P,) — Jz(Pi(z) — P,), where Pj(-) is a unary predicate letter
and P is O-ary.
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3.4 Digression: Kripke Models with Constant Domain

Definition. A Kripke model £ = ((K,<),D,d, x1,...,%s) over Ry,..., Rs has constant domain D if
d(u) = D for every u € K. In this case, we may write X = ((K,<),D,x1,...,xs) and the definition
of |4 can be simplified accordingly.

Ezercise 3.11. Show that Vz(A(z)V B) — VzA(z)V B is valid in every Kripke model with
constant domain, assuming z is not free in B. (You may need to use classical reasoning in your proof.)

Ezercise 3.12. Construct a Kripke countermodel to Vz(Pi(z)V Py) — Vo Pi(z)V Py, where P (-)
is unary and P; is O-ary. (This shows that the converse of Theorem 2.10(a) is not provable in Pd.)

These two exercises suggest that Kripke models with increasing domains are needed to prove e.g.
that t/pq Vz(P(z) V P») — VzPi(xz) V P,. A simple but clever observation by D. H. J. de Jongh
(from an unpublished manuscript circa 1970) suggests otherwise. In effect, de Jongh noticed that the
domain of a countable Kripke model over a finite list of predicate letters can be described using a
“fresh” unary predicate letter of the language. Some definitions are needed here.

Definition. If K = ((K,<),D,d, x1,...,xs) is a Kripke model over Ry,...,Rs; and u € K, then
' = (K", <"),D, 8", x¥, ..., x¥) is the submodel of K defined as follows:

(i)* for each finite sequence v of natural numbers, v € K* if and only if u x v € K,

(i)

if v,w € K%, then v <" w if and only if u x v < wu* w in K,

v if v € K¥ then §"(v) = §(u * v), and
u

(iii)
(iv)* if v € K" then for each 1 <1i < s and all z1,...,z,, € D:
Xi(v,z1, .., 2n,) = xi(uxv, 21,0, Zp;).
It is easy to check that K is also a Kripke model over R, ..., R, and so each assignment ¢ of elements

of D to the individual variables determines a forcing relation -3 on K.

Lemma 3.10. f K = ((K,<),D, 4, x1,-..,Xs) is a Kripke model over Ry, ..., Rs; and u € K, then
for each formula E of the restricted language, each assignment ¢ of elements of D to the individual
variables, and each v € K*: v} E in K" if and only if ux*vl-y E in K.

Lemma 3.11. To each Kripke model £ = ((K,<),D,d, x1,...,Xs) over Ry,..., R, there corre-
sponds a constant-domain Kripke model Kt = ((K,<),D, Xx1,..-,Xs; Xs+1) over Ri,..., Rs, P where
P(-) is a unary predicate symbol distinct from all of Ry,..., Rs, such that for each u € K and each
positive integer i: xs41(u,a;) = 1 if and only if the i*" element of D belongs to §(u). Then K and
Kt are equivalent in the following sense:

ulFy E(yi,...,yx) if and only if u H—;f P(y) &...& P(y) & EX (y1,...,yx)

for every assignment ¢ to ai,as,..., every u € K and every formula E(y,...,y;) (with exactly the
distinct variables y1, ...,y free) of the language L£'(Pd) restricted to Ry,..., Rs, where II-;Sr is the
forcing relation in X and EF comes from E by restricting every quantifier to P (i.e. by simultaneously

replacing every subformula of E of the form VzA(z) by Vz(P(z) — A(z)), and every subformula of £
of the form JyB(y) by Jy(P(y) & B(y))).

Theorem 3.12. (de Jongh’s Observation) A closed formula F is Kripke-valid if and only if
JzP(x) — ET is valid in every Kripke model with constant domain, where P(-) is a unary predicate
symbol not occurring in F.

Proof, assuming Lemmas 3.10 and 3.11. Suppose E is closed and 3zP(z) — E¥ is valid in every
Kripke model with constant domain. Given any Kripke model K for the language of E, let T be the
corresponding constant-domain model (for the language expanded by a new unary relation symbol
P(-)) defined in the statement of Lemma 3.11. Then for each assignment ¢ to the individual variables,
() H—;; (3zP(z) — ET) by assumption. Hence by Lemma 3.11, () I E. So E is Kripke-valid.
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Conversely, suppose E is closed and Kripke-valid, and let £ = ((K,<),D,x1,...,Xs, Xs+1) be a
constant-domain Kripke model for the language of E expanded by one new unary relation symbol P(-),
which is interpreted in the model by xst1. Suppose u € K and ¢ is an assignment to the individual
variables such that u I-y JzP(z) in K. For each v € K define §(v) = {d € D | xs41(v,d) = 1}.
Then £~ = ((K,<),D,d, x1,--.,xs) is a Kripke model for the language of E, with a corresponding
forcing relationship II—;, so by assumption ¥ is valid in ™. In particular, u II—;5 E, so by Lemma 3.10:
() IF,* E in the submodel (K™)" of K~ determined by u. But then () IF} JzP(z) — EP in the

submodel K% of K determined by u, by Lemma 3.11, since (K™)* is K. So u IFg 32P(z) — E' by
Lemma 3.10. Hence 3zP(z) — ET is valid in every Kripke model with a constant domain.

3.5 Completeness of the Kripke Semantics for Pd

Saturation for £(Pd) concerns existential formulas as well as disjunctions, and “fresh” variables (or
constants) will be needed as witnesses. Instead of expanding the language to provide these witnesses,
we consider sublanguages of L(Pd), as follows. In general, a set is inhabited if it has an element.
(From the constructive viewpoint, being inhabited is a stronger requirement than being nonempty.)

Definition. Let Vi be an inhabited subset of the set V. = {aj,a2,...} of individual variables of
L(Pd). Let Ry, ..., Rs be any distinct predicate letters of £(Pd), where R; is n;-ary (1 <4 < s). Then
L(Vo,{R1,...,Rs}) is the sublanguage of L(Pd) consisting of all formulas involving only variables from
Vo and relation symbols from {R1,..., Rs}.

Definition. Let Vo C W C V; be inhabited subsets of V. Let Ry,..., R; be any distinct predicate
letters of £L(Pd), where R; is n;-ary (1 <i <s). For j =0,1 let £'(V;) = L(V;{R1,...,R,}). Then
a collection T of formulas of £'(Vy) is £'(V¢)-saturated with witnesses in W if

(i) T is consistent.

(ii) If AV B is a formula of £'(Vy) such that I' Fpq A V B with all variables held constant, then
AeTlTor Bel.

(i) If 3zA(z) is a formula of £L'(Vy) such that T Fpq FzA(z) with all variables held constant, then
A'(y) €T for some formula A’(z) of £'(V1) congruent to A(z) and some y € W which is free for
z in A'(z).

If Vo = W = Vy, so I is a collection of formulas of £/'(V1) which is £'(V1)-saturated with witnesses
in Vy, we say T is £'(V1)-saturated.

Convention. For the rest of this section, “I' - E” abbreviates “I' Fpq F with all variables free in I'
held constant,” and “I' I/ E” abbreviates “there is no derivation of E from I' in Pd with all variables
held constant.”

Ezercise 3.13. Show that if I is an £L'(V()-saturated collection of formulas of £'(V1) with witnesses
in W (where Vo C W C V), and if E is a formula of £'(Vy) which has a congruent E' in £'(V7) such
that I' - E', then E € I'. [Congruence is discussed in Section 2.7 of these notes.]

Ezercise 3.14. Show that if I" is an £'(V;)-saturated collection of formulas of £'(Vy), then for all
formulas E, E' of L'(Vy):

(a) T+ E if and ounly if E € T.

(b) If E and E' are congruent, then E € T if and only if E' € T.

Lemma 3.13. (Saturation Lemma for Pd) Let Ry,..., R be distinct predicate letters of £L(Pd),
where R; is n;-ary. Let Vo C Vi C V where Vy is inhabited and V; - Vy is countably infinite, let
L'(V;) = L(V;A{R1,...,Rs}) for j =0,1, and suppose C is a formula of £'(Vy) and A a collection of
formulas of £'(Vy) such that A/ C. Then

(a) There is a I' C £'(Vy) which is £'(Vy)-saturated with witnesses in Vi, such that A C T and
THC.

(b) There is a I'™* C £'(V;) which is £'(V;)-saturated, such that A C T and I'* I/ C.
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Proof of (a). Let Fy, Fy, F3,... be an enumeration of the formulas of £'(Vg) without repetition.
Define an increasing sequence {I';} of consistent subsets of £'(V;) as follows. Let I'o = A, so Ty I/ C
by assumption. If i > 0 and T'; C £'(V;) has already been defined such that T; I/ C, consider F;q
and define I'; 1 by cases:

Case 1. Fz U {E+1} F C. Then Fﬂ_l = Fz

Case 2. Ty U{F;11} V/ C, and Fj;; is of the form JzA(x). Then I';1; = T'; U{F;11, A(y)} where
y is the first variable in V; which is free for z in A(z) and does not occur free in I'; U {F; 1} or in
C. Observe that if I';11 F C, then I'; U {F;11} F A(y) — C by the Deduction Theorem for Pd, so
Ty U{Fi;1} F 3yA(y) — C by R3 since y is not free in C or in I'; U {Fj;1}; hence T'; U{F; 41} - C
by R1 with Exercise 2.15. But this contradicts the case assumption, so I';4q F/ C.

Case 8. T';U{Fj;1} i/ C, and F;14 is not of the form JzA(z). Then I';y; = T; U {Fiy1}.

Finally, let ' = |J;5, I'i- Observe that ' I/ C and A C T C £'(Vy) by construction. We need to
prove that I satisfies (ii) and (iii) of the definition of £'(Vg)-saturation with witnesses in V.

For (ii), suppose Fj11 is AV B where I' - AV B. Both A and B are formulas of £'(Vy), say A is
Fji1 and B is Fiyq. If I'; U {A} I/ C then A € T' by construction. If I'y U{B} I C then B € I" by
construction. And if both I'; U{A} F C and T, U{B} + C then TU{AV B} I C and so I" - C, which
is impossible. By classical reasoning, it follows that one of A, B must be in T.

For (iii), suppose Fj;1 is 3zA(z) where I' - 3z A(z). Then T'U {3z A(z)} / C, so T U{Fj41} I/ C,
so A(y) €I for some y € V; free for = in A(z), by construction.

Proof of (b). Partition V; - Vj into infinitely many infinite subsets, and use the partition to define
{V;‘} so that Vo = V§, V; = Ujew Vi and for j =0,1,2,... : V; C Vi, and Vi, - V] is infinite.
Using (a), define by induction on j an increasing sequence {I';} of subsets of £'(V1) such that A C I'y
and for each j = 0,1,...: '] is a subset of £L'(V7, ;) which is £'(V})-saturated with witnesses in V7,
and I'; I/ C. Let I'" = szo I';. Then A C I'* by construction, I'* t/ C, and I'* is L'(Vy)-saturated
because V| = UjZOV;fJrl andT{CIy C...CI*C LI(Vy) = szo E’(V;f).

Lemma 8.14. Suppose A(x1,...,ZTm,Tm+1) is a formula in which only the distinct variables
Tly.-+,Tm, Tmt+1 occur free, and zi,...,2zm,2zmy1 are any variables such that z; is free for z; in
VZm1A(T1, .-« Tm,y Tmy1) (or equivalently in 3z, 11 A(z1, ..., Tm, Tmy1)) for 1 <i < m. Then

(a) If 2,41 is free for x,, 41 in A(21, . -+, Zm, Tm1), then zp, 1 is free for 41 in A(z1, ..., Ty, Timg1)-

(b) If zpp1 is free for 2,11 in A(21,...,Zm, T;me1) and if A'(z1,..., 2Ty, Tme1) 1S any congruent
formula in which none of the variables z1, ..., 2y, Zm+1, Tm+1 occur bound, then 2,41 is free for x,, 1
in A'(21,. -+, 2Zm, Tm+1), and Iz, 11 A" (21, -+, Zm, Tir1) 18 congruent to Iz, 11 A(21, - -+, Zms Tmt1)-

Theorem 3.15. (Completeness for Pd) Suppose E is a formula of L(V {Ry,...,Rs}) such that
Ypa E. Then there is a Kripke model £ = ((K, <), V, 4§, x1,...,xs) over Ry,..., Ry, with domain V,
such that () Ify, £ where ¢(y) =y for every y € V, and ¢(z) € §(()) for every z free in E.

