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1 Background and Motivation

The constructive tendency in mathematics has deep roots. Most mathematicians prefer direct proofs
to indirect ones, though some classical theorems have no direct proofs. For example, the proof that
every limit point of A∪B is either a limit point of A or a limit point of B cannot be direct, since the
hypothesis is insufficient to determine which of the two disjuncts of the conclusion must hold. What
one actually proves is that if p has a neighborhood N1 missing A and a neighborhood N2 missing B,
then p has a neighborhood missing A ∪ B. This trivial argument is entirely constructive from the
definition of “topological space,” but classical logic is needed to interpret it as a proof of the original
proposition.

Probably the most influential constructivist of the twentieth century was the intutionist L. E. J.
Brouwer, who believed that the Aristotelian law of excluded middle (A or not A) held only in situations
where the decision between the disjuncts could be made effectively. While Brouwer disapproved of
formal reasoning, his student A. Heyting developed intuitionistic logic and arithmetic as subtheories
of the corresponding classical theories; for this reason, intuitionistic arithmetic is called “Heyting
arithmetic.” Gödel showed by a translation that these intuitionistic theories are equiconsistent with
the classical ones.

Other recognized varieties of constructive mathematics are finitism (Kronecker, Weyl), Russian
recursive mathematics (Markov), and cautious constructivism (Bishop, Bridges, Richman). Markov
and Bishop, like Brouwer, were especially interested in analysis. Bishop’s constructive analysis is a
subtheory of classical analysis; Markov’s and Brouwer’s are not. All are based on intuitionistic logic.

1.1 The B-H-K Interpretation

In order to recognize a statement as true, an intuitionist requires justification or proof. Tarski’s “truth
definition” for classical logic (see e.g. Kleene [1952] § 81) has an intuitionistic parallel, the Brouwer-
Heyting-Kolmogorov interpretation, which clarifies the relationship between acceptable justification
and logical structure.

1. To justify a prime sentence P is to recognize its truth.

2. To justify A & B is to justify A and B.

3. To justify A ∨B is to justify a specific one of A, B.

4. To justify A → B is to provide a construction which transforms every justification of A into a
justification of B.

5. To justify ¬A is to justify A→⊥, where ⊥ is a known contradiction.

6. To justify ∀xA(x) where D is the intended range of the variable x, is to provide a construction
which associates with each d ∈ D a justification of A(d).

7. To justify ∃xA(x) (with D as the range of x) is to justify A(d) for a specific d ∈ D.

1



This is an explication, not a precise definition, as it relies on our intuitive understanding of words
like “recognize,” “construction” and “transforms.” In applications the variable x ranges over a specific
domain D, which need not be finite but must be structured so that a correct assertion of the form
d ∈ D is self-justifying. For arithmetic, D is the collection N of natural numbers, understood as
generated from 0 by repeated application of the successor operation. For analysis, D is the collection
of infinitely proceeding sequences of natural numbers.

Exercise 1.1. Assuming that every true statement can be justified (and that every recognizably
true statement is true), use the B-H-K interpretation to prove that every justifiable statement is true
according to the Tarski “definition” of classical truth.

1.2 Language and Logic

Brouwer expressed the view that mathematical objects (including proofs) are mental constructs, in-
dependent of language. Language is only a (sometimes untrustworthy) tool for communicating math-
ematical constructions. Logic is independent of language, but general logical principles which are
always capable of justification may be formalized and used as shortcuts in mathematical reasoning.

The languages of pure intuitionistic propositional and predicate logic are the same as for clas-
sical logic. The language of intuitionistic (Heyting) arithmetic is the same as for classical (Peano)
arithmetic. Only the logic is different.

The B-H-K interpretation gives each of the logical symbols &, ∨, →, ¬, ∀, ∃ a distinct meaning.
Classically, all the propositional connectives can be defined from & and ¬, while ∃ can be defined
from ∀ and ¬, so ∨, → and ∃ are unnecessary. Intuitionistic logic, in contrast, makes full use of the
expressive power of the formal language.

2 Formal Systems for Intuitionistic Logic

2.1 Intuitionistic Propositional Logic Pp

We begin with a Hilbert-style formalism Pp, from Kleene [1952], for intuitionistic propositional logic.
The language L(Pp) has distinct proposition letters P0, P1, P2, . . ., logical symbols &, ∨, →, ¬ and
left and right parentheses (, ).

Definition. The prime formulas of L(Pp) are the proposition letters. The (well-formed) formulas
of L(Pp) are defined inductively as follows.

• Each prime formula is a formula.

• If A, B are formulas so are (A & B), (A ∨B), (A→ B) and (¬A).

In general, we use A,B,C, . . . as metavariables for well-formed formulas, omitting parentheses on the
usual convention that ¬ binds closer than &, ∨ which bind closer than →. Thus ¬A & B → B ∨ C
abbreviates (((¬A) & B) → (B ∨ C)) and will be treated as well formed, while A → B ∨ C → A is
ambiguous and hence not well formed.

Pp has one rule of inference:

R1 (Modus Ponens). From A and A→ B, conclude B.

The axioms of Pp are all formulas of the following forms:

X1. A→ (B → A).

X2. (A→ B) → ((A→ (B → C)) → (A→ C)).

X3. A→ (B → A & B).

X4. A & B → A.
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X5. A & B → B.

X6. A→ A ∨B.

X7. B → A ∨B.

X8. (A→ C) → ((B → C) → (A ∨B → C)).

X9. (A→ B) → ((A→ ¬B) → ¬A).

X10. ¬A→ (A→ B).

Definition. A proof in Pp is any finite sequence of formulas, each of which is an axiom or an
immediate consequence, by the rule of inference, of two preceding formulas of the sequence. Any proof
is said to prove its last formula, which is therefore a theorem of Pp. We write `Pp E (or in this section
just ` E) to denote that E is a theorem of Pp.

Example. Here is a formal proof in Pp of A & B → B & A, with the reasons for some of the steps
omitted.

1. A & B → A. [axiom by X4]

2. (A & B → A) → ((A & B → (A→ B & A)) → (A & B → B & A)). [axiom by X2]

3. (A & B → (A→ B & A)) → (A & B → B & A). [by R1 from 1,2]

4. B → (A→ B & A).

5. (B → (A→ B & A)) → (A & B → (B → (A→ B & A))).

6. A & B → (B → (A→ B & A)). [by R1 from 4,5]

7. A & B → B. [axiom by X5]

8. (A & B → B) → ((A & B → (B → (A→ B & A))) → (A & B → (A→ B & A))).

9. (A & B → (B → (A→ B & A))) → (A & B → (A→ B & A)).

10. A & B → (A→ B & A).

11. A & B → B & A. [by R1 from 3,10]

Exercise 2.1. Provide reasons for steps 4, 5, 8, 9, 10 in the sample proof.

2.2 Deduction in Pp

The sample proof of A & B → B & A above suggests that formal proofs in Pp are slow and cumber-
some. However, the pattern of lines 4-6 can be used to justify the derived rule

• From B conclude A→ B.

Using this rule, the sample proof could be shortened by one line. By considering deductions (or
derivations) instead of just proofs, we can simplify the situation still further. A deduction is simply a
proof from assumptions.

Definition. A deduction (or derivation) in Pp of a formula E from a collection Γ of formulas is
a finite sequence of formulas, each of which is an axiom or a member of Γ or follows immediately by
R1 from two formulas occurring earlier in the sequence. If such a deduction exists, E is said to be
deducible or derivable in Pp from Γ, and we write Γ `Pp E (or in this section just Γ ` E).

Observe that if Γ ` E then there is a finite subset Γ′ = {G1, . . . , Gn} of Γ such that Γ′ ` E (also
written G1, . . . , Gn ` E). If n = 0 (so Γ′ is empty) then ` E. Sometimes, as in the following theorem,
it is convenient to write Γ, A ` E instead of Γ ∪ {A} ` E.
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Theorem 2.1. (The Deduction Theorem for Pp) If Γ, A ` B then Γ ` (A→ B).

Proof. Fix Γ and A. We prove the theorem for every B, by induction on the length n of any given
derivation E1, . . . , En of B from Γ, A (so En is B).

If n = 1 then E1 is an axiom, a member of Γ, or A. In the first two cases we construct a new
deduction F1, F2, F3 of (A → E1) from Γ following the pattern of the derived rule suggested at the
beginning of this subsection. If E1 is A, construct a (five-line) proof of (A→ A) in Pp.

Assuming the theorem holds for deductions of length < n where n > 1, consider a given deduction
E1, . . . , En from Γ, A. If En is an axiom or a member of Γ, proceed as in the basis. If En comes from
some Ej , Ek with j, k < n by R1, where Ek is (Ej → En), then by the induction hypothesis there
are deductions F1, . . . , Fr of (A → Ej) from Γ, and Fr+1, . . . , Fr+s of (A → Ek) from Γ. Extend the
deduction F1, . . . , Fr+s by three lines to obtain a deduction of (A→ En) from Γ.

Exercise 2.2. Complete the proof of the Deduction Theorem by providing Fr+s+1, Fr+s+2, Fr+s+3

for the induction step.

The next result is almost trivial, but useful nevertheless. We dignify it by calling it a theorem.
Part (a) is the converse of the Deduction Theorem, and part (b) essentially says that ` is transitive.
As usual, Γ,∆ are collections of formulas and A,B are formulas; note that Γ,∆ may overlap.

