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Let M be the minimal two-sorted extension of Heyting Arithmeti
, with full

indu
tion in the extended language, whi
h was used e.g. by Kleene [1℄ to formalize

the theory of re
ursive partial fun
tions of type 2. In addition to the de�ning equa-

tions for �nitely many primitive re
ursive fun
tion 
onstants, M has the fun
tion

existen
e (or \non-
hoi
e") axiom s
hema

AC

0

! : 8x9!yA(x; y)! 9�8xA(x; �(x));

but no axiom of 
ountable or dependent 
hoi
e. Let T be M + BI

1

+ MP

1

, where

BI

1

is Brouwer's prin
iple of bar indu
tion in the form

BI

1

: 8�[9x�(�(x)) = 0^8x(�(�(x)) = 0_8sA(�(x)� hsi) ! A(�(x)))℄! A(h i)

and MP

1

is Markov's Prin
iple in the form

MP

1

: 8�[:8x:�(x) = 0! 9x�(x) = 0℄:

Then T proves:

(i) Every predi
ate A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

) without fun
tion quanti�ers, in-

deed every (
lassi
ally or 
onstru
tively) �

1

1

predi
ate, is 
lassi
ally de
idable with

respe
t to its number variables; that is,

::8x

1

: : :8x

n

[A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

) _ :A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

)℄:

Hen
e ::9�8x

1

: : :8x

n

[�(hx

0

; : : : ; x

n

i) = 1$ A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

)℄:

(ii) Every �

0

1

predi
ate has a re
ursive 
hara
teristi
 fun
tion, and the graph

of every re
ursive fun
tion is �

0

1

(both 
lassi
ally and 
onstru
tively).

(iii) The 
onstru
tive arithmeti
al hierar
hy (with or without fun
tion param-

eters) is proper.

Result (i) for arithmeti
al predi
ates is due to Robert Solovay (personal 
ommu-

ni
ation). A proof of Solovay's result, and proofs of (ii), (iii), and (i) for 
lassi
ally

�

1

1

predi
ates, appear in [4℄ along with other hierar
hy results in 
onsistent ex-

tensions of intuitionisti
 analysis. Observe that in T, every 
onstru
tively �

1

1

predi
ate is also 
lassi
ally �

1

1

, sin
e MP

1

implies

[9�8xR(�(x); z)$ 8�9yQ(�(y); z)℄! [::9�8xR(�(x); z)$ 8�::9yQ(�(y); z)℄

if R(w; z) and Q(v; z) are quanti�er-free. Results (ii) and (iii) use Kleene's normal

form theorem; as an example, we sket
h the proof of (iii).

Theorem. T proves �

0

n

6= �

0

n+1

6= �

0

n+1

and �

0

n

6= �

0

n+1

6= �

0

n+1

for n 2 !, so

the 
onstru
tive arithmeti
al hierar
hy (with or without fun
tion parameters) is

proper.

Proof. Sin
e �

0

0

= �

0

0

6= �

0

1

by (ii), and �

0

n

[ �

0

n

� �

0

n+1

= �

0

n+1

\ �

0

n+1

, it

will suÆ
e to show by indu
tion on n that �

0

n+1

6= �

0

n+1

and �

0

n+1

6= �

0

n+1

.

Basis. n = 0. Kleene's normal form theorem, proved in M (
f. [1℄), gives

enumerating predi
ates

R

1

(x; y; �) � 9zT (x; y; �(z)) and P

1

(x; y; �) � 8z:T (x; y; �(z))

1



for �

0

1

(y; �) and �

0

1

(y; �) respe
tively, where T (x; y; w) is quanti�er-free. M proves

(�)

1

8�8x8y[::R

1

(x; y; �)$ :P

1

(x; y; �)℄;

so T proves that R

1

(x; x; �) is not �

0

1

and P

1

(x; x; �) is not �

0

1

.

Indu
tion Step. By the indu
tion hypothesis with the normal form theorem,

there are predi
ates

R

n+1

(x; y; �) � 9zC(x; y; z; �) and P

n+1

(x; y; �) � 8zD(x; y; z; �)

whi
h enumerate (provably in M) �

0

n+1

(y; �) and �

0

n+1

(y; �) respe
tively, su
h

that T proves

(�)

n

8�8x8y8z[::D(x; y; z; �)$ :C(x; y; z; �)℄:

Fix �. By (i), T proves

::9�9�8x8y8z[(�((x; y; z)) = 0$ C(x; y; z; �))^(�((x; y; z)) = 0$ D(x; y; z; �))℄

so ::8x8y8z[D(x; y; z; �)$ :C(x; y; z; �)℄ by (�)

n

, and hen
e

(�)

n+1

8�8x8y[::R

n+1

(x; y; �)$ :P

n+1

(x; y; �)℄:

Thus R

n+1

(x; x; �) is not �

0

n+1

and P

n+1

(x; x; �) is not �

0

n+1

.

By [3℄, Kleene and Vesley's theory FIM of intuitionisti
 analysis (a non
las-

si
al extension of M + BI

1

in
luding Brouwer's prin
iple of 
ontinuous 
hoi
e,

from whi
h the 
ountable axiom of 
hoi
e follows) is 
onsistent with 8�::GR(�).

Results (i)-(iii) imply that the 
onsistent extension FIM + MP

1

of T proves

:8�::GR(�). Both T and FIM + MP

1

, like other theories 
onsidered in [4℄,

satisfy Kleene's re
ursive instantiation rule: If 9�B(�) is a 
losed theorem of the

theory, so is 9�[GR(�) ^ B(�)℄ where GR(�) expresses \� is re
ursive." Thus

Markov's Prin
iple in
reases the 
lassi
al (but not the 
onstru
tive) 
ontent of the

intuitionisti
 
ontinuum.

Kleene's example in [2℄, of a re
ursive fan in whi
h every re
ursive bran
h

(but not every bran
h) is �nite, shows that the re
ursive sequen
es are an inad-

equate basis for intuitionisti
 analysis. Markov's Prin
iple helps to explain this

fa
t without implying the 
onstru
tive existen
e of nonre
ursive sequen
es. From

this point of view, results (i)-(iii) 
ould be 
onsidered reasonably strong eviden
e

for Markov's Prin
iple.
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