Proof. Define an increasing sequence Vo C Vi C ... of subsets of V such that each Vi ; - V; is
infinite, Vo is infinite and contains all variables occurring in E, and V = Uj>0 Vj. For each j > 0 let

Flj, FQj, ... be an enumeration without repetitions of all the formulas of £'(V;) = L(V;,{R1,..., Rs}).
Since t# E, by (b) of the Saturation Lemma there is an L' (V()-saturated Ty C L'(Vy) such that Tg I/ E.

(K,<) is defined inductively, with nodes v = (ni,...,nx) representing chains I'y C ... C T’
where each T'; is an £'(V;)-saturated collection of formulas of £'(V;), and we say Ty is attached to
the node u. First attach 'y to the root ( ) of K. For each node u of length k& with T'y attached,

enumerate all the finite sequences F;f“, . ,F;ﬁ“, FZ’:LI of formulas of £'(Vgy1) such that » > 1 and
k k k k k k k k
{Fitt,  FfYNT =0 and Ty U{F T, PP Y FETL For each m: TF FEFL L FEFL REH

is the m'™ such sequence, by (b) of the Saturation Lemma there is an £'(V}1)-saturated I'y,; such
that Ty U{FS, .. FfH} C Thyy and Typo b FEFL Attach this Tyqq to ux (m).

The domain function § assigns to each node u = (nq,...,n;) of length k the set Vi; and for
1 <i<swelet xi(u,yi,...,yn;) = 1 if and only if R;(y1,...,yn;) € I'x where Iy is attached to u.
By construction, £ = ((K,<),V,d,x1,..-,Xs) is a Kripke model over Ry,..., R; with domain V.
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Suppose ¢ is an assignment to the variables which maps Vy, into Vi and C'(z1, ..., x,,) is a formula
of £'(Vy) with only the distinct variables 1, ..., z,, free. We call ¢ free in C if and only if ¢(z;) is
free for z; in C for each 1 < ¢ < m.

Claim. Suppose u is a node of K with I'y attached, ¢(y) € Vi for every y € Vi, and ¢(z;) = z; for
1 <4 < m. Then for every formula C(z1,...,2y,) of L'(Vg) in which ¢ is free and only the distinct
variables z1,...,T,, occur free:

(x) ulky C(z1,...,2m) ifandonly if C(z,...,2,) € I'y.

If C' is prime, the claim is true by construction of the model. For the inductive cases, assume the
claim holds (at all appropriate nodes, for all appropriate assignments) for all proper subformulas of
C(z1,...,%Zm), and let u be a node of length k with I'y attached and ¢ be an assignment free in C
such that ¢(y) € Vi, for all y € Vi, and ¢(z;) = 2 for 1 <7 < m. We must prove (x) holds for C.

The propositional cases are exercises for the energetic reader. For the quantifier cases, if z, x € Vy
and ¢ is an assignment, then ¢[z/z] is a standard abbreviation for the assignment 1) such that ¢ (z) = 2
and 9 (y) = ¢(y) for all y # =.

Case 6. C(x1,...,%m) 18 VL1 A(Z1,- .-, Tm, Tmy1) where (x) holds for A(xy,...,Zm, Tme1) at
every node of length > k. If ulry C(z1,...,%y,), choose zp11 € Viyp1 — Vi, 80 241 is free for @,,41
in A(z1, -+ Zmy Tmy1). U g A(21,- -+, Zm, Zm+1), by construction of the model u has an immediate
successor v with some I'y; attached such that T'y C I'yyq but A(z1,...,2m, 2m+1) &€ Tk+1. By the
induction hypothesis, v Iy, A(z1,...,%m, Tm41) Where ¥ = [zmi1/Tmp1]. But v Ibg C(zr,...,2m)
by monotonicity, so v Iky A(z1,...,Zm, Zme1), which is impossible. So Ty = A(z1, ..., 2Zm, Zm+1)-
Then I'y = C(z1,...,2n) by Exercise 2.13, since z,,11 is not free in 'y, so C(z1,...,2,) € [y by
Exercise 3.14(a).

Conversely, if C(z1,...,2zn) € T'y and v > w is a node of length h > k with I'; attached, then
for every zp41 € Vj which is free for z, 11 in A(z1,..., 2m, Tms1): Th b A(z1,.. ., Zmy Zm41) SO
A(z1, .-y Zm,y 2Zm+1) € Ty by Exercise 3.14(a), and ¢ = ¢[zpmi1/Tm+1] 1s free in A(z1, ..., T, Ting1)
so by the induction hypothesis v by, A(z1, ..., T, Tmt1), 50 ulby C(z1, ..., Tm).

Case 7. C(z1,...,%m) 18 Fxmi1A(T1,- .., Tm, Tmy1) where (x) holds for A(z1,...,Tm,Tm11) at
every node of length > k. If u Iy C(z1,...,zy) then there is some 2,1 € V) which is free for
Tmt1 in A(Z1,...,Zm, Tmg1) such that u by A(z1,...,2m, Tmy1) where ) = ¢[2m41/%mq1]. Then
¥ is free in A(z1,...,Tm, Tm+1), S0 A(21,. .., Zm, Zm+1) € [k by the induction hypothesis. If z,,11
is free for 41 in A(z1,...,2m, Tme1) then Ty F C(21,...,2n) so C(z1,...,2n) € Ty by satura-
tion. Otherwise, choose a congruent A'(z1,...,Zm, Tme1) of A(z1, ..., Zm, Tme1) in which none of
the variables 21, ..., Zm, Zm+1, Tm+1 occur bound, s0 zp, 11 is free for 2,11 in A'(21, ..., Zm, Tmy1) and
A'(z1,. - Zms 2m+1) € Ty by Exercise 3.14(b). Then I'y b 32,114 (21, ..., 2m, Tm+1) and therefore
C(#1,...,2m) € T'y by Exercise 3.14(a) with Lemma 3.14(b).

Conversely, if C(21,...,2m) € Ty then A'(21,...,2m,2m+1) € Tk for some A'(z1,...,Zm, Tmi1)
congruent to A(z1,...,Zm,Tmy+1) and some 2z, 11 € Vi which is free for z,,11 in A'(21,. .., 2m, Tmi1),
so if ¥ = @lzmi1/Tmy1] then ¢ is free in A'(z1,...,2m, Tmy1) and by the induction hypothesis

ulby A'(z1,..., Tm, Tm41). Hence ulky C(z1,...,2m), and so ulby C(z1, ..., Tm).
By the claim, () Iy E if ¢(x) = = for every z € V, since E ¢ T'g by construction. So the Kripke
semantics is complete for Pd.

Ezercise 3.15. Give the inductive argument for the claim (x) in the proof of Theorem 3.15, for the
case that C is of the form A Vv B.

Ezercise 3.16. Give the inductive argument for the claim (x) in the proof of Theorem 3.15, for the
case that C is of the form A — B.

Note the nonconstructive steps in the proof of the Soundness Theorem for Pd. These cannot be
entirely eliminated. A constructive reformulation of the theorem would be something like this: If E
is a Kripke-valid formula of £(Pd) then it is impossible that there is no proof in Pd of E. Hence by
Markov’s Principle, if IF E then Fpq E.
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3.6 Applications of Kripke Semantics for Pd

Theorem 3.16. For any distinct binary predicate letters P(-), Q(-) and unary predicate letter R of
L(Pd), the following classically provable formulas are unprovable in Pd:

(a) ==Vz(=P(z) vV -~P(z)).

(b) Va(--P(z) - P(z)).
(¢c) Vz(-—P(xz) = P(x)) = Vz(P(z) V =P(z)).
(d) Vz——P(z) - ——VzP(z).

(e) —|—|E|£I:P( )—> E|$—|—|P($).

(f) Vm( (x) V—=P(z)) & —Vz—P(z) — JxP(x).
(8) Vz(Q(z) V R) — (VzQ(z) V R).

(h) (VzQ(z) — R) — 3z(Q(z) — R).

(i) (R — JzQ(z)) — Jz(R — Q(x)).

() (=R — 32Q(z)) — Jz(-R — Q(z)).

Proof, in each case, is by providing a Kripke countermodel. The forms (d), (g)-(i) have already
been treated in examples and exercises. A countermodel to (b) can be obtained from the propositional
countermodel to part (¢) of Theorem 3.5 by adding a one-element constant domain. That is, if
Ks = ((Ks, <),{do}, x) where K5 = K; = {(),(0)}, and x(u,dp) = 1 if and only if u = (0), then K5
is a countermodel to (b). We leave the rest as (sometimes challenging) exercises.

Ezercise 3.17. Provide a Kripke countermodel to one of (a), (c), (e), (f), (j).

Unlike Pp, intuitionistic predicate logic Pd is not (recursively) decidable, so we have no analogue
of Theorem 3.6. The completeness of Kripke semantics for Pd does give classical proofs of some
interesting admissible rules of Pd, including the disjunction and existence properties (first established
constructively, essentially by Gentzen in 1935) and a form of Markov’s Rule. First we collect some
easy facts in a lemma which holds constructively.

Lemma 3.17.

(a) If B is a closed formula of £L'(V) = L(V,{Ry,...,Rs}) and K is a Kripke model over Ry,..., R
with domain D such that () IF4 B for some assignment ¢ of elements of D to V, then () I, B for
every assignment 1) of elements of D to V, so K I B.

(b) Let K be a Kripke model over Rj,..., Rs; with domain D, and Vo = {b1,b2,...} a countably
infinite subset of V. Define f(a;) = b; for each i > 1, and let K/ be the Kripke model over £'(Vy)
obtained from K by replacing § by ¢/ where 6/ (u) = {f(z) : z € §(u)} and D/ = Uyexd/ (u). Then
for every formula E of L£'(Vg) and every assignment ¢ of elements of D to the variables in V:

KlFy E if and only if K/ Iy E.

(c) Let m > 1 and for 1 < j < m let K; = ((K;,<),Dj,d;,X;j1,---,Xj,s) be a Kripke model over
Ry, ..., Rs. Suppose dy € (1< <, 6;(( ). Define a new Krlpke model £' = (K, <),D,d, X1, -, x%)
where o

K'={(}u [J {ruruekK;}, §(())={do} and §'((j) xu) = 6;(u) if u€K;,

1<j<m

and if 1 < ¢ < s then for all z1,...,2;, € V: x:((),z1,...,2n,) =0 and for every 1 < j < m and
every u € K;: xi((j) * u,z1,...,%n;) = Xxji(u,%1,...,%pn,;). Suppose for each 1 < j < m there is a
closed formula E; of £'(V) such that K; If E;. Then K'If E1 V...V Ep,.

Ezercise 3.18. Prove Lemma 3.17(b).

The process of building K’ from K; (1 < j < m) described in (c) of the lemma is due to Smorynski,
and is used with considerable versatility in his Chapter 5 of Troelstra [1973]. We use it to give classical
proofs of four admissible rules of Pd, two of which do not hold for classical predicate logic cPd. None
of these rules is derivable in Pd.
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Theorem 3.18. For all formulas A(z), B, C' of L(Pd) such that only z is free in A(z), and B, C are
closed:

(a) If Fpq BV Cthen Fpg Bor FpgC.

(b) If Fpq JzA(x) then Fpq A(z) and hence Fpq VzA(z).
(C) If Fpgq B — E|$A($) then Fpg E|$(—|B — A(.?I))
(d) If Fpa Vz(A(z) V -A(z)) and Fpg —Vz—A(z) then Fpgq FzA(z) (and hence by (b), also

Fpa VzA(x)). (Markov’s Rule for Pd).

Proof of (b). Assume tpq JzA(x), so by soundness I JzxA(z), and suppose tpg A(z).
Then by completeness there is a Kripke model £ = ((K, <),D,d, x1,...,xs) over Ry,..., Rs; and an
assignment ¢ of elements of D to the individual variables such that ¢(z) € §(( )) and () Iy A(x).
Without loss of generality, suppose ¢(z) = dy. Apply Lemma 3.17(c) with m = 1 to get a new model
K'= ((K',<),D,d", x4,...,X.) such that §(({ )) = {do} and K = K'((1)) (see the definition of submodel
in section 3.4). Let I be the forcing relation on K'.

By Lemma 3.10, (1) I, A(z), so by monotonicity () If}, A(z). But () I-' 3zA(z) by soundness,
so () IFy A(z) because ¢(z) is the only element in ¢'({ )). Contradiction.

Proof of (d). Assume Fpq Vz(A(z)V -A(z)) and Fpg -Vz—A(z). Then Fpq Jz(A(z) V-A(z)) by
Exercise 2.11, so Fpq (3zA(z) V 3z-A(z)) by Theorem 2.10(b). Hence Fpq 3z A(z) or Fpg 3z A(x)
by Part (a) of this theorem, whose proof is left as an exercise.