Theorem 2.2. In Pp:
(a) If Γ ` (A→ B) then Γ, A ` B.
(b) If Γ ` A and ∆, A ` B then Γ,∆ ` B.

Example. Here is a proof that ` (A → B) & (B → C) → (A → C). The proof is constructive,
since the (constructive) proofs of the Deduction Theorem and Theorem 2.2 provide an algorithm for
converting this outline into a formal proof in Pp of (A→ B) & (B → C) → (A→ C).

1. (A→ B) & (B → C) ` (A→ B). [by Thm. 2.2(a) from X4]

2. (A→ B) & (B → C) ` (B → C). [by Thm. 2.2(a) from X5]

3. (B → C) ` (A→ (B → C)). [by Thm. 2.2(a) from X1]

4. (A→ B), (A→ (B → C)) ` (A→ C). [by Thm. 2.2(a) twice, from X2]

5. (A→ B), (B → C) ` (A→ C). [by Thm. 2.2(b) from 3,4]

6. (A→ B) & (B → C), (B → C) ` (A→ C). [by Thm. 2.2(b) from 1,5]

7. (A→ B) & (B → C) ` (A→ C). [by Thm. 2.2(b) from 2,6]

8. ` (A→ B) & (B → C) → (A→ C). [by Thm. 2.1 from 7]

Exercise 2.3. Use Theorems 2.1 and 2.2 to prove that ` ((A→ B) → (¬B → ¬A)).

Theorems 2.1 and 2.2 are metatheorems (theorems about the formal system, proved construc-
tively). Another metatheorem which should be completely obvious is the fact that Pp has the single
substitution property: If Γ ` E, and if Γ′, E′ come from Γ, E respectively by replacing every occurrence
of a particular proposition letter P by an occurrence of the formula A, then Γ′ ` E′.

Definition. Let E be a formula of L(Pp) containing at most the (distinct) proposition letters
P1, . . . , Pn. Let A1, . . . , An be (not necessarily distinct) formulas of L(Pp). It E ′ comes from E by
simultaneously replacing each occurrence of Pi in E by an occurrence of Ai, for i = 1, . . . , n, then E ′

is called a substitution instance of E in L(Pp).

Every such substitution instance of E can be viewed as the result of a finite sequence of single
substitutions, as follows. Suppose the list P1, . . . , Pn+m includes all the proposition letters occurring
in A1, . . . , An. For i = 1 to n, let Bi come from Ai by successively replacing every occurrence of Pj by
an occurrence of Pn+m+j, for j = 1 to n. Then none of P1, . . . , Pn occurs in any of B1, . . . , Bn. Let F
be the formula obtained from E by successively replacing every occurrence of Pi by an occurrence of
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Bi, for i = 1 to n. Finally, E ′ comes from F by successively replacing every occurrence of Pn+m+i by
an occurrence of Pi, for i = 1 to n.

Theorem 2.3. (The Substitution Property for Pp) If Γ ` E, and if Γ′, E′ come from Γ, E
respectively by simultaneously replacing every occurrence of Pi by an occurrence of Ai, for i = 1, . . . , n,
then Γ′ ` E′.

Exercise 2.4. Show that if Axiom Schema 10 is replaced by the classical law of double negation
¬¬A→ A, then A ∨ ¬A becomes provable for every formula A. [Hint: First show how to construct a
proof in Pp of ¬¬(A ∨ ¬A).]

It follows from Exercise 2.4 that the formal system cPp which comes from Pp by strengthening
Axiom Schema 10 to ¬¬A→ A (and defining `cPp accordingly) is classical propositional logic. Clearly
cPp also has the substitution property, and the Deduction Theorem and Theorem 2.2 hold for cPp
by essentially the same proofs as for Pp.

Exercise 2.5*. Suppose that E,F are formulas of L(Pp) such that for every substitution instance
(E′ → F ′) of (E → F ): if `cPp E

′ then `cPp F
′. Show that `cPp (E → F ). [The * indicates a more

difficult exercise.]

A rule of the form “From any substitution instance of E, conclude the corresponding substitution
instance of F” which satisfies the hypothesis of this exercise with respect to a given formal theory
is called an admissible rule of the theory. Exercise 2.5* shows that every admissible rule of cPp is
derivable in cPp. The corresponding statement for Pp is false; in fact, the collection of admissible,
nonderivable rules of Pp is recursively enumerable and infinite. A concrete enumeration proposed by
de Jongh and Visser was recently proved by Iemhoff [2001] to be correct and complete.

2.3 The Natural Deduction System NPp

We have just observed that a few derived rules can save much time and effort in constructing (outlines
of) formal proofs and derivations in Pp. One can go still further and abandon all axiom schemas
in favor of rules as in the following natural deduction system NPp (essentially from Kleene [1952]),
which differs from N-IPC of Troelstra and van Dalen [1988] only by having rules for ¬ instead of ⊥.
Formal derivations in a natural deduction system are labelled, rooted finite trees rather than finite
sequences of formulas. This feature makes it easier to see how each step depends on the assumptions.

Definition. A deduction D in NPp of a formula E from assumptions Γ is a finite tree with a
formula attached to each node (in particular, formulas from Γ attached to the leaves and E attached
to the root), defined inductively as follows.

(i) If E ∈ Γ then ·E is a deduction from Γ of E.

(ii) If D1, D2 and D3 are deductions from Γ (and possibly the additional assumptions shown inside
square brackets), of their last formulas (shown explicitly), then new deductions from Γ may be
constructed using the following rules. Assumptions shown inside square brackets are cancelled
when the indicated rule is applied. Each new deduction is a deduction of its last formula.

D1

A

D2

B
&I

A & B

D1

A & B&Er A

D1

A & B&El B

D1

A∨Ir A ∨B

D1

B∨Il A ∨B

D1

A ∨B

[A]

D2

C

[B]

D3

C
∨E

C
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[A]

D1

B
→ I

A→ B

D1

A→ B

D2

A
→ E

B

[A]

D1

B

[A]

D2

¬B
¬I

¬A

D1

A

D2

¬A¬Ei B

If Γ is a list of formulas and E a formula in the language L(Pp), then Γ `NPp E means there is a
deduction D in NPp of E from Γ. If Γ is empty then D is a proof of E in NPp.

It follows from the definition that if D is a deduction from Γ of E, and Γ′ is the set of open
assumption formulas occurring at the leaves of D, then Γ′ ⊆ Γ and for each ∆ ⊇ Γ′: D is a deduction
from ∆ of E.

2.4 Equivalence of Pp with NPp

Theorem 2.4. If E is a formula, and Γ a collection of formulas, of L(Pp), then

Γ `Pp E if and only if Γ `NPp E.

Proof for all Γ, E simultaneously, by induction on the definitions. If E ∈ Γ there is nothing to
prove in either direction. For ⇒, we first construct a proof in NPp of each axiom E of Pp. As an
example, observe that

A
→ I

B → A

is a deduction of (B → A) from A, and hence

[A]
→ I

B → A
→ I

A→ (B → A)

is a proof of X1. There was no assumption B to cancel at the first → I. The assumption A was
cancelled by the second → I.

Axioms X2-X10 are treated similarly, each using → I together with one other rule of NPp. Rule
→ E of NPp justifies the rule R1 of Pp. Hence every deduction in Pp can be transformed into a
deduction in NPp, with the same assumptions and the same conclusion.

For ⇐, we need to show that each rule of NPp is derivable in Pp. Theorem 2.1 takes care of
→ I, and Theorem 2.2 of → E. For ∨E, suppose D1 is an NPp-deduction from Γ, A of C; D2 is an
NPp-deduction from Γ, B of C; and D3 is an NPp-deduction from Γ of (A ∨ B). By the induction
hypothesis, in Pp there are deductions of C from Γ, A and of C from Γ, B, and also a deduction
G1, . . . , Gn of (A ∨ B) from Γ. By the Deduction Theorem for Pp there are deductions E1, . . . , Ek
of A → C from Γ, and F1, . . . , Fm of B → C from Γ. Extend E1, . . . , Ek, F1, . . . , Fm, G1, . . . , Gn by
three lines H1,H2,H3 to get a deduction of C from Γ in Pp, where H1 is an axiom by X8, H2 comes
from Ek and H1 by R1, and H3 comes from Fm and H2 by R1.

Exercise 2.6. Construct a labelled NPp-proof of Axiom X8 of Pp.

Exercise 2.7. Construct labelled NPp-proofs of Axioms X9 and X10 of Pp.

Exercise 2.8. Without using Theorem 2.4, prove that the rule ¬I of NPp can be derived in Pp.
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2.5 Some Formal Theorems of Intuitionistic Propositional Logic

In intuitionistic as well as in classical logic, A↔ B abbreviates (A→ B) & (B → A). Many classical
equivalences fail intuitionistically; for example, as we shall see later, in parts (a),(b),(f)-(h) of the next
theorem the main → cannot be replaced by ↔.

Theorem 2.5. In Pp (or equivalently, in NPp), for all formulas A, B:
(a) ` (A→ B) → (¬B → ¬A).
(b) ` A→ ¬¬A.
(c) ` ¬¬¬A↔ ¬A.
(d) ` (A→ ¬B) ↔ (B → ¬A).
(e) ` ¬(A ∨ B) ↔ (¬A & ¬B).
(f) ` (¬A ∨ B) → (A→ B).
(g) ` (A→ B) → ¬(A & ¬B).
(h) ` (¬A ∨ ¬B) → ¬(A & B).
(i) ` (¬¬A & ¬B) ↔ ¬(A→ B).