Suppose Fpq dz—A(x). Consider a one-node Kripke model Ky = (({({ )},<),D, x1,-..,xs) where
D = {dp}. The only assignment of elements of D to the individual variables is the constant function ¢
such that ¢(y) = dy for every variable y, and by soundness () IF 3z—A(x), so () IF4 ~A(z). But then
() IFVz—A(z), which is impossible because ( ) IF =Vx—A(z) by soundness. So l/pq 3x—A(z), and the
only other possibility is Fpgq JzA(x).

Ezercise 3.19. Prove Theorem 3.18(a).

Ezercise 3.20. Prove Theorem 3.18(c).

Question. It is known that the collection of admissible predicate logical rules of Pd is not re-
cursively enumerable. Is there any coherent way to organize these rules? This vague question is
apparently open.

4 Intuitionistic Logic in Mathematics: Cautious Constructivism

Any branch of mathematics can be studied using intuitionistic instead of classical logic, resulting in
an intuitionistic subtheory of the classical theory. In fact, one cautious constructivist has said that
constructive mathematics is just mathematics with intuitionistic logic. The first step in any such
application is to axiomatize equality.

4.1 Intuitionistic Predicate Logic with Equality Pd[=]

It is possible to treat equality axiomatically within £(Pd), by choosing a particular binary predicate
symbol (say Pi(-,-)) to express equality; alternatively, one can add a binary predicate constant to the
language. We let £(Pd[=]) be £L(Pd) with a special binary predicate symbol - = -, so if s, are terms
then s =t is a prime formula in which all the variables free in s or ¢ are free. Every prime formula
of L(Pd) is also a prime formula of L(Pd[=]), and the formulas of L(Pd[=]) are built up from the
prime formulas using &, V,—, -,V and 3 as before.

The axioms of Pd[=]| are all formulas of £(Pd[=]) of the forms X1-X12 (the axiom schemas of
Pd), the reflexivity axiom XE1 (where a is a particular individual variable), and the axiom schema
XE2 (where a and b are distinct variables, P(z) may be any prime formula of £(Pd) in which a and b

are free for z, and P(a), P(b) are the results of substituting a and b respectively for all free occurrences
of z in P(z)).
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XElL. a = a.
XE2. a =b— (P(a) = P(b)).

The rules of inference of Pd[=] are R1-R3 extended to L(Pd[=]|). A deduction (or derivation) in
Pd[=] of a formula E from a collection I" of formulas is a finite sequence of formulas, each of which is
an axiom by X1-X12 or XE1-XE2, or a member of I', or follows by a rule of inference from one or two
formulas earlier in the list. If such a deduction exists, we write I' Fpqj=] E. The notions of dependence
and wvariation are defined just as for Pd, and a proof is a deduction from no assumptions.

Remarks. Alternatively, we could have replaced P(z) in XE2 by an arbitrary formula A(z) of
L(Pd[=]). We choose this version because it asserts the substitutivity of equals for equals in prime
formulas (e.g. a = b — (R;(c,a) = R;i(¢,b)), a =b— (R;(a,c) — Ri(b,¢c)),a=b— (a=c— b=c))
and the general form follows by predicate logic. We follow Kleene [1952] in choosing open equality
axioms, from which their universal closures can easily be proved.

Lemma 4.1. The Deduction Theorem holds for Pd[=].
Proof. Exactly as for Pd, with the new axioms XE1-2 treated using X1 and R1 as usual.

Lemma 4.2. Pd[=] proves that = is an equivalence relation. If z,y and z are distinct individual
variables, then

(a) Fpa=) Vz(zr = 2).

(b) Fpa) VoVy(zr =y -y =1z).

(¢) Fpa VaVy¥Ve(z =y & y=2— 2= 2).

Ezxercise 4.1. Prove Lemma 4.2.

A natural deduction system NPd[=] equivalent to Pd[=] can be obtained by extending the rules
of inference of NPd to £(Pd[=]) and adding two new rules, one (requiring no premises) expressing
the reflexive property, and the other the substitutivity property, of =:

For (=1I), z may be any individual variable. For (= E), A(z) is a formula of £(Pd[=]), and D; and
Dy are given NPd[=]-deductions from I" of A(s) and s = ¢ respectively, where s and ¢ are terms free
for z in A(z). Each resulting proof tree is a deduction from I' of its last formula.

Theorem 4.3. NPd[=] and Pd[=] are equivalent in the sense that if £ is a formula, and I" a
collection of formulas, of £L(Pd[=]) then the following are equivalent:

(a) T Fpg=] £ by a deduction in which no variable is varied.
Ezercise 4.2. Add to the proof of Theorem 2.8 the additional cases needed for a proof of Theorem
4.3(a) and (b).
Corollary 4.4. Equality is a congruence relation on terms and formulas, in the following sense.
(a) Fpaj=) V2Vy(z =y — t(z) = t(y)) if 7,y are variables free for z in the term #(z).
(b) Fpa) YVaVy(z = y — (A(z) < A(y))) if A(2) is a formula of £(Pd[=]) and z,y are distinct
variables free for z in A(z).

Ezercise 4.3. Prove Corollary 4.4(a) and outline the proof of (b), treating completely the inductive
cases for V and 4.

Note. Kleene [1952] gives the name “replacement theorem” to a pair of assertions, analogous to
Theorem 2.9 but with » = s in place of A +» B, and t, = t5; or C, < Cs in place of Cy < Cp,
from which Corollary 4.4 follows. “Congruence” emphasizes the mathematical role of substitutivity
of equality, which is important in applications.
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4.2 Kripke Semantics for Pd[=]

A Kripke model K= = ((K,<),D,d,x1,-..,Xs; X=) over Ry,..., Ry with equality is a Kripke model
over Ry, ..., R; with an additional ternary characteristic function y— interpreting = by an equivalence
relation on §(u) for each v € K, with the usual monotonicity requirement so that if v < v in K and
X=(u,z,y) = 1 then z,y € §(u) and x=(v,z,y) = 1. A normal Kripke model is one in which = is
interpreted by identity at each node, so x=(u,z,y) = 1 if and only if z =y € d(u).

It is not hard to show that monotonicity and soundness hold for Kripke models with equality,
for the restricted language L. = L_(V,{R1,..., Rs}) which is like £(Pd[=]) but with only finitely
many predicate letters Ry,..., Rs. Completeness holds as well. For theories with decidable equality
(that is, theories such as Heyting arithmetic, in which (z = y) V =(x = y) is provable for distinct
individual variables z and y), completeness holds with respect to normal Kripke models. Leaving the
justifications of these statements as optional, sometimes challenging, exercises for the reader, we turn
to an important example of the use of intuitionistic logic in constructive mathematics.

4.3 Heyting Arithmetic HA

Heyting arithmetic HA is related to Peano arithmetic PA as Pd is related to cPd, that is, HA is
arithmetic with intuitionistic logic. We follow Kleene [1952] in choosing an economical axiomatization
with symbols and axioms for zero, successor, addition and multiplication, and the axiom schema of
mathematical induction for all predicates of L(Pd[=]). The resulting theory will be strong enough
to develop the theory of partial and general recursive functions and to prove Godel’s incompleteness
theorem. The consistency question for intuitionistic arithmetic is constructively equivalent to that for
classical arithmetic, by a negative interpretation due independently to Godel and Gentzen.

The language L(HA) of HA has the distinct individual variables a1, ag,as,... , an individual
constant 0, a unary function symbol ’, two binary function symbols + and -, and the binary predicate
symbol =. There are no other predicate symbols. Terms and prime formulas are defined inductively
as follows:

e (is a term.

e Each individual variable is a term.

e If s and ¢t are terms then s', (s +t) and (s - t) are terms.
e If s and ¢ are terms then (s = t) is a prime formula.

Every occurrence of a variable z in a term s or ¢ is free in (s = t). Parentheses and the symbol - may
be omitted according to the usual mathematical conventions when there is no chance of confusion.
The terms 0, 0, 0”, ... are the numerals, abbreviated by 0, 1,2, ....

Formulas are built from prime formulas as for £(Pd), using &,V,—, -,V and 3. The scope of a
quantifier, and free and bound variables in a formula, are as for £(Pd) but with the current definition
of formula.

The azioms of HA are of three kinds: the logical axiom schemas X1 - X12 (for formulas of L(HA)),
the axiom schema X13 of mathematical induction, and the particular arithmetical axioms X14-X21
(from which XE1-3 for L(HA) will follow). For X13, A(z) may be any formula of L(HA) and z any
variable. For X14 - X21 choose a, b, ¢ to be three particular distinct individual variables (for example
ay,az,as), so these axioms (unlike X13) are formulas rather than schemas.

X13. A(0) & Vz(A(z) — A(z')) — A(z).
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The only rules of inference are the predicate logical rules R1 - R3, for L(HA), with the usual
restrictions on the variables. A deduction (or derivation) of E from T is a finite sequence Fi, ..., F, of
formulas each of which is an axiom by one of the schemas X1-X13, or one of the particular arithmetical
axioms X14-X25, or follows from one or more formulas earlier on the list by R1, R2 or R3. If such a
deduction exists we write I' Fya F and say that E is deducible from I' in HA, and if Figa E then E
is a theorem (or provable formula) of HA. The notions of dependence of one formula in a deduction
on an earlier one, and variation of a variable in a deduction, carry over from Pd, as does the proof of
the Deduction Theorem.

Observe that the universal closures of X14-X25 are provable by the method of Exercise 2.13, and
hence every formula obtained by replacing a,b, ¢ in X14-X25 by (not necessarily distinct) individual
variables x, y, z is provable. After proving Lemma 4.5 we use this fact without comment. Also observe
that the conclusion of X13 can be strengthened to Vo A(x) by R2, since  is not free in the hypothesis.!

If the intuitionistic negation-elimination axiom schema X10. —A — (A — B) is replaced by the
classical X10¢. —=—A — A , the result is a formal system PA for classical Peano arithmetic. We would
like to know how much actual arithmetic can be done in HA, in particular whether HA is in some
sense as strong as PA.

4.3.1 Primitive Recursive Functions

A number-theoretic function ¢ is primitive recursive, if ¢ can be defined by a finite sequence of
applications of the following five operations:

I ¢(z) =" (successor),

IT ¢(x1,...,2,) = q where ¢ € w (constants),
T @(x1,...,2,) = z; where 1 <14 <n (projections),

IV oz, .yxn) =P(x1(1y - Zn)s ooy Xm (21, .., 2p)) (substitution),
Va  ¢(0) =¢q and ¢(y') = x(y,¢(y)) ,

Vb (0, 29,...,2,) = P(z2,...,2,) and o(y',zo,...,2n) = XYy 0(Ys T2y« s Tn)y T2y v oy Tpy)

!This standard axiomatization is based on Kleene [1952]. Note that X18-X19 and X20-X21 are the primitive recursive
definitions of 4+ and - respectively. We have added the “equality axioms” X22-X25 for + and -; these special cases of
XE2 are provable by mathematical induction from the other axioms, so our axioms are not independent.
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This is a recursive definition with I - IIT as basis; in IV and V, the 4, x;, x are assumed to be
primitive recursive functions already derived. When the primitive recursion schema Va or Vb is used
in conjunction with one or more of the explicit definition schemas I-IV, the explicit steps may be
omitted if it is clear how to fill them in.

Ezample. To show that exponentiation is primitive recursive it is enough to observe that
2% =0 and z¥) = (2¥) - z,
where 0, ' and - are primitive recursive. A correct primitive recursive derivation of z¥ is
1. y=2z" by (I)
¢1(z) =0 by (IT)

po(z
o1
@2(z,y,2) =y by (III)
a(
pa(

8

8
< < <

©3 ,z) =z by (III)
 2) = pa(z,y, 2) - p3(z,y,2) by (IV)
@5(z) = polp1(z)) by (IV)

©(0,2) = p5(x) and
oy, ) = pa(y, p(y, ), z) by (Vb).

A relation is primitive recursive if and only if its characteristic function is. Godel proved that
every primitive recursive function is arithmetical, i.e. can be defined in PA. The same holds for HA;
for example, the exponential function is definable in HA by a formula A(a,b,c) of L(HA) for which

(ia) Faa 3eA(a,b,c)
(ib) Fma A(a,b,c¢) = (A(a,b,d) — (c = d)) .
(i) Fpa A(a,0,0)
(i) Fra A(a,b,¢) = A(a,V,(c-a)) ,

)

)

w4\ T,

NS g w N

Faa a=d— (A(a,b,c) > A(d,b,c)) , and
Faa b=d — (A(a,b,c¢) = A(a,d,c)) .

(iv
(v

Then 7* = ¢ can be treated as an abbreviation of A(r, s,t), if r, s, ¢ are terms. Note that (ia) and (ib)
can be replaced by the single condition (i) Fga 3!cA(a, b, c¢) where in general:

JlyA(y) abbreviates Jy[A(y) & Vz(A(z) — z = y)].

Ezercise 4.4* Outline a method for finding a particular formula A(a, b, ¢) of L(HA) which defines
the exponential function in the sense described above.

Alternatively, one can add a function symbol for exponentiation, with its primitive recursive defi-
nition and the corresponding equality axioms, to HA without increasing the class of provable formulas
of the original language; such an extension of a theory is called an inessential or conservative extension.

There is a tradeoff between the proof-theoretic efficiency gained by restricting (as far as possible)
the number of symbols and axioms, and the mathematical convenience provided by an adequate
(finite) list of primitive recursive functions with their characteristic axioms. While Kleene’s precise
formal development of the theory of partial and general recursive functions from a minimal collection
of mathematical axioms is close to optimal from the first standpoint, it is sometimes convenient to
work in a conservative extension HA# of HA containing symbols and axioms for enough additional
primitive recursive functions to make the arithmetization go smoothly. Unless otherwise stated, by
HA# we will mean any conservative extension of HA obtained by adding constants and axioms for
finitely many primitive recursive functions including the positivity test (sg(a) =1 if a > 0, otherwise
sg(a) = 0), the zero test (3g(a) =1 if a = 0, otherwise 3g(a) = 0), and
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1. exponentiation: a®

2. factorial: a!

3. predecessor: pd(a) (where pd(0) = 0)

4. cutoff subtraction: a—b

5. minimum: min(a,b)

6. maximum: max(a,b)

7. parity: par(a)

8. absolute value: |a — b|

9. remainder: rm(a,b) (on dividing a by b)
10. quotient: gn(a,b)

Using these functions with sg and 3g it is easy to show that the relations a < b, a < b, a|b and Pr(a)
(“a is prime”) are primitive recursive. For example, a < b holds if and only if 3g(b—a) = 1.

Ezercise 4.5. Give primitive recursive defining equations for the other nine function constants
(other than exponentiation, which was treated in the example) listed above. Using these, give explicit
definitions for the characteristic functions of a < b, a |b and Pr(a) .

Remark. The class of primitive recursive relations is closed under definition by cases: if x(z1,...,zy),

n(z1,...,zy) and ((z1,...,z,) are primitive recursive, so is

oz, z) i x(z, .. ) >0,
P(T1s- s ) = { ¢(z1,...,my) otherwise.

In fact, p(z1,...,2n) =0(T1,. .., 2n) - s9(x (21, ..., 2n)) + {(21,. .., Tpn) - Sg(x(z1,...,2,)). The next
exercise summarizes other important closure properties of this class, and should not be skipped.

Ezercise 4.6* (a) Show that the class of primitive recursive relations is closed under the logical
connectives &, V, — and —.
(b) Show that the class of primitive recursive functions is closed under the following operations:

1. bounded sum: p(z,x2,...,2,) = Yy<p Y(y, T2,...,Zp)
2. bounded product: ¢(z,z9,...,2,) = ycy P(y, z2,...,24)

3. bounded maximum: p(z,z2,...,Ty) = MaTy<y (Y, T2,...,Zy)

N

. bounded minimum: ¢(z,z2,...,2,) = Ming<y P(y,22,...,Tp)

5. bounded least number operator: o(z,xa,...,2,) = py((y < z) & (Y(y, z2,...,x,) = 1)) if such
a y exists, otherwise ¢(x, z2,...,z,) =

in the sense that if 1 is primitive recursive, so is .
(c) Show that the class of primitive recursive relations R(z1,...,z,) is closed under the bounded
quantifiers
Vyy<aR(y,T2,...,2n) and Jyy< . R(y, zo, ..., Ty).
Ezxercise 4.7. Let p; be the ™" prime, with pg = 2. Is p; a primitive recursive function of i?
Justify your answer. Include proofs of any mathematical facts you use.
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4.3.2 Some Formal Theorems of HA

It is time to see what can be proved in Heyting arithmetic. Using the Deduction Theorem and the
equivalence of HA with its natural deduction counterpart NHA, we can argue informally.

Lemma 4.5. HA proves that = is an equivalence relation. If z,y, z are distinct variables, then

(a) Fma Vz(z=z).

(b) Faa VaVy(z =y —y=x).

(c) Fua VeVyVz(z=y & y=2— = = 2).

Proofs. For (a), first use the method of Exercise 2.13 to prove the universal closures of X16 and X18.
Then using X11 with R1, we have (z+0) = z from X18, and ((z+0) = z) — (((z+0) = z) = (z = 1))
from X16, so z = z by R1 twice, and Vz(z = z) follows by (the method of) Exercise 2.13. For (b),
observe that (z = y) — ((z = z) = (y = x)) is an instance of the schema corresponding to X16, and
use (a). For (c), use (b) with X16.

Theorem 4.6. Equality is a congruence relation on terms and formulas of HA. That is,

(a) Faa VoVy(z =y — t(z) = t(y)) if =,y are distinct variables free for z in the term #(z).

(b) Fua VaVy(z = y — (A(z) + A(y))) if A(z) is a formula of L(HA) and z,y are distinct
variables free for z in A(z).

Proofs. (a) uses Lemma 4.5 with X16, X17 and X22 - X25. (b) follows from (a) as in the proof of
Corollary 4.4 (Exercise 4.3).

Theorem 4.7. If x,y, z are distinct variables, then

(a) Fua Vz((z=0)V -(z=0)).

(b) Fma Vy((y =0)V3z(y = 2')).

(€) Faa Vavy((z =y) V ~(z = y)).

Proofs are by mathematical induction. (a) is proved by induction on z, using Lemma 4.5(a) for
the basis and (the schema corresponding to) X15 for the induction step. (b) is by induction on y.

For (c) use induction on z to prove Yy((z = y) V =(z = y)) as follows. By (a) with Lemma
4.5(b), Yy((0 = y) V =(0 = y)). Assuming Vy((z = y) V =(z = y)), to show (' = y) V =(z' = y)
use (constructive) cases from (b). If y = 0 then —(z' = y) by X15 with Lemma 4.5(c). If y = 2/
then by the induction hypothesis: (z = 2) V =(z = 2), so (' = 2') V =(z' = 2') by X17 and X14, so
(' =y) V—(2' = y), and since this conclusion does not contain z free it follows from 3z(y = 2).

Remark. Theorem 4.7(c) shows that prime formulas are decidable in HA. This is in contrast to
pure intuitionistic logic, which obviously does not prove P V =P . Another nice feature is that both
negation and disjunction are definable in HA, by

A= (A—-0=1) and
(AVB) = 3z((z=0— A) & (~(x =0) —» B)) .

Ezercise 4.8. Prove Theorem 4.7(b).

Ezercise 4.9. Prove that for all formulas A and B of L(HA):

(a) Fpga A+ (A—=0=1), and

(b) Fga (AVB) <+ Jz((z =0 — A) & (—=(z =0) — B)), where z is not free in A or in B.

4.3.3 Other Varieties of Constructive Arithmetic

A theory based on (intuitionistic or classical) predicate logic is called finitely aziomatizable if it has only
finitely many nonlogical axioms. HA is not finitely axiomatizable because it includes the induction
schema X13 for arbitrary formulas A(zx).

Definition. Intuitionistic Robinson’s Arithmetic QA is the finitely axiomatizable subtheory ob-
tained from HA by replacing the induction schema X13 by the single axiom

XQ. a=0V F(a=1b).
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QA is consistent, provably in HA, and like HA it is essentially undecidable. That is, for any consistent
theory T extending QA, there cannot fail to be sentences of L|T] which are neither provable nor
disprovable in T. In particular, QA itself is undecidable and cannot prove its own consistency.?

Intuitionistic Presburger arithmetic, the subtheory of HA obtained by omitting the symbol and
axioms for multiplication, can be proved in HA to be consistent and complete, hence decidable.? The
functions definable in Presburger arithmetic are of interest in model theory.

Another subtheory of HA which has been extensively studied in the literature resricts the schema
of mathematical induction to instances in which the A(z) is Iy without parameters. Beklemishev
[1999] showed that this theory (call it ilI3-IND) proves that every primitive recursive function is
total; and conversely, that only primitive recursive functions can be proved in ill3-IND to be total.
However, the gold standard for constructive arithmetic avoids quantifiers altogether.

Primitive recursive arithmetic PRA is the quantifier-free theory obtained from HA in the following
way.? The language £L(PRA) extends the quantifier-free part of £L(HA) by adding a constant f; for
each primitive recursive function. The nonlogical axioms of PRA include the recursion and equality
axioms for each f;. The quantifier axioms X11, X12 and rules R2, R3 are replaced by the

Substitution Rule: From A(x) conclude A(t),

where A(z) is quantifier-free and ¢ may be any term; the z of the rule is varied in any deduction in
which it is used, so for the natural deduction system one requires that the hypotheses of the given
derivation of A(z) do not contain z. Finally, the axiom schema X13 of mathematical induction is
replaced by the following rule, for quantifier-free A(x):

Induction Rule: From A(0) and (A(z) — A(z')) conclude A(zx).?

The development of arithmetic in PR A is quite different from that in HA.. Instead of the Robinson
formula, which cannot be expressed without quantifiers, Fpra (y =0 V y = (pd(y))’) by induction
using the definition of pd(y).

The following rules are derivable in PRA, for A(z,y) quantifier-free and ¢(z,y) any term:

Subtle Induction: From A(0,y) and (A(z,t(z,y)) — A(z',y)) conclude A(z,y).

Double Induction: From A(z,0), A(0,y) and (A(z,y) — A(z',y')), conclude A(z,y).

Hence Fpra (z =y V —(z =y)). Since every quantifier-free A(x1,...,z,) is equivalent in PRA to
a prime formula of the form f;(z1,...,x,) = 0, where f; is a primitive recursive function constant, it
follows that every formula is decidable. Hence it makes no difference whether the theory is based on
classical or intuitionistic logic.

Exercise 4.10*. Outline proofs of the following facts:

(a) PRA is closed under the quantifier-free rule of subtle induction.

(b) PRA is closed under the quantifier-free rule of double induction.

(c) FpRA z=y V —(z =vy).

2Classical Robinson’s arithmetic, obtained from QA by the usual strengthening of the logical principle for negation,
is often called Q in the literature. Kleene [1952] observes that the proof he gives of Rosser’s form of Godel’s First
Incompleteness Theorem for PA can be adapted to QA and to Q.

®Kleene [1952] observes that Joan Ross has verified that Hilbert and Bernays’ adaptation of Presburger’s original
proof extends to the intuitionistic system.

*For a complete treatment of PRA see Chapter 3 of the first volume of TvD [1988].

*The theory obtained from HA by replacing X13 by the full Induction Rule (with no restriction on A(z)) is equivalent
to HA, in the sense of proving the same formal theorems. Hence PRA is a conservative extension of HA with respect
to quantifier-free formulas.
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4.4 Kripke Semantics for HA

Since HA is an applied predicate logic with equality in which prime formulas are decidable (by Lemma
4.6(c)), we need only consider normal Kripke models in which = is interpreted by identity. To satisfy
the axioms, the individual constant 0 must be interpreted by a unique element of the domain and the
function constants ’, 4, - must be interpreted at each node u by functions on §(u) with the obvious
monotonicity conditions. Thus we need an element Ox of D, a unary function v; from D to D, and
two binary functions 7ys,y3 from DxD to D such that for each node u € K:

(i) Ok € 3(()).
(ii) vy1(x) € 6(u) for each z € d(u).

(iii

(i

)
)
) Yo(z,y) € 6(u) for each z,y € d(u).
v)

3(z,y) € §(u) for each z,y € §(u).

Then £ = ((K, <), D, 6,0k, 71,72,73) is a normal Kripke model for L(HA) if (K,<) is a tree, § is a
monotone function from K into the class of all subsets of D such that D = (J,cx 0(«), and Ok, 1,72, 3
satisfy (i) - (iv). Each assignment ¢ of values in D to the individual variables determines a valuation
function ® which assigns to each term s of L(HA) an element ®(s) of D, such that ®(0) = O,
D(s') = y1(D(3)), P(s+1t) = 1(P(s),®(t)) and ®(s-t) = v3(P(s), ®(t)). Forcing with respect to an
assignment ¢ is defined for prime formulas so that u Ik, s = ¢ if and only if ¢(z) € §(u) for every
variable x free in s or ¢, and ®(s) = ®(¢) € d(u). The induction for compound formulas follows the
pattern of Pd.