Proof of (b). A,¬A ` A and A,¬A ` ¬A trivially. Use the ¬I rule of NPp to conclude A ` ¬¬A.
Then use → I.

Proof of (e). We use NPp. By &I and → I we only need to derive (¬A & ¬B) from ¬(A ∨ B),
and conversely. Here are the two derivations:

[A]
∨Ir

A ∨B ¬(A ∨B)
¬I

¬A

[B]
∨Il

A ∨B ¬(A ∨B)
¬I

¬B
& I

(¬A & ¬B)

[A ∨B]

[A ∨B]

[A]
¬A & ¬B &Er

¬A
¬Ei

¬(A ∨B)

[B]
¬A & ¬B &El

¬B
¬Ei

¬(A ∨B)
∨E

¬(A ∨B)
¬I, cancelling A ∨B (twice)

¬(A ∨B)

Proof of (g). By → I it will be enough to derive ¬(A & ¬B) from (A→ B) in NPp, as follows.

A→ B

[A & ¬B]
&Er

A
→ E

B

[A & ¬B]
&El

¬B
¬I

¬(A & ¬B)

Exercise 2.9. Prove (c) and (f) of Theorem 2.5. [Hint: Exercise 2.3 established part (a), and part
(b) is proved above. Hence in proving (c) you may use (a) and (b) (for any formulas A, B).]

A natural deduction system NcPp for classical propositional logic comes from NPp By changing
the intuitionistic ¬-elimination rule ¬Ei to the following rule expressing the classical law of double
negation:

D
¬¬A¬Ec A

The proof of Theorem 2.4 can easily be adapted to show that derivability in NcPp is equivalent
to derivability in cPp.
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2.6 Intuitionistic First-Order Predicate Logic Pd

Again taking Kleene [1952] as a guide, we begin with a Hilbert-style formal system Pd which contains
Pp as a subsystem. Formal theorems of Pp (such as the parts of Theorem 2.5) will hold in Pd for all
formulas A,B of the extended language. The Deduction Theorem for Pd will need additional justifi-
cation. Metatheorems whose hypotheses involve the deducibility relationship have to be reexamined
whenever new axioms and/or rules are added to a formal theory.

The language L(Pd) has individual variables a1, a2, a3, . . ., and countably infinitely many distinct
predicate letters of arity n for each n = 0, 1, 2, 3, . . .. The 0-ary predicate letters are the proposition
letters P1, P2, . . . of L(Pp). The unary predicate letters are P1(·), P2(·), . . . , the binary ones are
P1(·, ·), P2(·, ·), . . . , and in general the n-ary ones are Pi(·, . . . , ·) for i = 1, 2, . . . where ·, . . . , · is a
sequence of n placeholders. The logical symbols of L(Pd) are those of L(Pp), together with the
universal quantifier ∀ and the existential quantifier ∃.

Definition. The terms of L(Pd) are the individual variables. If P (·, . . . , ·) is an n-ary predicate
letter and t1, . . . , tn are terms, then P (t1, . . . , tn) is a prime formula of L(Pd). The (well-formed)
formulas of L(Pd) are defined inductively as follows:

• Each prime formula is a formula.

• If A, B are formulas so are (A & B), (A ∨B), (A→ B) and (¬A).

• If A is a formula and x an individual variable, then (∀xA) and (∃xA) are formulas.

In general, x, y, z, w, x1, y1, . . . will be used as metavariables for individual variables, and A,B,C, . . .
as metavariables for formulas. Anticipating applications (e.g. to arithmetic) where the terms may be
more complicated, we use t, u, v, t1, . . . as metavariables for terms. In omitting parentheses, ∀x and
∃x are treated like ¬, so ∃x¬A→ B abbreviates ((∃x(¬A)) → B). If x is a variable and A a formula,
we may write A(x) for A (even if x does not actually occur in A), as in the following definition.

Definition. The scope of an outermost ∀x or ∃x, in a formula of the form (∀xA(x)) or (∃xA(x)),
is the subformula A(x). An occurrence of a variable x in a formula B is bound in B if it is the x of a
quantifier ∀x or ∃x, or is within the scope of such a quantifier (with the same x). An occurrence of x
in B which is not bound in B, is free in B. A bound occurrence of x in B is bound by the outermost
quantifier of the smallest subformula of B of the form (∀xC(x)) or (∃xC(x)) (with the same x) to
which it belongs. In Pd and all the applications to be considered in these notes, any occurrence of a
variable x in a term t is free in t.

Example. In the formula ∀a1(∃a2(P1(a1, a2) → ∃a1P2(a1, a2))) & P1(a1), the first and second
occurrences of a1 are bound by the ∀a1. The third and fourth occurrences of a1 are bound by the ∃a1.
The fifth occurrence of a1 is free.

Definition. If A(x) is a formula, x a variable, and t a term, then A(t) is the result of substituting
an occurrence of t for each free occurrence of x in A(x). The substitution is free if no free occurrence
in t of any variable becomes bound in A(t), and in this case we say t is free for x in A(x).

Example. SupposeA(x, z) is ∀y(P (x, y) → ∃xQ(x, z)) where P (x, y) andQ(x, z) are prime formulas
with exactly the indicated variables free (where x, y, z are distinct individual variables). Then y is not
free for x in A(x, z), since the new occurrence of y in A(y, z) will be bound by the ∀y. But z is free
for x in A(x, z), since A(z, z) is ∀y(P (z, y) → ∃xQ(x, z)) with the new occurrence of z free.

Exercise 2.10. For the A(x, z) of the example, answer each of the following questions.
(a) What are the scopes of the quantifiers ∀y and ∃x?
(b) Is x free for z in A(x, z)? Is y free for z in A(x, z)?

This use of the notations A(x), A(t) requires some care. If y is free for x in A(x), B(y) is (the
same formula as) A(y), and B(x) is derived from B(y) by substituting an occurrence of x for every
free occurrence of y in B(y), then B(x) may differ from A(x). For example, let A(x) be P1(x, y) where
x, y are distinct variables. Then y is free for x in A(x), and A(y) is P1(y, y). If B(y) is P1(y, y) then
x is free for y in B(y), and B(x) is P1(x, x).
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However, if y is x, or if y is free for x in A(x) and does not occur free in A(x), then x is free for
y in A(y) and does not occur free in A(y) (unless x is y). In either of these cases the sequence of
substitutions x 7→ y 7→ x leads from A(x) to A(y) and back to A(x). (Note that distinct metavariables
x, y, z, w, x1, . . . need not always denote distinct individual variables.)

In addition to R1, Pd has two new rules of inference:

R2. From C → A(x) where x does not occur free in C, conclude C → ∀xA(x).

R3. From A(x) → C where x does not occur free in C, conclude ∃xA(x) → C.

In addition to X1 - X10, Pd has two new axiom schemas, where A(x) may be any formula and t
any term free for x in A(x):

X11. ∀xA(x) → A(t).

X12. A(t) → ∃xA(x).

Definition. A deduction (or derivation) in Pd of a formula E from a collection Γ of formulas is
a finite sequence of formulas, each of which is an axiom by X1 - X12, or a member of Γ, or follows
immediately by R1, R2 or R3 from one or two formulas occurring earlier in the sequence. If such a
deduction exists, we may write Γ `Pd E (or in this subsection just Γ ` E).

Definition. If E1, . . . , En is a deduction from Γ and G ∈ Γ, then for each k = 1, . . . , n we say that
Ek depends on G in the deduction if and only if one of the following holds:

• Ek is G, and is justified as an assumption formula from Γ, or

• Ek is a consequence by R1 of two formulas Ei, Ej with i, j < k, where one or both of Ei, Ej
depends on G, or

• Ek is a consequence by R2 or R3 of some formula Ei which depends on G, where i < k.

If R2 or R3 is used in a deduction from Γ, with respect to a variable x which occurs free in at least
one assumption from Γ on which the hypothesis of the rule depends, then x is varied in the deduction;
otherwise x is held constant in the deduction. To indicate that a deduction of E from Γ exists in
which x1, . . . , xk are varied, we sometimes write Γ `x1,...,xk

Pd E (or in this subsection just Γ `x1,...,xk E).

Exercise 2.11. Construct a deduction in Pd of ∃xA(x) from ∀xA(x), in which no variable is varied.

Exercise 2.12*. Let x be a variable, and A(x) a formula containing x free. Suppose that y is a
variable which does not occur free in A(x), suppose y is free for x in A(x), and let A(y) be the result
of substituting y for x in A(x). Let C be a formula not containing y free.

(a) Construct a deduction in Pd of (∃xA(x) → C) from (A(y) → C).
(b) Which, if any, variables were varied in your deduction?

The next lemma collects a few easy facts about deduction in Pd. Parts (b) and (c) correspond to
Theorem 2.2(a) and (b).

Lemma 2.6. In Pd:
(a) If Γ ` (A → B) by a deduction in which only x1, . . . , xk are varied, then Γ, A ` B by a

deduction in which only x1, . . . , xk are varied.
(b) If Γ, A ` B by a deduction E1, . . . , Ek in which B does not depend on A and only x1, . . . , xn

are varied, then some subsequence of E1, . . . , Ek is a deduction of B from Γ in which no other variables
are varied.

(c) If Γ ` A and ∆, A ` B by deductions in which no variables other than x1, . . . , xk are varied,
then Γ,∆ ` B by a deduction in which no other variables are varied.

Exercise 2.13. Prove that if Γ `Pd A(x) by a deduction in which none of y1, . . . , ym is varied,
and x does not occur free in any assumption from Γ on which the conclusion A(x) depends, then
Γ `Pd ∀xA(x) by a deduction in which none of y1, . . . , ym is varied.
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Exercise 2.14. [This is part of the proof of Theorem 2.7.] Prove that in Pp:
(a) (A→ (C → D)) ` (A & C → D) and
(b) (A & C → D) ` (A→ (C → D)).

Theorem 2.7. (The Deduction Theorem for Pd) If Γ, A `Pd B by a deduction in which all
variables occurring free in A are held constant, and only x1, . . . , xm are varied, then Γ `Pd (A → B)
by a deduction in which no variables except x1, . . . , xm (and possibly only some of these) are varied.

Proof. Fix Γ and A, and suppose E1, . . . , En is a given deduction of B from Γ, A in which all
variables occurring free in A are held constant and only x1, . . . , xm are varied. There are four new
cases to add to the inductive proof of Theorem 2.1, and in the case for R1 we must consider which
variables are varied.

For n = 1 the two new axiom schemas X11, X12 are treated exactly as X1 - X10 were before. If E1

is a member of Γ then (A → E1) is derivable from Γ by a three-line deduction in which no variables
are varied.

Assuming the theorem holds for deductions of length < n where n > 1, consider a given deduction
E1, . . . , En from Γ, A in which all variables free in A are held constant, and only x1, . . . , xm are varied.
If En is an axiom or a member of Γ, proceed as in the basis, observing that no variables are varied in
the resulting deduction of (A→ En) from Γ. Now consider the three rules of inference.

Rule 1. If En comes from some Ej , Ek with j, k < n by R1, recall the proof of Theorem 2.1.
We may assume that no variables other than x1, . . . , xm were varied in the (independent) deductions
F1, . . . , Fr of (A→ Ej) and Fr+1, . . . , Fr+s of (A→ Ek) from Γ provided by the induction hypothesis.
If y is another variable occurring free in some formula of Γ which appears as assumption Fi for some
1 ≤ i ≤ r, then none of Fi+1, . . . , Fr was justified by applying R2 or R3 (with y as the variable) to
any formula depending on Fi, and none of Fr+1, . . . , Fr+s depends on any of F1, . . . , Fr. Hence y is
not varied in F1, . . . , Fr+s. Since the new steps Fr+s+1, Fr+s+2, Fr+s+3 use only propositional logic,
no variables other than x1, . . . , xm are varied in the resulting deduction of (A→ En) from Γ.

Rule 2. If En comes from some Ej with j < n by R2, then En is of the form (C → ∀xD(x)) where
Ej is (C → D(x)) and x does not occur free in C. There are two possibilities, depending on whether
or not Ej depends on A in the given deduction.

Case 1. Ej depends on A. Then x is not free in A (otherwise it would have been varied in
deriving En from Ej by R2). By the induction hypothesis there is a deduction F1, . . . , Fr of (A→ Ej)
from Γ in which no variables other than x1, . . . , xm are varied. By the result of Exercise 2.14 this
deduction can be extended to F1, . . . , Fr+s, using only X1-X10 and R1 in the new part, so that Fr+s
is (A & C → D(x)). Since x is not free in A & C, by R2 from Fr+s we conclude (A & C → ∀xD(x)),
which is Fr+s+1. More propositional steps lead to (A → (C → ∀xD(x))), which is (A → En). In the
resulting deduction no variables have been varied which were not already varied in E1, . . . , En.

Case 2. Ej does not depend on A. Then neither does En, so by Lemma 2.6(b) from the induction
hypothesis there is a deduction of En from Γ in which no variables other than x1, . . . , xm are varied.
Extend this to a deduction of (A→ En) from Γ in the usual way, using only X1 and R1.

Rule 3. If En comes from some Ej with j < n by R3, then En is of the form (∃xD(x) → C)
where Ej is (D(x) → C), and x does not occur free in C. If Ej does not depend on A then neither
does En, and we argue as in Case 2 for R2. If Ej depends on A then x is not free in A. By the
induction hypothesis there is a deduction G1, . . . , Gr of (A→ Ej) from Γ in which no variables other
than x1, . . . , xm are varied. Then G1, . . . , Gr can be extended by propositional steps to G1, . . . , Gr+s
where Gr+s is (D(x) → (A→ C)). Since x is not free in (A→ C), by R3 from Gr+s we can conclude
(∃xD(x) → (A→ C)), from which (A→ En) follows by propositional logic.

2.7 The Natural Deduction System NPd

A rule-based formal system NPd equivalent to Pd begins by extending the framework and rules of
NPp to L(Pd). Four new quantifier rules correspond to R2, X11, X12 and R3, with restrictions on
the variables reflecting the fact that dependence on assumption formulas is determined by the tree
form of a deduction.
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Definition. A deduction D in NPd of a formula E from assumptions Γ is a finite tree with a
formula attached to each node, as follows.

(i) If E ∈ Γ then ·E is a deduction from Γ of E.

(ii) If D1, D2 and D3 are deductions from Γ (and possibly the additional assumptions shown inside
square brackets), of their last formulas (shown explicitly), then new deductions from Γ may be
constructed using the rules of NPp and also the following rules, if the restrictions on their use
are satisfied. Assumptions shown inside square brackets are cancelled when the indicated rule is
applied. Each new deduction is a deduction of its last formula.

Restrictions: For ∀E and ∃I, t is a term free for x in A(x). For ∀I, x is not free in any open
assumption of D1. For ∃E, x is not free in C or in any open assumption of D2 except A(x).

D1

A(x)
∀I

∀xA(x)

D1

∀xA(x)
∀E

A(t)

D1

A(t)
∃I

∃xA(x)

D1

∃xA(x)

[A(x)]

D2

C
∃E

C

If Γ is a list of formulas and E a formula of L(Pd), then Γ `NPd E means that there is a deduction
D in NPd of E from Γ. If Γ is empty then D is a proof of E in NPd.

It follows from the definition that if D is a deduction from Γ of E, and Γ′ is the set of open
assumption formulas occurring at the leaves of D, then Γ′ ⊆ Γ and for each ∆ ⊇ Γ′: D is a deduction
of E from ∆.

Example. Here is a proof in NPd of ∀xA(x) → ∀yA(y) if A(x) is a formula such that y is free for
x in A(x), and y does not occur free in A(x) (unless y is x). The second condition guarantees that y
is not free in ∀xA(x), justifying the ∀I.

[∀xA(x)]
∀E

A(y)
∀I

∀yA(y)
→ I

∀xA(x) → ∀yA(y)

Exercise 2.15. Construct a proof in NPd of ∃xA(x) → ∃yA(y) if A(x) is a formula such that y is
free for x in A(x), and y is not free in ∃xA(x).

Definition. Two formulas A,B are congruent if (as strings of symbols) they differ only in the
identity of their bound variables, in the sense that

(i) Every bound occurrence of a variable in either formula corresponds to an occurrence of a variable,
bound by the same quantifier, in the other formula.

(ii) Every free occurrence of a variable in either formula corresponds to a free occurrence of the same
variable in the other formula.

By the Replacement Theorem (in the next section) with the sample proof and Exercise 2.15, if
A and B are congruent formulas then `Pd A ↔ B. It follows that every formula has an equivalent
congruent in which no variable occurs both bound and free.
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2.8 Equivalence of Pd with NPd, and the Replacement Theorem for Pd

Theorem 2.8. If E is a formula, and Γ is a collection of formulas, of L(Pd), then the following are
equivalent:

(a) Γ `Pd E by a deduction in which no variable is varied.

(b) Γ `NPd E .

Proof of (a) ⇒ (b), for all Γ, E simultaneously, by complete induction on the length of a given
Pd-deduction of E from Γ in which no variable is varied. The proof of Theorem 2.4 ⇒ provides
NPd-proof schemas for the propositional axioms X1-X10 of Pd. It is easy to construct NPd-proof
schemas for X11 and X12, using the → rules with ∀E and ∃I (which have the same restrictions as X11
and X12 of Pd). The rules require more care.

Suppose F1, . . . , Fn, Fn+1 is a deduction in Pd from Γ in which no variable is varied, and Fn+1 is
a consequence by R1, R2 or R3 of one or two formulas occurring earlier in the deduction. Suppose
the induction hypothesis holds for each Pd-deduction of length ≤ n, so for each j ≤ n and each ∆: If
G1, . . . , Gj is a deduction in Pd from ∆ in which no variable is varied, then ∆ `NPd Gj . There are
three possibilities.

Case 1. Fn+1 is a consequence by R1 of Fi and Fj with i, j ≤ n where Fi is Fj → Fn+1. By the
induction hypothesis there are NPd-deductions D1, D2 of Fi, Fj respectively from Γ. Combine these
using → E to get an NPd-deduction of Fn+1 from Γ.

Case 2. Fn+1 is (C → ∀xA(x)), where x is not free in C, and Fn+1 is a consequence by R2 of
some Fi with i ≤ n. Then Fi is (C → A(x)), and x is not free in any assumption from Γ on which Fi
depends (otherwise x would be varied by the use of R2). Then by Lemma 2.6(b) some subsequence
of F1, . . . , Fi is a Pd-deduction of (C → A(x)) from a subcollection Γ′ of Γ in which x does not occur
free. By the induction hypothesis there is an NPd-deduction D1 of Fi from Γ′. Extend it as follows
to an NPd-deduction of Fn+1 from Γ′ (hence also from Γ). The use of ∀I is justified because x is
not free in C nor in any open assumption formula of D1, since every open assumption formula of D1

belongs to Γ′.