A normal Kripke model for HA is a normal Kripke model for £(HA) which forces the universal clo-
sures of X13 - X25 at each node. The definition is justified by a soundness theorem, and completeness
holds by the remarks in Section 4.2.

Theorem 4.8. (Soundness for HA) If £ is a normal Kripke model for HA and FE is a formula of
L(HA) such that Fga E, then £ IF E.

Theorem 4.9. (Completeness for HA). If E is a formula of L(HA) such that /gza E, then there
is a normal Kripke model IC for HA such that K Iff E.

The numerals of L(HA) are the terms 0,0’,0”,... representing the natural numbers 0,1,2,...
respectively. If I is a normal Kripke model for HA then 6(( )) contains a distinct element nx for
every numeral n. These are the standard natural numbers of KC, and we call the set of them wy.

It is worth noticing that every leaf of a Kripke tree model for HA is a (possibly nonstandard)
model of classical arithmetic. Conversely, if My,..., M,, are nonstandard models of PA, a Kripke
model (X7, M;)" of HA can be constructed by placing below all the M; a root u, whose domain
consists of the standard integers. This was Smorynski’s original use of his gluing operation.®

Corollary 4.10. For all formulas A(z), B,C and terms s(z), t(z) of L(HA) such that no variable
other than z is free in A(z) and B, C are closed:

a) If Fga BV C then btga Bor bFga C.

(
(
(c
(d

)

b) If Fga JzA(z) then Fga A(n) for some numeral n.
) If Fga -B — JzA(z) then Fga Jz(-B — A(x)).
)

If Faa —Vz—(s(z) =#(z)) then Fua Jz(s(z) =t(z)) and hence, if no variable other than z
is free in s(z) or t(x), also Fpa s(n) = ¢(n) for some numeral n. (This is one form of Markov’s
Rule for HA.)

Ezercise 4.11. Prove Corollary 4.10(d).

6See Section 3.6 of these notes.
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4.5 Realizability Semantics for HA

A more constructive semantics for intuitionistic arithmetic was invented by Kleene around 1942 and
published in 1945. His student David Nelson proved the soundness theorem and then formalized the
semantics, making it possible to prove that HA is closed under various strong constructive rules which
fail for PA. In 1973 Troelstra published a precise axiomatic characterization of the notion.

Kleene’s idea was to interpret each sentence of HA as an incomplete communication, which could
in principle be completed by providing certain recursive information. With hindsight, it is tempting to
consider Kleene’s realizability semantics as a precise implementation of the B-H-K interpretation, but
Kleene himself attributed the idea to a combination of Church’s Thesis and a passage from Hilbert
and Bernays.

In order to state the definition efficiently we need a primitive recursive pairing operation j(z,y)
and its corresponding projections jo(z), j1(z), as well as some version of the Kleene brackets notation
for partial recursive function application. Details are left to the exercises.

Definition (Number-Realizability, or 1945-Realizability). Following Kleene [1945] we define when a
number n realizes a sentence of L(HA).

1. n realizes a prime sentence r = ¢, if r = ¢ is true.
2. n realizes A & B, if jo(n) realizes A and j1(n) realizes B.
3. n realizes AV B, if

(a) if jo(n) = 0 then ji(n) realizes A, and
(b) if jo(n) # 0 then j1(n) realizes B.

4. n realizes A — B, if, for every m: if m realizes A then {n}(m) is defined and realizes B.
5. n realizes = A, if no m realizes A.

6. n realizes VrA(z), if, for every m: {n}(m) is defined and realizes A(m).

7. n realizes IxA(x), if j1(n) realizes A(m) where m = jo(n).

A sentence E of L(HA) is realizable if some number realizes E. A formula F of L(HA) is realizable
if its universal closure VF is realizable.

Ezercise 4.12. Kleene used the (non-surjective) pairing operation
j(zy) = 2730,
Show there are primitive recursive functions jo(z) and j1(2) such that for all z,y € w:
jo(j(z,y)) =z and ji(j(z,y)) =y

Ezercise 4.13. Prove that every closed term ¢ of L(HA) is provably equal, in HA, to a numeral
n. We say that ¢, like n, ezpresses the number n.

Lemma 4.11. For each formula A(z) with at most z free, and each closed term ¢ expressing the
number corresponding to the numeral t:

n realizes A(t) if and only if n realizes A(t).

Lemma 4.12. A formula F(z1,...,2y), in which only the distinct variables z1,. .., z,, may occur
free, is realizable if and only if there is a recursive total function ¢ of m variables such that, for all
N1yeeeyNm € Wi @(N1,...,ny,) realizes F(ny,...,ny).

Proof. We prove the case m = 3; the general case is similar.
=: If f realizes VaVyVzF (x,y, z) then ¢(z,y,2z) = {{{f}(z)}(y)}(z) has the required property.
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<: Let e be the godel number of a recursive total function ¢ of three variables such that, for all
z,y,z € w: @(x,y,2) = {e}(z,y, z) realizes F(x,y,z). We need the fact from recursion theory, that
for each m,n € w there is a primitive recursive function S;" (g, y1,. .., ym) of m+ 1 variables such that,
if g is a gédel number of a recursive partial function 1 (y1,. .., Ym, Z1,...,Tn) of m 4+ n variables, then
for each y1...ym: SJ'(g,Y1s---,Ym) is a godel number of Az ... zn Y (y1,.. . Ym,T1,...,Zy). Kleene
wrote Az1,...,20{9}(Y1,-- s Ym, T1, ..., Ty) or more generally Azi, ..., Zp(Y1, .-\ YmsT1s-- s Tm)
for S (g, y1,---,Ym). Then for each y1,..., ym:

{Az1, .., Y1y s Yms Tl e e o) H T 1y e oo s @) 2 D(Y1y e e ey Yy Ty e e vy T)-

To complete the proof, observe that AzAyAz ¢(z,y, z) = AzAyAz{e}(z,y, z) realizes VaVyVzF (z,y, z).”

Theorem 4.13 (Nelson’s Theorem). If Cy,...,C; Faga A, and Ci,...,Cy are all realizable, then
A is realizable.

Proof is by induction on the given derivation of A from Cy,....Cy in HA. Let y1,...,yn, in-
clude all the distinct variables free in A, Cq,...,C, and assume by Lemma 4.12 that q,..., are

recursive total functions such that for all y1,...,ym € Wi V1(Y1s-- s Ym)s---s Yk (Y1, ., ym) realize
Ci(y1,---,¥m),---Cr(¥y1,--.,ym) respectively. We need to provide a recursive realization function
@ so that ¢(y1,...,ym) is defined and realizes A(y1,...,ym) for all y1,...,ym € w.

For each propositional axiom the realization function is a constant function ¢(y1,...,¥ym) = ¢, S0

we just give the constant c, using Kleene’s A notation.

X1. AaAba realizes A — (B — A), since if a realizes A(y1,...,¥ym) and b realizes B(y1,...,¥m)
then {{AaAba}(a)}(b) = {Aba}(b) = a realizes A(y1,.--,¥m)-

X2. AdAeAa{{e}(a)}({d}(a)).
X3. AaAbj(a,b).

X4. Acjolc).

X5. Acji(c).

X6. Aaj(0,a).

X7. Abj(1,b).

X8. AdAeAf[(15jo(f)) - {d} (G () + Go(F)) - {e} G (F)))-
X9. AcAdO.

X10. AcO realizes =A — (A — B) because if ¢ realizes = A then nothing can realize A.

The predicate axioms require Lemma 4.11. For each, suppose t(z1,...,z,,) contains just the distinct
variables shown, and A(z,z1,...,Zm,Y1,.-.,Yn) has free at most the variables shown, where we may
assume = # z;, ¢ # y;j and z; # y; for all 1 < j <n, 1 <i < m. (If z happens to occur in ¢, first
change the bound variable in the axiom.)

X11. o(z1y - o s Ty Y1y« -y Yn) = Ab{b}(t(z1,..., 7)) is a realization function for any axiom of the

form VZA(z, 21, Ty Y1s---sYn) — A1y 3 Tm)s Ty s Ty Y1, -+ - Yn), as follows. Fix
Tlyeeoy Ty Yls---,Yn. If b realizes VT A(z,X1,...,Xm,¥y1,---,¥n) then {b}(t(z1,...,zy,)) real-
izes A(t,X1,...,Xm,¥1,---,Yn) by definition, where t is the numeral expressing t(z1,...,Tp).

But then {b}(t(z1,...,zy)) realizes A(¢(X1,-.-,Xm)sX1s---,Xm,Y1s---,¥Yn) by Lemma 4.11.

"The primitive recursive functions ST (g, y1,. .., ym) are defined in Chapter XII of Kleene [1952], and in most elemen-
tary recursion theory courses. The theory of partial and general recursive functions will be covered more completely in
a later edition of these notes. The A notation may hide the choice of g, so Azp(z,y) is not unique in general.
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X12. Similarly, (21, ..., ZmsY1,---,Yn) = Aaj(t(z1,...,2y),a) is a realization function for the axiom
A(t(mla 7$m)7$17"' axmayla"'ay’n) - El,’EA(:E,:El,... s Tms Y1s- - - ayn)

Each of the mathematical axioms except the induction schema is realized by one of 0, At0, or
(for X16) AuAt0. For X13, if A(z,y1,...,yn) has free at most the distinct variables shown, then
Abp(z,b,y1,...,yn) is a realization function for

A(anla"'ay’n) & Vm(A(maylaay’n) - A($’7y17"' 7y’n)) — A(ﬁb,yl,... ayﬂ)a

where p is the recursive partial function defined by the primitive recursion

{ p(0,b,y1,...,yn) = Jo(b)
,0(«'13’, b, Y- - ayn) = {{-71 (b)}(.’L‘)}(p(ZB, b, Yty - ayn)-

Informal mathematical induction shows that if b realizes A(0,y1,...,yn) & VZ(A(z,¥y1,...,¥n) —
A(2',y1,.--,yn)) then p(z,b,y1,...,y,) is defined for all z and realizes A(x,y1,...,¥n)-

Now consider the rules of inference. If 1 (y1,...,y,) and x(y1,...,yn) are realization functions
for the hypotheses A(y1,...,yn) and A(y1,...,yn) — B(y1,...,yn) of Rule R1, respectively, then
oY1y Yn) = X1y yn) } (@ (y1,-..,yn)) is a realization function for B(yi,...,Yns).

If Y(z,y1,...,yn) is a realization function for the hypothesis C(y1,...,yn) = A(z,y1,...,yn) of
Rule R2, where z # y; for 1 <i <mn, then ¢(y1,...,yn) = AcAz ({¢(z,y1,...,yn)}(c)) is a realization
function for the conclusion C(y1,...,yn) = VZA(Z,y1,- -, Yn).

And if ¢(z,y1,...,yn) is a realization function for the hypothesis A(z,y1,...,yn) = C(y1,--.,Yn)
of Rule R3, with the same condition on z, then p(y1,...,yn) = Ab({¥(Jo(b),y1,...,yn) }(J1(D))) is a
realization function for the conclusion 3z A(z,y1,...,yn) = C(y1,...,yn). This completes the proof.

Remark. Nelson’s Theorem tells us that every extension of HA by realizable axioms is consistent.
Not every sentence of the form Vz(——A(x) — A(z)) is realizable (can you give a counterexample?), and
as we shall see, not every realizable sentence is classically true. But before venturing into nonclassical
extensions of HA, we take time to show that HA has some nice admissible rules.

An important variant of realizability is realizability(-), which changes the inductive clauses for V,
—, = and 7 as follows:

3. n realizes() AV B, if
(a) if jo
(b) if jo

4. n realizes(t)
realizes() B
(

n) =0 then - A and ji(n) realizes(+) A, and

(
(n) # 0 then - B and j1(n) realizes(-) B.
A

— B, if, for every m: if - A and m realizes() A then {n}(m) is defined and

5. n realizes(-) —A, if, if F A, then no m realizes() A.
7. n realizes() Iz A(z), if - A(m) and j;(n) realizes(-) A(m) where m = jo(n).

Assuming HA is consistent, Nelson’s Theorem without the hypotheses Ci,..., ) extends to
realizability (F) by essentially the same proof. Omne only needs to check that the realizing objects
for closed theorems are also realizing(F) objects for the same sentences.