D1

(C → A(x)) [C]
→ E

A(x)
∀I

∀xA(x)
→ I, cancelling C

(C → ∀xA(x))

Case 3. Fn+1 is (∃xA(x) → C) where x is not free in C, and Fn+1 is a consequence by R3 of
some Fi with i ≤ n. Then Fi is (A(x) → C), and x is not free in any assumption from Γ on which Fi
depends (otherwise x would be varied by the use of R3). Then by Lemma 2.6(b) some subsequence
of F1, . . . , Fi is a Pd-deduction of (A(x) → C) from a subcollection Γ′ of Γ in which x does not occur
free, so by the induction hypothesis there is an NPd-deduction D1 of Fi from Γ′. Extend D1 to an
NPd-deduction of Fn+1 from Γ′ (hence also from Γ) as follows.

[∃xA(x)]

D1

(A(x) → C) [A(x)]
→ E

C
∃E, cancelling A(x); no free x in Γ′ or C

C → I, cancelling ∃xA(x)
(∃xA(x) → C)

Proof of (b) ⇒ (a). Assume D is an NPd-deduction from Γ of E, and assume the induction
hypothesis holds for the subdeduction(s) from Γ of the hypothesis (or hypotheses) of the last rule used
to deduce E. If the last inference was by a propositional rule, proceed as in the proof of Theorem 2.4,
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using Lemma 2.6(a) and Theorem 2.7 to justify the → rules. If the last inference was by a quantifier
rule, there are four possibilities.

Case 1. E is ∀xA(x), which follows by ∀I from the conclusion A(x) of a deduction D1 in which x
is not free in any open assumption. Let Γ′ be the collection of all assumptions from Γ which are open
in D1, so x is not free in Γ′ and D1 is a NPd-deduction from Γ′ of A(x). By the induction hypothesis,
Γ′ `Pd A(x) by a deduction in which no variable is varied, and x is not free in any assumption from
Γ′ on which A(x) depends. Apply the result of Exercise 2.13.

Case 2. The last inference was by ∃E, so E is C without x free, and D has subdeductions D1 of
∃xA(x) from Γ, and D2 of C from Γ, A(x), such that x is not free in any open assumption of D2 other
than A(x). Let Γ′ be the collection of all assumptions from Γ which are different from A(x) and are
open in D2, so D2 is a deduction of C from Γ′, A(x) and x is not free in Γ′. By the induction hypothesis
Γ′, A(x) `Pd C with no variables varied, so by the Deduction Theorem Γ′ `Pd (A(x) → C) with no
variables varied. Since x is not free in C or in Γ′, we can use R3 to conclude Γ′ `Pd (∃xA(x) → C)
with no variables varied.

Cases 3 and 4. The last inference was by ∀E or by ∃I. These cases are easy, using X11 and X12
with the induction hypothesis.

Theorems 2.7 and 2.8 provide flexibility in establishing facts about provability and deducibility
in intuitionistic predicate logic. Propositional arguments carry over naturally to L(Pd), holding all
variables constant, as in the following example. Quantifier arguments are often easier in NPd than
in Pd, as in the next two exercises.

Example. The Replacement Theorem for Pd needs the lemma (A↔ B) `Pd (A∨C) ↔ (B ∨C),
with no variables varied. Theorem 2.8 allows us to prove (A↔ B) `NPd (A∨C) ↔ (B ∨C) instead.
Remember that (A ↔ B) abbreviates (A → B) & (B → A), for any formulas A,B. The following
deduction establishes (A↔ B), (A ∨ C) `NPd (B ∨ C):

A ∨ C

A↔ B &Er
(A→ B) [A]

→ E
B ∨Ir

B ∨ C

[C]
∨Il

B ∨ C ∨E, cancelling A and C
B ∨ C

and (A ↔ B), (B ∨ C) `NPd (A ∨ C) by a similar deduction. Use → I (twice) and &I to complete
the argument in NPd.

Exercise 2.16. Prove that ∀x(A(x) ↔ B(x)) `Pd (∃xA(x) ↔ ∃xB(x)) with all variables held
constant. [Hint: Use Theorem 2.8.]

Exercise 2.17. Prove that if x, y are distinct, and E is any formula, then `Pd ∀x∀yE ↔ ∀y∀xE.

Exercise 2.18*. Prove that if x1, . . . , xk all occur free in E, then E `x1,...,xk

Pd ∀x1 . . .∀xkE.

Definition. If E(x1, . . . , xk) is a formula of L(Pd) with exactly the distinct variables x1, . . . , xk
free, where the first free occurrence of xi precedes the first free occurrence of xi+1 for each 1 ≤ i < k,
then the universal closure ∀E of E is ∀x1 . . .∀xkE(x1, . . . , xk).

By Exercise 2.17, the order of the initial quantifiers in ∀E is in some sense unimportant. That
sense is made clearer by the following theorem, which is tedious to prove (by induction on the depth
of the occurrence of A in CA, using Theorem 2.8 with Exercise 2.18* and a lot of lemmas like the
sample proof and Exercise 2.16). We state it correctly, following Kleene [1952], and move on.

Theorem 2.9. (The Replacement Theorem for Pd) Suppose A and B are formulas of L(Pd),
and CA and CB are formulas which differ only in that CB results from CA by replacing a particular
occurrence of the subformula A of CA by an occurrence of B. Suppose x1, . . . , xk are all the distinct
free variables of A or B which belong to a quantifier of CA having the specified occurrence of A within
its scope. Then

(A↔ B) `x1,...,xk

Pd (CA ↔ CB).
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2.9 Some Formal Theorems of Intuitionistic Predicate Logic

The next theorem lists some equivalences and implications which hold in intuitionistic predicate logic.
The proofs of equivalences are simplified by the observation that if E `NPd F and F `NPd E, then
also `NPd (E ↔ F ) by → I and &I. In parts (a), (d), (g) and (h) the → cannot be replaced by ↔.

Theorem 2.10. In Pd (or equivalently, in NPd), for all formulas A(x), B(x), C such that x is not
free in C:

(a) ` (∀xA(x) ∨ C) → ∀x(A(x) ∨ C).
(b) ` (∃xA(x) ∨ ∃xB(x)) ↔ ∃x(A(x) ∨B(x)).
(c) ` ∀x(A(x) & B(x)) ↔ (∀xA(x) & ∀xB(x)).
(d) ` ∃x(A(x) & B(x)) → (∃xA(x) & ∃xB(x)).
(e) ` ∀x(A(x) → C) ↔ (∃xA(x) → C).
(f) ` ∀x(C → A(x)) ↔ (C → ∀xA(x)).
(g) ` ∃x(A(x) → C) → (∀xA(x) → C).
(h) ` ∃x(C → A(x)) → (C → ∃xA(x)).
(i) ` (∃xC ↔ C) and ` (∀xC ↔ C).

Proof of (a). By → I from the following NPd-deduction, which shows that (∀xA(x) ∨ C) `NPd

∀x(A(x) ∨ C):

∀xA(x) ∨ C

[∀xA(x)]
∀E

A(x)
∨Ir

A(x) ∨ C

[C]
∨Il

A(x) ∨ C
∨E, cancelling ∀xA(x), C

A(x) ∨ C
∀I, no free x in ∀xA(x) ∨ C

∀x(A(x) ∨ C)

Proof of (e). Here is an informal argument that ∀x(A(x) → C) `NPd (∃xA(x) → C). First,
∀x(A(x) → C) `NPd (A(x) → C) by ∀E. Hence by Theorem 2.8 there is a deduction in Pd of
(A(x) → C) from ∀x(A(x) → C) in which no variable is varied. Extend this deduction using R3,
so ∀x(A(x) → C) `Pd (∃xA(x) → C) with all variables held constant. Now use Theorem 2.8.
[Alternatively, use the prooftree given in Case 3 of the inductive proof of (a) ⇒ (b) in Theorem 2.8,
interpreting D1 as the immediate deduction of A(x) → C from ∀x(A(x) → C) by ∀E.]

We prove directly that (∃xA(x) → C) `NPd ∀x(A(x) → C):

∃xA(x) → C

[A(x)]
∃I

∃xA(x)
→ E

C → I, cancelling A(x)
A(x) → C

∀I, no free x in ∃xA(x) → C
∀x(A(x) → C)

Exercise 2.19. Prove (f) of Theorem 2.10.

Exercise 2.20. Prove (g) of Theorem 2.10.

The proof theory of Pp and Pd has been studied extensively, building on work of Gödel [1932]
and Gentzen [1934-35] which established constructively that Pp (like cPp) is decidable, although Pp
has no finite truth-table interpretation. Good references are Chapter 15 of Kleene [1952], Chapter 10
of (volume 2 of) Troelstra and van Dalen [1988], and Troelstra and Schwichtenberg [2000]. Gödel and
Gentzen independently found negative translations of cPp into Pp, and of cPd into Pd, showing
that in each case the intutionistic system is as strong as the classical one.