Alternatively, hypotheses C,...,Cy (call them I') can be included in the definition, and the first
clause changed to: n realizes(I' ) a prime sentence r = ¢ if I' Fga (r = t). Then Nelson’s Theorem
with hypotheses I' extends also.

Theorem 4.14. (Kleene)

(a) If E is closed and Fga E then E is realizable(l).

(b) If E is closed, I' = {C1,...,Ck} where each C; is realizable(I' -), and I' Fga E, then E is
realizable(T" ).
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Corollary 4.15. (Kleene) If A(x,y) is a formula containing free only the distinct variables z,y such
that Fga Vz3yA(z,y), then there is a recursive choice function ¢(z) such that if n € w and m = ¢(n)
then Fpa A(n,m) .

Corollary 4.16. For closed formulas A, B, 3zA(z) of L(HA):

(a) If Fga AV B then Fga A or Fga B.

(b) If Fgra 3z A(x) then Fra A(m) for some numeral m.

Definition. A formula F is almost negative if E contains no V, and no 3 except in subformulas of
the form Jz(r(z) = t(x)).

Lemma 4.17. To each almost negative E(z1,...,z,) with only the distinct variables z1,...,z,
free, there is a recursive partial function eg of n variables such that

(i) If E(x1...,Xn) is true then eg(xi,...,z,) realizes E(X1,...,Xn).

(ii) For each e € w: if e realizes E(x1,...,Xn) then E(x1,...,Xxn) is true.

Definition. A formula B(y,...,yx), with only the distinct variables yi, ..., yx free, numeralwise

expresses (in HA) the informal predicate P(y1,...,yx) if and only if, for each k-tuple nq,...,ny of
natural numbers:

(i) if P(n1,...,nk) holds then Fga B(ny,...,n;), and

(ii) if P(nq,...,ng) fails then Fga ~B(ny,...,ng).

Remark. Every primitive recursive predicate is numeralwise expressible in HA by a decidable,
almost negative formula. In particular, there are almost negative formulas T'(e,z,w) and U(w,y)
containing free only the variables shown, such that T'(e, z, w) numeralwise expresses “w is the smallest

godel number of a computation of {e}(z),” and U(w, y) numeralwise expresses “y is the value computed
by the computation with godel number w if w codes a computation, otherwise y = w.” Moreover,

(i) Fuaa YeVzVw([T(e,z,w) V —T(e,z,w)].
(ii) Faa VeVwlU(z,w) V U (z,w)].
(iii) Faa VeVzVwYo[T (e, z,w) & T(e,z,v) = w = v].
(iv) Faa YeVuVolU(z,w) & U(z,v) = w = v].
Church’s Thesis, as a recursive choice principle, can then be expressed in HA by the schema CTy:

VzIyA(z,y) — JeVzIwIy[T (e, z,w) & U(w,y) & A(z,v)],

where Vz3yA(z,y) is any closed formula. Church’s Thesis without choice can be expressed by the
schema CTy!, which comes from CT( by replacing the hypothesis Vz3yA(z,y) by Vz3lyA(z,y), where
in general 3yB(y) = Jy[B(y) & Vz(B(z) — z = y)]. Since k-tuples can be coded and decoded
primitive recursively, the analogue of CT( with hypothesis Vz; ...VziIyA(zy, ..., zk,y) and conclusion
deVry ... Vo JwIy[Ty(e, x1, ..., 25, y) & U(w,y) & A(z1,...,zk,y)] is provable from CT in HA.

Ezercise J.14. Let C be the sentence obtained by taking the A(x,y) in CTy to be the formula
(y=0— 32T (z,2,2)) & (y #0 = Vz—T(z,z, 2)).

(a) Show that 0 realizes C.

(b) Show that C' is inconsistent with classical arithmetic PA.

Corollary 4.18 (to Nelson’s Theorem). CT( (hence CTg!) is consistent relative to HA.

Proof: Every instance of CTy is realizable. Let e, ey be the partial recursive functions given by
Lemma 4.17 for T'(e, z,w) and U(w,y) respectively. Then

9 = Am j(eo, Az j(wo, j(yo, 1 ((eT (€0, 7, w0), ev (w0, y0)), j1({m}(2)))))

realizes CTy, if eg = Az jo({m}(z)), wo = pwT(ep,z,w) and yo = jo({m}(x)). If HA + CT, were
inconsistent, then by Nelson’s Theorem 0 = 1 would be realizable; but no n realizes 0 = 1.
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4.6 Formalized Realizability

Nelson formalized number-realizability in a conservative extension of HA, and Kleene used the for-
malization to prove for HA some very constructive admissible rules. For convenience, let HA# be
a conservative extension of HA with symbols and axioms for additional primitive recursive functions
including all those mentioned in Section 4.3.1, except that instead of just jo(z) and ji(z) we add
a symbol and axioms for the primitive recursive function j,(z) of two variables (where j,(z) is the
exponent of the n'" prime in the prime factorization of x). With this choice of coding there is no
need to introduce a special symbol for j(z,y) (or j(zo,...,zx)) because pg® - ...py* is a term of the
language, but we may use “j(z,y)” as an abbreviation for p¥ - p¥, and similarly for j(zo,...,z;). We
include in HA# the symbols and axioms for bounded sum and product and the bounded p operator.

A symbol for the characteristic function of the primitive recursive predicate T'(e,z,w), and its
axioms, belong to HA#. We use “T'(e,z,w)” to abbreviate the prime formula numeralwise expressing
the predicate. Similarly, “T'(e,z1,...,z;, w)” abbreviates the prime formula T'(e,j(z1,...,z5), w)
numeralwise expressing the predicate T'(e,x1,..., 7, w). Instead of the characteristic function of
U(w,y) we add a symbol and axioms for the primitive recursive function

(w) = py < wU(w,y) if de <wIz <wT(e,z,w),
Y= w otherwise.

Every formula E(zy,...,z;) of L(HA#) with exactly the distinct variables zi,...,z; free is
equivalent in HA# to a formula Eg(zy,...,z) of L(HA) with exactly the same free variables,
and Fga Eyx(z1,...,2;) if and only if Fygaz E(z1, ..., z).

Lemma 4.19. To each formula E(z1,...,z;) of LHA#) with only the distinct variables z1, ..., z},
free, there is an almost negative formula zr E(z1,...,x;) which expresses “z realizes F(x1,...,Xk)”
under the natural interpretation of the language.

Partial Proof:
1. zr(s=t) is (s=t).

2. zr(A & B) is (jo(z)rA) & (ji(2)r B).

5. zr(—A) is Vf=(frA).
6. zrVoA(z) is Vz[IwT(z,z,w) & Yw(T(z,z,w) = (u(w)r A(z)))].

Corollary 4.20. To each almost negative formula FE(z1,...,z;) with none but the distinct variables
Z1,...,T free, there is a number n = Azq ...z, eg(z1,. .., z)) such that
Faa# Vo1 .. Vap(E(zy, ... zp) < {n}(z1,...,25) r E(z1,...,21)),
where {n}(z1,...,zx)r E(z1,...,z) abbreviates the formula

Ri(n,z1,...,x) = Jw3z[T(n,z1,...,25,w) & (u(w)r E(zy,...,x))].

Ezercise 4.15. Complete the proof of Lemma 4.19 by giving case 7 (zr3zA(z)) of the definition.
Verify that the resulting formulas are almost negative.

Corollary 4.21. The schema
E < 32(zr E)

is consistent relative to HA# (and hence, with the appropriate translation of “zr E,” to HA).
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Proof. For each formula E(z1,...,z,) with exactly the distinct variables z1,...,z, free, let
eg(z1,...,oy,) be the recursive partial function given by Lemma 4.17 for E and let €,,5(2, 21, ..., Tp)
be the recursive partial function given by Lemma 4.17 (with Lemma 4.19) for the predicate (zr E).
Then

o1(z1,...,2n) = Aejle eerle, 1, .. ,2yn))
is a realization function for E(zi,...,z,) — 3z(zr E(z1,...,2,)). Similarly (but more simply),
wo(z1,...,2n) ~ Afeg(z1,...,zy) is a realization function for Iz(zr E(z1,...,2,)) = E(z1,...,%ys),
sO0 @(x1,...,2n) = j(p1(x1,. .., Tn), p2(21,...,2y,)) is a realization function for the equivalence.

In [1971] Troelstra found a natural axiomatization of HA# + (E ¢« 3z(zr E)) by generalizing
Church’s Thesis to partial functions with almost negative domains. Here and in what follows, we use
“zr E” interchangeably for the formula of HA# defined above, or its translation into the language of
HA, noting that the translated formula (though clumsier than the original) is also almost negative.
Thus Troelstra’s characterization works also for HA + (E <> 3z(zr E)) over HA.

Eztended Church’s Thesis ECT is the following schema, where A(z) must be almost negative and
x,y,w are distinct variables:

Vz[A(z) — yB(z,y)] — JeVz[A(z) — FJwIy(T(e,z,w) & U(w,y) & B(z,y))]

where for HA#, U(w,y) abbreviates the prime formula u(w) = y, and T(e, x,w) is also prime.
Theorem 4.22. (Troelstra’s Characterization of Realizability)

(i) Faa# por, (B Jz(zr E)).

Here is a nice application of Corollary 4.16 and Theorem 4.22. Call a formula A(z) with only =
free, or the predicate of x expressed by A(z), a Church domain for an arithmetical theory T if for
every arithmetical formula B(z,y), if w,z,y are all distinct:

If Tk Vz[A(z) — JyB(z,y)] then T F JeVz[A(z) — FwIy(T (e, z,w) & U(w,y) & B(z,y))].

Every almost negative arithmetical predicate is obviously a Church domain for HA# + ECT,. The
converse holds too.

Corollary 4.23. (JRM) Let A(z) be a Church domain for HA# + ECT,. Then in HA# + ECTy,
A(z) is provably almost negative.

Proof. Assume A(z) is a Church domain for HA# 4 ECT,. By Theorem 4.22(a):

(1) Fra#ipcr, Y2[A(2) < Fy(yr A(z))]

where yr A(x) is almost negative but Jy(yr A(z)) need not be. If we can find an almost negative
formula B(z), with only z free, such that HA# + ECT, proves Vz[A(z) — B(z)] and Vz[B(z) —
Jy(yr A(z))], then (1) will give by p %, pop, V2[A(2) <> B(z)], proving the theorem. By (1),

(2) Frrasinor, YolA@) = 3y(yr A(x))] and so

(3) FHA% 1 ECT, JeVz[A(z) — JwIy[T (e, z,w) & U(w,y) & (yr A(z))]]
since A(z) is a Church domain for HA# + ECT, and then by Theorem 4.22(b):
(4) Fga# 3f[frIevz[A(z) = JwIy[T (e, z,w) & U(w,y) & (yr A(z))]]].
By Corollary 4.16(b) (with the conservativity of HA# over HA) there is an f so that
(6) Fga# frIeve[A(z) — JwIy[T(e,z,w) & U(w,y) & (yr A(z))]], and so

(6) Fgax n(f)rvVe[A(z) = JwIy[T (e, z,w) & U(w,y) & (yr A(z))]] where e = jo(f).
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From (6) by Theorem 4.22(b):
(7) Fra#ipcr, Ye[A(2) = Fw3y[T(e, z,w) & U(w,y) & (yr A(z))]].

Now let B(z) = JwT (e, z,w) & YwVy[T(e,z,w) & U(w,y) — (yr A(z))]. In HA#, B(z) is almost
negative and equivalent to the right hand side of (7). Hence

(8) FaA# mCT, Vz[A(z) — B(x)] and FHA# ECT, Vz[B(z) — Jy(yr A(z))],
80 Fga# ., pet, V2[A(z) ¢ B(z)] as claimed.

One of the three main branches of constructive mathematics is Markov’s Russian recursive mathe-
matics RM, which works on the assumption that all real numbers are recursive. Troelstra has observed
that RM = HA + ECTy + MP, where Markov’s Principle MP is the schema

Va(A(z) V —A(z)) A ——IJzA(x) — JzA(x).

One of the most important results of RM is the Kreisel-Lacombe-Shoenfield-Tsejtin Theorem, that
every mapping from a complete separable metric space into a metric space is continuous. (It does not
follow that every mapping from a compact metric space into a metric space is uniformly continuous!)
Realizability provides a consistency proof for RM and a connection between RM and PA.

Corollary 4.24. HA + MP + ECT) is (classically) consistent relative to HA.®
Theorem 4.25. (Troelstra) For each formula E of the language of HA:
Fpa Jz(2rE) < FuaaimpP4EcT, " F.