We have already considered in detail how to prove statements intuitionistically, and how to extend
each intuitionistic system to the corresponding classical one by strengthening one axiom schema or
one rule. Since the purpose of these notes is to provide a logical basis for the study of constructive
mathematics, the next topic will be (not more proof theory, but) semantics for intuitionistic logic.
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3 Semantics for Intuitionistic Logic

In order to show, for example, that `Pp ¬¬A→ A does not hold for all formulas A of Pp, we need an
interpretation with respect to which Pp is sound (so every theorem of Pp is verified by the semantics),
and an instance of ¬¬A → A which is not verified by the semantics. For similar reasons, we need a
semantics for Pd. One solution is the “possible world” semantics of Kripke [1965]. An earlier solution
found by Beth [1956, 1959] is discussed in Chapter 13 of Troelstra and van Dalen [1988]. We turn now
to Kripke’s semantics, giving first a simplified version for Pp and then the full interpretation for Pd.

3.1 Kripke Semantics for Pp

We first provide a Kripke semantics, based on finite rooted trees, with respect to which Pp is sound
and complete. Using the decidability of Pp, this interpretation is constructive. From the classical
viewpoint, on the other hand, the decidability of Pp is an easy corollary of the Kripke completeness
theorem. Compactness considerations lead to a simple version of Kripke’s interpretation for a language
with finitely many symbols.

Definition. If E is a formula of L(Pp), then sf(E) is the (finite) set of all subformulas of E,
including E itself. If Γ is a class of formulas of L(Pp), then sf(Γ) is the union of the sets sf(E) for all
E ∈ Γ. The subset of sf(E) consisting of all prime subformulas of E is psf(E), and similarly for Γ. A
class ∆ of formulas of L(Pp) is closed under subformulas if sf(∆) ⊆ ∆.

Definition. A tree T is a set of finite sequences of natural numbers such that the empty sequence
〈 〉 ∈ T, and if 〈n1, . . . , nk+1〉 ∈ T then 〈n1, . . . , nk〉 ∈ T. In the second case, 〈n1, . . . , nk〉 is called
the immediate predecessor of 〈n1, . . . , nk+1〉 in T, and 〈n1, . . . , nk+1〉 is an immediate successor of
〈n1, . . . , nk〉 in T. More generally, for each i ≤ k, 〈n1, . . . , ni〉 is a predecessor of 〈n1, . . . , nk+1〉 in T
and 〈n1, . . . , nk+1〉 is a successor of 〈n1, . . . , nk〉.

The elements of a tree are called nodes. A node which has no immediate successors (hence no
successors) in T is a leaf of T, and 〈 〉 is the root.

A tree T is finitary or finitely splitting if each 〈n1, . . . , nk〉 ∈ T has only finitely many immediate
successors in T (possibly none). Note that a finitary tree may be finite or infinite.

We may use w, u, v, w1, . . . as metavariables for finite sequences of natural numbers. If k, l ≥ 0 and
n1, . . . , nk,m1, . . . ,ml are natural numbers, the concatenation of 〈n1, . . . , nk〉 with 〈m1, . . . ,ml〉 is

〈n1, . . . , nk〉 ∗ 〈m1, . . . ,ml〉 = 〈n1, . . . , nk,m1, . . . ,ml〉.

Using this notation, a tree is a set T of finite sequences of natural numbers such that 〈 〉 ∈ T and, for
each w and n, if w ∗ 〈n〉 ∈ T then w ∈ T. The tree is finitely splitting if for each w ∈ T there are only
finitely many n (perhaps none) such that w ∗ 〈n〉 ∈ T.

Note. Sometimes it is useful to interpret 〈n1, . . . , nk〉 as a primitive recursive code for the sequence
n1, . . . , nk, for example

〈n1, . . . , nk〉 = pn1+1
1 · . . . · pnk+1

k

where pi is the ith prime, counting 2 as the first. Then if w and u code sequences, w ∗ u codes their
concatenation.

Definition. A propositional Kripke model K over a finite list P1, . . . , Pn of proposition letters is a
pair

K = ((K,≤), κ)

where K is a tree, ≤ is the partial ordering of the nodes of K determined by

u ≤ v if and only if u = v or u is a predecessor of v,

and κ is a function from K to the set of all subsets of {P1, . . . , Pn} such that if 〈x1, . . . , xj+1〉 ∈ K
then κ(〈x1, . . . , xj〉) ⊆ κ (〈x1, . . . , xj+1〉).
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The forcing relation 
 on K is completely determined by κ and the structure of (K,≤). If u ∈ K
and E is a formula such that psf(E) ⊆ {P1, . . . , Pn}, then u 
 E is defined as follows by induction on
the logical form of E. (As always, the defined relation 
 is the least fixed point of the induction.)

1. If E is prime, then u 
 E if (and only if) E ∈ κ(u).

2. u 
 (A & B) if u 
 A and u 
 B.

3. u 
 (A ∨B) if u 
 A or u 
 B.

4. u 
 (A→ B) if, for each v ∈ K with u ≤ v: if v 
 A then v 
 B.

5. u 
 (¬A) if, for each v ∈ K with u ≤ v, it is not the case that v 
 A.

Lemma 3.1. (Monotonicity) If K = ((K,≤), κ) is a propositional Kripke model over P1, . . . , Pn,
and E is a formula with psf(E) ⊆ {P1, . . . , Pn}, then for each u, v ∈ K:

if u 
 E and u ≤ v then v 
 E.

Exercise 3.1. Prove Lemma 3.1 by induction on the logical form of E.

Remark. By monotonicity, if 〈 〉 
 E then u 
 E for every u ∈ K. We say E is valid in K, and
write K 
 E, if 〈 〉 
 E.

Theorem 3.2. (Soundness for Pp) If E is a formula such that `Pp E by a proof F1, . . . , Fm such
that psf(Fi) ⊆ {P1, . . . , Pn} for each i = 1, . . . ,m, then for every propositional Kripke model K over
{P1, . . . , Pn}: K 
 E.

Proof, by complete induction on the length m of F1, . . . , Fm, where Fm is E. If m = 1 then E
is an axiom of Pp. For example, if E is A → (B → A) by X1, then for every u ∈ K: if u 
 A and
u ≤ v, then (whether or not v 
 B) also v 
 A by monotonicity. The arguments for X2 and X3 also
use monotonicity. Axiom schemas X4-X7 need only the definition of 
. For X8, if u ≤ v ∈ K and
u 
 (A→ C) and v 
 (B → C), then for every w ∈ K with v ≤ w such that w 
 (A ∨B):

(a) w 
 (A→ C) and w 
 (B → C) by monotonicity, and
(b) w 
 A or w 
 B, so in either case
(c) w 
 C.

For X10, if u 
 ¬A and u ≤ v ∈ K, then v 6
 A and so u 
 (A→ B) vacuously.
If m > 1 and E is not an axiom of Pp, then E follows by R1 from two earlier formulas Fi, Fj

where Fi is (Fj → E). By the induction hypothesis, 〈 〉 
 Fi and 〈 〉 
 Fj , so by the definition of 


clearly 〈 〉 
 E.

Exercise 3.2. Argue the case for X9 in the proof of Theorem 3.2.

Soundness gives us a way to show that a formula E is unprovable in Pp, by providing a Kripke
countermodel (a Kripke model K over psf(E) such that K 6
 E). Completeness (the next theorem)
will guarantee that every unprovable formula of Pp has such a countermodel.

Example. Here is a two-node Kripke countermodel K1 to (P1 ∨ ¬P1). Let K1 = {〈 〉, 〈 0 〉}, let
κ1(〈 0 〉) = {P1} and κ1(〈 〉) = ∅. Then 〈 〉 6
 P1, but also 〈 〉 6
 ¬P1 since 〈 〉 ≤ 〈 0 〉 ∈ K1 and
〈 0 〉 
 P1. Note that this is also a countermodel to ¬¬P1 → P1, showing that the converse of Theorem
2.5(b) is unprovable in Pp.

Example. Let K2 = ((K2,≤), κ2) where K2 = K1 = {〈 〉, 〈 0 〉}, but now κ2(〈 0 〉) = {P1, P2} and
κ2(〈 〉) = {P1}. Then K2 is a Kripke countermodel to ¬(P1 & ¬P2) → (P1 → P2), showing that the
converse of Theorem 2.5(g) is unprovable in Pp.

Example. A three-node countermodel to (P1 → (P2 ∨ P3)) → (P1 → P2) ∨ (P1 → P3) is K3 =
((K3,≤), κ3) where K3 = {〈 〉, 〈 0 〉 〈 1 〉} and κ3(〈 〉) = ∅, κ3(〈 0 〉) = {P1, P2} and κ3(〈 1 〉) = {P1, P3}.

Exercise 3.3. Provide a Kripke countermodel for a formula of the form (¬B → ¬A) → (A → B),
showing that the converse of Theorem 2.5(a) is unprovable in Pp.

Exercise 3.4. Show that the converse of Theorem 2.5(f) is unprovable in Pp.
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Definition. If Γ,∆ are collections of formulas of L(Pp), then Γ is ∆-saturated if

(i) Γ is consistent.

(ii) Γ ⊆ ∆.

(iii) If A,B ∈ ∆ and Γ `Pp (A ∨B) then A ∈ Γ or B ∈ Γ.

Note that if Γ is a ∆-saturated collection of formulas and Γ `Pp A where A ∈ ∆, then A ∈ Γ by
(iii) with B = A. Thus every ∆-saturated set is a deductively closed subset of ∆.