Exercise 4.16. Prove Corollary 4.24.
Exzercise 4.17*. Prove Theorem 4.25.

A much stronger result than Corollary 4.15 can be obtained using formalized g-realizability. Define
2qE, for E(x1,...,z;) any formula of L(HA#), by induction on E as zr E was defined in the proof
of Lemma, 4.19 but with the following changes:

3. 2q(AVB) is [jo(z) =0— (ji(z)aA) & A] & [jo(z) > 0 — (j1(z)a B) & BJ.
4. z2q(A — B) is Vf[(fqA) & A — [FuwT(z, f,w) & Yw(T(z, f,w) = (u(w) qB))]].
5. zq(—A) is Vf-[(fqA) & A].
7. zq3zA(z) is ji(2) aAQo(2)) & A(jo(2)).
Lemma 4.26. (i) If A is almost negative, then
Faa# J2(zqA) — A.
(ii) If A(z) is almost negative with only z free, then there is a numeral n such that
Faa# A(z) = Jw[T(n,z,w) & u(w) qA(z))].
(iii) If A is almost negative, then
Faa# 2T A< 2qA.
(iv) For every formula A of L(HA):

FHA# L ECT, zr A+ zqA.

8Kreisel showed MP independent of HA + CT, using a typed variant of realizability, which we may have time to
consider later.
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(v) For closed A: If Fyp# por, A then there is an n such that

Fga# nr A and |_HA#+ECT0 nqA.

Ezercise 4.18. Using Theorem 4.22, show how parts (iv) and (v) of Lemma 4.26 follow from parts
(i) - (iii) and their consequence, that if A is almost negative then kg # J2(2qA) < A.

Ezercise 4.19. Prove that the theories Ty = HA# + ECTg and Ty = HA# + V[E < 3z(2r E)]
are equivalent in the sense that they prove the same formal theorems in £(HA#).

Theorem 4.27 (Troelstra’s Rule TRq for HA#). If A(z) is almost negative and contains only x
free, if B(z,y) contains free only the distinct variables z and y, and if Fy 4 Vz[A(z) — JyB(z,y)],
then for some numeral s:

Fras Yo[A(z) = Iy(T(s,2,y) & B(z,u(y))].

Corollary 4.28 (Church’s Rule CRq for HA#). If B(z,y) has only z,y free and Faa# V2dyB(z,y),
then for some numeral s:

Faa# Y23y (T(s,z,y) & B(z,u(y)))-

Exercise 4.20. Write down the corresponding rules for HA and explain why they follow from
Theorem 4.27 and Corollary 4.28 respectively.

5 Introduction to Intuitionistic Analysis

While arithmetic studies the natural numbers (and functions from numbers to numbers), mathematical
analysis studies the real numbers (and functions from real numbers to real or natural numbers). The
classical first-order theory of the rational numbers can be developed within Peano arithmetic, but in
order to study the real numbers one needs a different or expanded context. Possibilities exploited in
classical analysis include the

e algebraic representation of the real numbers as the unique (up to order-isomorphism) complete
ordered field with a countable dense subset order-isomorphic to the rationals.

e geometric representation of the real numbers as the points of a Euclidean line.

e construction of the reals using Dedekind cuts in the rationals, with the convention that if the
cut point is a rational number then it must belong to the left set of the cut.

e construction of the reals using Cauchy sequences {p;,}ne, of rationals, with an equivalence
relation identifying {pp, }new With {7, }new if {|pn — Tn|}new converges to 0.

The last of these representations assumes an understanding of infinite sequences of rational numbers,
i.e. of functions from w into the set of all rationals. Since every non-zero rational number p has a
unique integer code of the form j(i,m,n) where i is 0 or 1 according as p is positive or negative, and
where m and n are relatively prime natural numbers (and 0 codes itself), what is really needed is an
understanding of the collection “w of all infinite sequences of natural numbers.

Classical Baire space is the topological space (“w,T) whose topology (collection of open sets) is

T={XC% | (VaeX)(Inew)(VB € “w(Vm < n)[B(m) =a(m)] - 0 € X]}.

A function ¢ from “w to w is continuous in the Baire topology if, for each o € “w, the value p(a) € w
is completely determined by some finite initial segment «(0),...,a(k) of . Similarly, a functional
¢ : Yw — “wis continuous if and only if, for each @ € “w and n € w, the value (®())(n) is completely
determined by some finite initial segment «(0), ..., a(k,) of a. Continuous functions and functionals
play an important, but not an exclusive, role in classical analysis. Brouwer took a more radical view.
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5.1 Brouwer’s Intuitionistic Baire Space

Just as Heyting’s arithmetic is a proper subtheory of classical Peano arithmetic, obtained by weakening
the axiom schema of negation elimination, Baire space can be studied using intuitionistic rather than
classical logic. Brouwer developed his intuitionistic analysis beginning with his doctoral dissertation
[1907] and continuing for half a century. Heyting made an early attempt at formalization. Kleene and
Vesley [1965] contains a correct and coherent axiomatization, together with a consistency proof, for
Brouwer’s analysis with a classically false principle of continuous choice (the analogue for analysis of
CT) for arithmetic). We begin with an overview of Brouwer’s informal theory of Baire space (Yw,T).

e FElements of intuitionistic Baire space are infinite sequences « of natural numbers, called “choice
sequences.” Brouwer accepted arbitrary choice sequences, not only those which can be defined
or determined by an algorithm, as mathematical objects. Reasoning constructively about these

required a new way of thinking about infinite sequences of natural numbers.

e Neighborhoods are determined by finite initial segments @(n), where @(0) is the empty sequence
and @(n +1) is (@(0), ..., a(n)). If Vg, ={B € “w|(Ym < n)(B(m) = a(m))} is the neighbor-
hood determined by @(n), then Va(n) € T. Since there are only countably many finite sequences
of natural numbers, there are only countably many neighborhoods.

e Open sets (elements of T') are countable unions of neighborhoods. Since finite sequences of natu-
ral numbers can be coded effectively by natural numbers, each countable union of neighborhoods
can be coded by a choice sequence. In general, from a given representation of an open set X as
a union of neighborhoods, one should not expect to be able to decide effectively whether or not
a given choice sequence [ belongs to X.

e The countable axiom of choice holds, for example: If for each n there is an m for which A(n,m)
holds, then there is a choice sequence [ such that A(n,3(n)) holds for every n.

e “Bar induction” holds: If A(w) and B(w) are properties of finite sequences w of natural numbers
such that

(i) for each o € “w there is exactly one n € w such that B(a(n)),
(ii) if B(w) then A(w), and

(iii) if A holds at every sequence w * (n) obtained by extending w by one new number n, then
A(w) holds,

then A holds at the empty sequence.

e Euery total function F' from Baire space to the natural numbers is continuous! Moreover, if for
each « there is an m such that A(a,m), then there is a neighborhood function o mapping the
collection of finite sequences of natural numbers to w such that for every a € “w there is exactly
one n for which o(a(n)) > 0, and if o(a(n)) = m + 1 then A(a, m).

Brouwer justified the countable axiom of choice on the constructive meaning of the hypothesis “for
each n there is an m.” Bar induction, a powerful tool for which Brouwer gave an essentially circular
justification (analyzed in Kleene and Vesley [1965]), is classically equivalent to transfinite induction
up to any countable ordinal. Countable choice and bar induction would be accepted by most classical
mathematicians.

Brouwer’s continuity principle, however, is clearly inconsistent with classical analysis. We must
remember that his logic was intuitionistic; he saw no need to prove his theory consistent because it
was based on clear constructive principles. The key is his notion of choice sequence, which included
sequences chosen one element at a time without any prior restriction on the numbers which may be
chosen. A total function F' must assign to each such sequence « a value F(a) € w; but this is possible
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only if F(«) is completely determined by some finite initial segment @(n), and hence F' must be
continuous in the Baire topology.
Consider for example the function from “w to w defined by cases:

[0 if Vz(a(z)=0),
Cla) = { n+1 if Vm <n(a(m)=0) but a(n)>0.

Classically, ¢ is total. Intuitionistically, ((«) is defined if and only if either « is the identically zero
sequence, or there is an z such that a(z) > 0. Since the decision between the two cases cannot be
made based on a finite initial segment of « (unless in fact there is an z such that a(z) > 0), ¢ is not
continuous at At0. Hence, according to Brouwer, ( is not a total function!

We can imagine a free choice sequence (3 in which 0 is chosen consistently as the value of 3(n)
for each n, but without any restriction on future choices. Then () must be undefined, since {(53)
cannot be different from 0 but if () = 0 then all choices of 3(n) must be 0, so 3 is no longer free.”

5.2 Kleene’s Formalization of Intuitionistic Analysis: B and FIM
Kleene’s basic formal system B expresses the classically correct part of Brouwer’s analysis. We describe
it briefly:

e Variables z,v, z, ... for numbers and «, 3,7, ... for choice sequences. Type-0 variables are terms
and type-1 variables are functors.

e Finitely many function constants fy, ..., f,, where each f; expresses a primitive recursive function
fi(z1,..., 2k, 01,..., ) of k; natural numbers and [/; choice sequences. The f; include all the
function symbols of HA#; in particular, fy is 0 and f;, f5, f3 are /, + and - respectively. If
ki =1 and I; = 0 then f; is a functor. If t1,...,t;, are terms and wuy,...,u;, are functors then
filtr, .ot ur, ... uy,) is a term.

e Church’s A, used to produce (type-1) functors Az.t from (type-0) terms t.
e Evaluation: If u is a functor and ¢ is a term then (u)(t) is a term. (Write «a(t) for (a)(t).)

e Prime formulas are expressions of the form s = ¢ where s,t are (type-0) terms. For example,
(8(0))" + B(a((0"))) = 5 is a prime formula, but “a = At.5” abbreviates a composite formula
of the form Vz[a(z) = (At.5)(x)]. Formulas are built from prime formulas using the logical
connectives & ,V,—, = and quantifiers V,3 of both types. Thus if A(z,«) is a formula then
Vz3aA(z,a) is a formula.

e Axioms and rules of two-sorted intuitionistic predicate logic. These are obtained by extending
the axiom schemas and rules for Pd to the language of analysis, renaming X11, X12, R2 and
R3 as X11N, X12N, R2N and R3N respectively, and adding the axiom schemas and rules

X11F. VaA(a) — A(u) where u is any functor free for a in A(a).

X12F. A(u) — JaA(a) where u is any functor free for a in A(a).
R2F. From C — A(a) where o does not occur free in C, conclude C' — VaA(a).
R3F. From A(a) — C where a does not occur free in C, conclude JaA(a) — C.

e Axiom schema X13 of mathematical induction, extended to the two-sorted language.

e Axioms X14 - X21 of HA, additional axioms expressing the primitive recursive definitions of
fa,-.., fp, and the “equality axiom” for sequence variables:

z=y = alr) =aly)

from which X22 - X25 and the corresponding properties of f4, ..., f, are derivable.

°In a formal context, such a free choice sequence could be represented by a function constant 3§ for which 35 (n) = 0
is an axiom for every n (where n is the numeral for n), but Vz (35 (z) = 0) is unprovable.
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e Axiom schema of A-elimination or S-reduction:

(Az.t(z))(s) = t(s) for any term s free for z in t(x).

e Axiom of countable choice AC: Vz3fA(z,[) — IVzA(z, \y.B(j(x,y))).

e Bar induction BI! (with a thin bar):
Va3dlzR(a(z)) & Yw[Seq(w) & (R(w) V YyA(w * (y))) = A(w)] — A(()),

where Seq(w), * and () express a primitive recursive coding of finite sequences of numbers,
with the property that if Seq(w) holds then the length [hA(w) of the sequence coded by w can
be recovered primitive recursively from w. Kleene takes the code (ng,...,ng) for ng,...,ni to
be j((no)’, ..., (ng)"). If the length lh(m) of any natural number m is the number of non-zero
exponents in the prime factorization of m, then lh(a(m)) = m, and Seq(w) holds if and only if
w = a(lh(w)) for some . If u and w code finite sequences then u * v codes their concatenation.

Kleene’s intuitionistic system FIM is B + CC; where CCy is a strong continuous choice principle:
Va3pA(a, f) — JoValVazIy{o}[a](z) >~y A A(a, {o}[a])],

where {o}[a](z) ~ y abbreviates Jt[o((z) xa(t)) = v & Vz < t(o({z) * @(z)) = 0)] and A(«, {c}[a])
abbreviates V3[Vz{o}[a](z) ~ B(z) — Ao, )]

Variations on FIM replace AC by comprehension AC! (below), thin bar induction BI! by monotone
or decidable bar induction Bl;; or Blp, and CCy; by CCy or weak continuity WC:

Vadz A(a, z) — YaIrIyvp[aly) = Bly) — A(B,z))].