Lemma 3.3. (Saturation Lemma for Pp)
(a) If E is a formula of L(Pp) such that 6`Pp E, then there is a (finite) Γ0 ⊆ sf(E) such that Γ0

is sf(E)-saturated and Γ0 6`Pp E.
(b) If E is a formula of L(Pp), and if C ∈ sf(E) and ∆ ⊆ sf(E) such that ∆ 6`Pp C, then there is

a (finite) Γ ⊆ sf(E) such that Γ is sf(E)-saturated, ∆ ⊆ Γ, and Γ 6`Pp C.

Proof of (a). List all the subformulas F1, . . . , Fk of E (in any order, without repetitions). Consider
F1. If F1 `Pp E define Γ1

0 = ∅, and if F1 6`Pp E set Γ1
0 = {F1}.

Given Γi0 where 1 ≤ i < k, consider Fi+1. If Γi0 ∪ {Fi+1} `Pp E define Γi+1
0 = Γi0, and if

Γi0 ∪ {Fi+1} 6`Pp E put Γi+1
0 = Γi0 ∪ {Fi+1}.

Finally, define Γ0 =
⋃

1≤i≤k Γi0. By construction with the assumption that E is unprovable,
Γ0 6`Pp E and Γ0 ⊆ sf(E), so (i) and (ii) of the definition of sf(E)-saturated are satisfied.

For (iii), suppose Γ0 `Pp (A ∨B) where A,B ∈ sf(E), but A 6∈ Γ0 and B 6∈ Γ0. Since both A,B
appear in the list F1, . . . , Fk but neither belongs to any Γi0, it must be the case that Γ0∪{A} `Pp E and
Γ0∪{B} `Pp E. By ∨E (which holds for Pp as well as for NPp by Theorem 2.4): Γ0∪{A∨B} `Pp E.
But then Γ0 `Pp E, which is impossible.

Proof of (b). Similarly, except now Γ0 = ∆, and for 0 ≤ i < k: assuming Γi ⊆ sf(E) has been
constructed so that Γi 6`Pp C, consider Fi+1. If Γi ∪ {Fi+1} `Pp C, set Γi+1 = Γi. Otherwise, set
Γi+1 = Γi ∪ {Fi+1}. Define Γ =

⋃
0≤i≤k Γi.

By construction, Γ 6`Pp C and ∆ ⊆ Γ ⊆ sf(E). If A,B ∈ sf(E) and Γ `Pp A ∨B, then not both
Γ∪{A} `Pp C and Γ∪{B} `Pp C, so since both A,B occur in the list F1, . . . , Fk at least one of A,B
must be a member of Γ. So Γ is sf(E)-saturated.

Remark. Lemma 3.3 holds constructively because the relation {C1, . . . , Cj} `Pp D is effectively
decidable. Thus (iii) can be proved by constructive cases: either Γ0∪{A} `Pp E, or Γ0∪{B} `Pp E,
or neither holds (so both A,B ∈ Γ0 by construction). The (classical) decidability of the relation `Pp

can also be deduced from (the proof of) the following theorem.

Theorem 3.4. (Completeness of Pp) If E is any formula of L(Pp) such that 6`Pp E, then E
has a propositional Kripke countermodel.

Proof. Assume 6`Pp E, and let Γ0 be an sf(E)-saturated subset of sf(E) given by Lemma 3.3(a).
Let Γ1, . . . ,Γm be a list (without repetitions) of all the sf(E)-saturated subsets of sf(E) such that
Γ0 ( Γi for 1 ≤ i ≤ m. Let K be the set of all sequences 〈i1, . . . , in〉 such that for 1 ≤ j ≤ n:
1 ≤ ij ≤ m, and for 1 ≤ j < n: Γij ( Γij+1

. Then K is a rooted finite tree with root 〈 〉 (the empty
sequence) representing Γ0, and each node u = 〈i1, . . . , in〉 above 〈 〉 represents an increasing sequence
〈Γi1, . . . ,Γin〉 of sf(E)-saturated supersets of Γ0, with every possible such sequence included. We say
that Γ0 is attached to the root 〈 〉, and Γin is attached to the node 〈i1, . . . , in〉 if n ≥ 1.

We want to show that K = ((K,≤), κ) is a Kripke countermodel to E, where κ(〈 〉) = Γ0∩psf(E)
and for each n ≥ 1 and each 〈i1, . . . , in〉 ∈ K:

κ(〈i1, . . . , in〉) = Γin ∩ psf(E).

The proof depends on the fact that each node forces exactly those subformulas of E which belong to
the sf(E)-saturated set attached to the node.
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Claim. For each node u = 〈i1, . . . , in〉 of K, representing the increasing sequence 〈Γi0 ,Γi1 , . . . ,Γin〉
of sf(E)-saturated sets with Γi0 = Γ0, and for each subformula C of E:

u 
 C if and only if C ∈ Γin .

Exercise 3.5*. Prove this claim, and use it to complete the proof of Theorem 3.4. [Hint. For the
case that C is (A→ B) you will need Lemma 3.3(b). Note also that n may be 0, and then u = 〈 〉.]

3.2 Consequences of the Kripke Soundness and Completeness of Pp

Theorem 3.5. For any distinct prime formulas P,Q,R of L(Pp), the following classically provable
formulas are unprovable in Pp:

(a) P ∨ ¬P .
(b) ¬P ∨ ¬¬P .
(c) ¬¬P → P .
(d) (P → Q) → (¬P ∨Q).
(e) ¬(P & ¬Q) → (P → Q).
(f) ¬(P & Q) → (¬P ∨ ¬Q).
(g) (¬P → ¬Q) → (Q→ P ).
(h) (P → Q ∨R) → (P → Q) ∨ (P → R).
(i) (¬P → Q ∨R) → (¬P → Q) ∨ (¬P → R).
(j) ((P → Q) → P ) → P (Peirce’s Law).

Proofs. Using Theorem 3.2 (Soundness), it will suffice to give a Kripke countermodel to each
formula. Countermodels K1, K2 and K3 to (particular instances of) (a), (e) and (h) were given as
examples in the previous subsection, while Exercises 3.3 and 3.4 asked for counterexamples to (g) and
(d). Only (b), (c), (f), (i) and (j) remain.

The two-node countermodel K1 to (a) also works for (c). For a countermodel to (b), let K4 =
((K4,≤), κ4) where K4 = K3 = {〈 〉, 〈 0 〉 〈 1 〉} and κ4(〈 〉) = κ4(〈 0 〉) = ∅, κ4(〈 1 〉) = 〈P 〉. We leave
the rest as exercises for the reader.

Exercise 3.6. Construct Kripke countermodels to (f), (i) and (j) of Theorem 3.5.

Without using the (recursive) decidability of Pp, we can deduce it from Theorems 3.2 and 3.4 as
follows. The last sentence of the proof uses Markov’s Principle, to be discussed in a later section.

Theorem 3.6. (Decidability of Intuitionistic Propositional Logic Pp) There is an effective
(recursive) procedure for deciding, given a formula E of L(Pp), whether or not `Pp E.

Proof. Given a formula E of L(Pp), there are only finitely many distinct subsets ∆0, . . . ,∆m of
sf(E) (where ∆0 = ∅), and they are partially ordered by ⊆. For each 0 ≤ j ≤ m there are only finitely
many Hj ⊆ {∆0, . . . ,∆m} such that

(i) ∆j ∈ Hj, and

(ii) ∆j ⊆ ∆i for every ∆i ∈ Hj .

Each such Hj can be completely described by a finite tree Hj whose root 〈 〉 represents ∆j , where

〈i1, . . . , in〉 ∈ Hj if and only if ∆i1 , . . . ,∆in ∈ Hj and ∆j ( ∆ii ( . . . ( ∆in . Let Hj
1, Hj

2,. . ., Hj
kj

be

all the trees of this kind, with root representing ∆j. Define κj(〈 〉) = ∆j ∩ psf(E) and for n > 0
define κj(〈i1, . . . , in〉) = ∆in ∩ psf(E). Then for each 1 ≤ j ≤ m, for each 1 ≤ l ≤ kj , the structure

Hj
l = ((Hj

l ,≤), κj) is a propositional Kripke model over psf(E). By the proof of Theorem 3.4, if

6`Pp E then some Hj
l is a countermodel to E.

To check whether a given Hj
l is a countermodel to E, one needs to check finitely many forcing

conditions over a finite tree, and this can be done effectively. There are only finitely many Hj
l to

check. If some Hj
l is a countermodel to E, then 6`Pp E by Theorem 3.2. Otherwise, `Pp E, and a

proof of E can be found by recursively enumerating all the proofs in Pp.
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Theorem 3.7. For all formulas A,B,C of L(Pp):

(a) If `Pp (A ∨B), then `Pp A or `Pp B.

(b) If `Pp (¬A→ B ∨ C), then `Pp (¬A→ B) ∨ (¬A→ C).

Proof of (a). We show that if 6`Pp A and 6`Pp B then 6`Pp (A ∨ B). Theorem 3.6 (which is
constructive except for the use of Markov’s Principle) then justifies (a).

Assume 6`Pp A and 6`Pp B. By Theorem 3.4, there are propositional Kripke countermodels K1

= ((K1,≤), κ1) to A and K2 = ((K2,≤), κ2) to B. Construct a new model K = ((K,≤), κ) as follows.
The elements of K will be 〈 〉 and all sequences of the forms 〈1〉 ∗ u where u ∈ K1, and 〈2〉 ∗ u where
u ∈ K2. κ(〈 〉) will be the intersection of κ1(〈 〉) with κ2(〈 〉), and κ(〈i〉 ∗ u) = κi(u) for i = 1, 2. Then
K is a propositional Kripke countermodel to A ∨B.