5.3 Some Formal Theorems of the Basic Theory B and the Intuitionistic Theory
FIM

We first observe that B is closed under all the usual derived rules, including the V and 3 rules for both
number and function quantifiers (with appropriate restrictions on the free variables). Since HA is a
subtheory of B, the formal theorems established for HA in section 4.3.2 hold also for B. It is useful
to consider some elementary properties of choice sequences which can be proved in B.

Theorem 5.1. If y # x # z then

a) Fp Vzdy(a(zr) =vy).

b) kg VeVz[(a(z) = 2) V = (a(z) = 2)].
c) Fp VydavVz(a(z) =y).

d) B VaviIWValy(z) = j(a(z), B(x))].
e) Fp VavnapVz[f(z) = jn(a(z))].

Proofs. (a) follows from Lemma 4.5(a) and X12F by the V rules and R1. VyVz((y = 2) V=(y = 2))
holds by (a change of variables in) Theorem 4.7(c), so (b) follows by V-elimination. For (c), observe
that (Az.y)(z) = y by A-elimination, and use X12F with the quantifier rules. We leave (d) and (e) as
exercises.

(
(
(
(
(

Ezercise 5.1. Prove parts (d) and (e) of Theorem 5.1. Your proofs should be more detailed than
the indications given for (a) - (c), but you may use the derived rules freely. Do not give complete
formal proofs, please! (This remark applies to all the exercises in this section.)

Remarks. In general, by j(c, 3) we mean the (unique) v shown to exist by Theorem 5.1(d), and
by jn(a) we mean the (unique) 8 shown to exist by Theorem 5.1(e). We may also use the notation
jlaq, ..., a) for the (unique) function d satisfying 0(z) = j(a1(z),...,ar(z)) for every z € w. These
abbreviations are used both formally and informally, as in the previous section.
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Equality between terms is primitive and decidable, but equality between functors is neither. By
definition, “a = 7 abbreviates “Vz(a(z) = B(z))” and we should not expect this to be decidable in
intuitionistic analysis because the relation of equality between choice sequences is not continuous.

Ezercise 5.2. Prove that the relation R(a) = (jo(a) = ji1(a)) is not continuous in the Baire
topology.

Ezercise 5.3. Show that
Fp VzdyA(z,y) — Wz A(x,v(x)).
[Hint: Use Theorem 5.1(c) with AC and A-elimination.]
Exercise 5.4 % Show that the axiom schema DC of dependent choices is provable in B, where DC
is

VzIyA(z,y) — Vz3a[a(0) = 2z & Yz A(a(z), a(z))].

As usual, J1zC(x) abbreviates 3z[C(z) & Vy(C(y) — y = z)]. All the results of this subsection
(except Exercises 5.3 and 5.4) hold for the minimal subsystem M of B, where M omits the axiom
schema of bar induction and replaces AC by the comprehension principle AC!:

VzIlyA(z,y) — JaVzA(z, a(z)).

Ezercise 5.5. Show that by 3zC(z) — Va(C(x) V =C(z)).

Ezercise 5.6* Show that Fy Vz3laA(z,a) — 3PVzA(z, M\y.6(j(z,y))), where JlaB(a) is an
abbreviation for Ja[B(a) & Vy(B(y) = Vz(v(z) = a(z)))].

Now we consider the principle of bar induction and its consequences in B. Although bar induction
is stated for the “universal spread” “w, it applies to every closed subset X of “w determined by a
spread law o satisfying the following conditions:

(i) o(()) = 0, where () codes the empty sequence.

(ii) For each m € w:
o(m) = 0 if and only if m codes a finite sequence and o(m * (y)) = 0 for some y € w.

(iii) o € X if and only if, for everyn € w: o(a(n)) = 0.

A finitary spread or fan is a compact subset X of “w determined by a spread law o which satisfies
(i) - (iii) and also

(iv) For each m € w:
If o(m) = 0 then there is an s € w such that, for all y € w: if o(m * (y)) = 0 then y < s.

In particular, the binary fan “2 (with 2 = {0,1} as usual) is determined by setting s = 1 in (iv), for
every m € w, and strengthening the last “if ... then ...” to “... if and only if ....”

Classically, a fan is a tree with finite branching at each node, and no finite branches. Classical
Konig’s Lemma says that every tree with finite branching at each node, and arbitrarily long finite
branches, has an infinite branch. Bar induction allows us to prove a constructive version of (the
contrapositive of) Konig’s Lemma. Continuous choice and bar induction together give Brouwer’s
classically false “Fan Theorem,” which guarantees that every total function on a finitary spread is
uniformly continuous.

Theorem 5.2. Let F (o) be a formula, with only o free, expressing the conjunction of (i), (ii) and
(iv) of the definition above; that is, F'(0) expresses “o is a finitary spread-law.” Then for every formula
R(w) in which o does not occur and «, = are free for w:

F F(o) & Va[Vzo(a(z)) = 0 — zR(a(x))] — F2Va[Vzo(a(z)) = 0 — 3z[z < 2z & R(a(z))]].
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Theorem 5.3 (Brouwer’s Fan Theorem). Let F'(o) be as in the previous theorem, let G(«) abbre-
viate Vzo(a(z)) = 0, and let A(a,y) be a formula in which ¢ does not occur and in which v is free
for a. Then

Frmv F(o) & Va[G(a) = FyA(a, y)] = F2ValG(a) = Fyvy[G(y) & 7(2) = a(z) — Ay, y)]]-

5.4 Realizability Semantics for FIM

By 1959 Kleene had the idea of using number-theoretic functions, rather than numbers, as realizing
objects for sentences of the two-sorted language. In [1965] and [1969] he developed function realizabil-
ity and its variants, allowing him to prove the consistency of FIM and the analogues for intuitionistic
analysis of many other results proved for intuitionistic arithmetic in the previous section. One differ-
ence is that the countable language of analysis does not contain a name for every choice sequence, so
realizability has to be defined for formulas under an arbitrary assignment of choice sequences to the
free function variables. Once this change is made, it is reasonable to assign natural numbers as values
to the free number variables instead of substituting numerals for them.

Definition (Function realizability, Kleene 1959-65). For E(aq,...,ak,x1,...,%,) any formula of
L(FIM) in which only the distinct variables shown occur free, and any list ¥ = (¢1, ..., %k, m1, ..., my)
of choice sequences and natural numbers corresponding to a1, ...,ag, x1,...,Z, respectively, we de-
fine when a number-theoretic function o realizes E under the assignment of W to the free variables, or
briefly when o realizes-¥ E.

1. o realizes-W r =t, if r =1t is true-W.
2. o realizes-V AN B, if jo(o) realizes-¥ A and j1(0) realizes-¥ B.

3. o realizes-¥ AV B, if
(J0(0))(0) =0 = j1(0) realizes-¥ A, and
(70(0))(0) # 0 = j1(0) realizes-¥ B.

4. o realizes-¥ A — B, if, for every 7:
T realizes-¥ A = {o}[7] is totally defined and realizes-¥ B.

5. o realizes-W —A, if no 7 realizes-¥ A.

6. o realizes-U Vx A, if, for every m: {o}[m] is totally defined and realizes-¥,m A.
7. o realizes-U 3z A, if ji(o) realizes-V, (jo(o))(0) A.

8. o realizes-U VGA, if, for every (: {o}[f] is totally defined and realizes-¥, 5 A.
9. o realizes-V 3PA, if j1(0) realizes-¥, jo(o) A.

A sentence F is recursively realizable if some recursive o realizes E. A formula is recursively realizable
if its universal closure is.

Theorem 5.4. (Kleene 1962) If C4, ... C} are recursively realizable and C1,...,Cy Frpim E, then
F is recursively realizable.

Corollary 5.5. FIM is consistent. Classically, so is FIM + MP;, where MP; is the sentence
Va[-—3z(a(z) = 0) = Jz(a(z) = 0)]

expressing a form of Markov’s Principle.

FEzercise 5.7. Let MP be the schema

Va(A(z) vV —-A(z)) & ——IzxA(z) — JxA(z),
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where A(z) may now be any formula of the two-sorted language.
(a) Prove that every instance of MP is provable in B + MP;.
(b) Prove conversely that MPy is provable in B + MP.

Kleene used a typed variant of function-realizability to prove KYpim MP, and formalized ordinary
function-realizability and g-function-realizability to show:

Theorem 5.6. (Kleene 1969)

(i) If v E then Fp Jo(or E). Hence if B is consistent, so is FIM.

(i) If AV B is a sentence and Fprv AV B then Fpmv A or Fpv B. 1

(iii) If 3z A(z) is a sentence and Frrv 3z A(x) then Frpmv A(m) for some numeral m.

(iv) (Church’s Rule) If Fpim JaB(«) where B(«) has only « free, then for a particular numeral e:

Friv 3alVz3y(T (e, z,y) Auly) = a(z)) A B(a)].

Church’s Thesis CTy for analysis is VaGR(«), where
GR(a) = 32Vz3y[T (2, z,y) ANuly) = ax)].
Theorem 5.7 (JRM). (CT; fails in FIM, but) Weak Church’s Thesis WCT:
Va—-—-GR(«a)

is consistent with FIM. In other words, intuitionistic analysis is consistent with the hypothesis that
there are no non-recursive choice sequences.

The proof of the consistency of WCT; uses a modification of typed function-realizability. For
example o “realizes-U VaB, if {0}[a] is totally defined (and of the right type to “realize-¥, @ B) for
every a, and “realizes-U, o B when « is recursive.

Troelstra’s Generalized Continuity Principle GCy is the schema;:
Va[A(a) — 3BB(a, B)] — JoVa[A(a) = VzIy{o}a|(z) ~ y A B(a,{o}[a])]

where A(a) must be almost negative. It extends Brouwer’s principle of continuous choice to partial
functions with almost negative domains (domains of continuity) and gives a precise characterization
of function-realizability.'!

Theorem 5.8 (Troelstra).
() FBce, (B © 3o(or E)).
(ii) |_B+GC1 EF < I—B HU(UI‘E).

Kleene observed that Yz ...Vz,[A(z1,...,2,) V 2A(z1,. .., zy)] is classically function-realizable
for every formula A(z1,...,z1) of L(HA) containing free only z1, ..., z,; hence FIM is consistent with
classical arithmetic PA. More generally, FIM is consistent with every classically realizable sentence
of the two-sorted language.

Markov’s Principle is classically realizable. So is every instance of “Kuroda’s Principle” or “double
negation shift” DNSy:

Vz-—A(z) = -—Vz A(z).

Let DNS; be the schema Va——3zA(a(z)) - -—VadzA(a(z)).

0Formalized q-realizability is needed for (i) - (iv). Since arithmetic has a constant (numeral) for every natural
number, the results for HA corresponding to (ii) and (iii) could be obtained using informal realizability(F). However,
no countable theory can have a name for every choice sequence.

1 An alert reader will note the similarity between Theorems 5.8 and 4.22. In arithmetic, recursive partial functions
are coded by natural numbers. In analysis, continuous partial functions are coded by neighborhood functions, which
are choice sequences. Troelstra’s characterization theorems show that taking realizability seriously has mathematical
consequences; in particular, an analogue of Theorem 4.23 holds for B + GC;.
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Lemma 5.9. Let T be any of the theories B + DNS;, B4+ MP or B + DNS;+ MP, and let IT be
T + GC;. Then for every sentence E of the two-sorted language:

l_IT E = |_T E|O'(O’I‘E).

Hence IT is consistent, and T is a proper subsystem of classical analysis C.

Remark. Each of the theories T and IT of Lemma 5.9 has the disjunction and numerical existence
properties (corresponding to Theorem 5.4(ii),(iii)) and is closed under Church’s Rule and Troelstra’s
Rule (the rule corresponding to GCy).

Lemma 5.10. For each formula F of the two-sorted language let EY be its Godel-Gentzen negative

translation. Then
(i) |_C E = l_B—I—DNSo E9.
(ii) Fc E < E9.

Theorem 5.11 (JRM). For each formula E of the two-sorted language:
I—C E|O'(O’I‘E) E= |_B+DNSO+MP+GC1 -—F.

Corollary 5.12. DNS; is provable in B + DNSy+ MP + GC;.

Proof: Let E be any instance of DNSy. Then F¢ Jo(or E) by Lemma 5.7, so = F is provable in
B + DNSy; + MP + GC;. But kg =——FE — E since F is of the form F — —-—G.
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