Exercise 3.7*. Prove Theorem 3.7(b).

3.3 Kripke Semantics for Pd

Definition. Let R1, . . . , Rs be any distinct predicate letters of L(Pd), where Ri is ni-ary (1 ≤ i ≤ s).
A Kripke model K over R1, . . . , Rs is an (s+ 3)-tuple

K = ((K,≤),D, δ, χ1, . . . , χs)

where K is a tree, ≤ is the partial ordering of the nodes of K determined by

u ≤ v if and only if u = v or u is a predecessor of v,

D is a countable set with at least one element, δ is a function with domain K such that

(i) for each u ∈ K there is at least one d ∈ δ(u), and

(ii) if u, v ∈ K with u ≤ v then δ(u) ⊆ δ(v) ⊆ D,

and for each 1 ≤ i ≤ s: χi is an (ni + 1)-ary function from K × Dni to {0, 1} such that for u, v ∈ K
and all xi, . . . , xni

∈ D:

(iii) if χi(u, x1, . . . , xni
) = 1 then x1, . . . , xni

∈ δ(u), and

(iv) if u ≤ v and χi(u, x1, . . . , xni
) = 1 then χi(v, x1, . . . , xni

) = 1.

Remarks. There are good reasons for using characteristic functions χi instead of (ni + 1)-ary
relations to interpret the Ri. Most obviously, 0-ary relation symbols and (k+ 1)-ary relation symbols
are interpreted in a uniform way. And from the constructive point of view, since (K and D are
countable and) {0, 1} is finite, the question whether χi(u, x1, . . . , xni

) = 0 or 1 may be assumed to be
effectively decidable, while arbitrary relations on countable sets may not be. Conditions (ii) and (iv)
of the definition are the monotonicity requirements for a Kripke model over a predicate language with
finitely many relation symbols; and D is the domain of the model.

Definition. If K = ((K,≤),D, δ, χ1, . . . , χs) is a Kripke model over R1, . . . , Rs, then every function
φ from {a1, a2, . . .} to D is a possible assignment of values in D to the distinct individual variables
a1, a2, . . . of L(Pd). Each such assignment determines a forcing relation 
φ on K, as follows.

Let L′(Pd) be the sublanguage of L(Pd) with only the distinct predicate letters R1, . . . , Rs (but
with all the individual variables a1, a2, . . .). For each formula E in L′(Pd) and each u ∈ K, we define
u 
φ E by induction on the logical form of E.

1. If E is prime, E is Ri(y1, . . . , yni
) for some 1 ≤ i ≤ s, where y1, . . . , yni

are (not necessarily dis-
tinct) individual variables. Then u 
φ Ri(y1, . . . , yni

) if (and only if) χi(u, φ(y1), . . . , φ(yni
)) = 1.

2. u 
φ (A & B) if u 
φ A and u 
φ B.
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3. u 
φ (A ∨B) if φ(y) ∈ δ(u) for every variable y free in (A ∨B), and u 
φ A or u 
φ B.

4. u 
φ (A → B) if φ(y) ∈ δ(u) for every variable y free in (A → B), and for each v ∈ K with
u ≤ v: if v 
φ A then v 
φ B.

5. u 
φ (¬A) if φ(y) ∈ δ(u) for every variable y free in A, and for each v ∈ K with u ≤ v, it is not
the case that v 
φ A.

6. u 
φ ∀xA(x) if, for each v ∈ K with u ≤ v and every assignment ψ to the individual variables
such that ψ(x) ∈ δ(v) and ψ(y) = φ(y) for every y 6= x: v 
ψ A(x).

7. u 
φ ∃xA(x) if, for some assignment ψ to the individual variables which agrees with φ on all
variables other than x: u 
ψ A(x).

Exercise 3.8. Prove that if u 
φ E then φ(y) ∈ δ(u) for every variable y free in E.

Exercise 3.9. Show that if φ and ψ are assignments which agree on all the variables free in E, then
u 
φ E if and only if u 
ψ E.

Lemma 3.8. (Monotonicity) If K = ((K,≤),D, δ, χ1, . . . , χs) is a Kripke model over R1, . . . , Rs,
then for every formula E in the restricted language L′(Pd) with only the predicate letters R1, . . . , Rs,
and every assignment φ of elements of D to the individual variables, for each u, v ∈ K:

if u 
φ E and u ≤ v then v 
φ E.

Proof, by induction on the logical form of E. If E is prime, monotonicity is guaranteed by (iv) of
the definition. Cases 2 - 5 are like those for Lemma 3.1, using (ii) of the definition with Exercise 3.8.

Case 6. E is ∀xA(x) where the induction hypothesis holds for A(x). Assume u, v ∈ K with u ≤ v,
and u 
φ ∀xA(x). Suppose w ∈ K and v ≤ w, and let ψ be any assignment such that ψ(x) ∈ δ(w)
and ψ(y) = φ(y) for all y 6= x. Then w 
ψ A(x) since u ≤ v ≤ w. So v 
φ ∀xA(x).

Case 7. E is ∃xA(x) where the induction hypothesis holds for A(x). Assume u ≤ v in K and
u 
φ ∃xA(x), so there is an assignment ψ which agrees with φ on all variables other than x and satisfies
ψ(x) ∈ δ(u) and u 
ψ A(x). But then v 
ψ A(x) by the induction hypothesis, and ψ(x) ∈ δ(v) by (ii)
of the definition, so v 
φ ∃xA(x).

Definition. If R1, . . . , Rs are distinct predicate letters including all those which occur in a formula
E of L(Pd), and K = ((K,≤),D, δ, χ1, . . . , χs) over R1, . . . , Rs is a Kripke model over R1, . . . , Rs, then
E is valid in K (written K 
 E) if 〈 〉 
φ E for every assignment φ of elements of D to the individual
variables which assigns elements of δ(〈 〉) to all the variables free in E. If E is valid in every Kripke
model over R1, . . . , Rs then E is Kripke-valid (written 
 E).

Theorem 3.9. (Soundness for Pd) If E is a formula of L(Pd) such that `Pd E by a proof
F1, . . . , Fm in which no predicate letters but R1, . . . , Rs may occur, then the universal closure ∀E of
E is valid in every Kripke model K over R1, . . . , Rs. Hence

if `Pd E then 
 E,

since the question whether K 
 E depends only on the interpretations of the predicate letters which
actually occur in E.

Proof, by complete induction on the length m of F1, . . . , Fm, where Fm is E. Let K be a Kripke
model over a list R1, . . . , Rs of distinct predicate letters including all those occurring in F1, . . . , Fm.
We must show that 〈 〉 
φ ∀E for every assignment φ of elements of D to the individual variables, or
equivalently that u 
φ E for every u ∈ K and every assignment φ such that

(?) : φ(y) ∈ δ(u) for every y free in E.

If m = 1 then E is an axiom of Pd. The arguments for X1 - X10 are as for Pp. If E is an axiom
by X11 then E is ∀xA(x) → A(y) where y is a variable free for x in A(x). Suppose u ∈ K, and φ is an
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assignment to the individual variables satisfying (?) such that u 
φ ∀xA(x). Then if x is free in A(x),
φ(y) ∈ δ(u) by (?), and so u 
φ A(y). If x is not free in A(x) then A(y) is A(x), and u 
φ A(x). In
either case, ∀E is valid in K.

If E is an axiom by X12 then E is A(y) → ∃xA(x) where y is a variable free for x in A(x). If
x is free in A(x) then y is free in ∃xA(x) unless y is x. Hence, if u ∈ K and φ is an assignment to
the individual variables satisfying (?) such that u 
φ A(y), then either u 
φ ∃xA(x) (if y = x, for
example, or if x is not free in A(x)), or by defining ψ(x) = φ(y) and letting ψ agree with φ on all the
variables free in ∃xA(x) we have u 
ψ A(x). Therefore ∀E is valid in K.

If m > 1 and E is not an axiom of Pd, then E follows by R1, R2 or R3 from one or two earlier
lines in the proof. If E follows from Fi, Fj by R1, where Fi is (Fj → E), then ∀Fi and ∀Fj are valid in
K by the induction hypothesis. If u ∈ K and φ is an assignment to the variables such that φ(y) ∈ δ(u)
for all y free in Fi, and if u 
φ Fj , then u 
φ E. Therefore ∀E is valid in K.

If E follows from some Fi with i < m by R2, then Fi is of the form C → A(x) where x is not free
in C, ∀Fi is valid in K by the induction hypothesis, and E is C → ∀xA(x). Suppose u ∈ K and φ is
an assignment of elements of D to the variables satisfying (?), and suppose u 
φ C. Then for every
v ∈ K with u ≤ v, and every ψ which agrees with φ on all y 6= x and satisfies φ(x) ∈ δ(v): u 
ψ C, so
v 
ψ C by monotonicity, and v 
ψ Fi by the induction hypothesis, so v 
ψ A(x). So ∀E is valid in K.

If E follows from some Fj with j < m by R3, then Fj is of the form A(x) → C where x is not free
in C, ∀Fj is valid in K, and E is ∃xA(x) → C. If u ∈ K and φ satisfies (?) and u 
φ ∃xA(x), then for
some assignment ψ which agrees with φ on all variables other than x: u 
ψ A(x), so u 
ψ C by the
induction hypothesis (noting that ψ(y) ∈ δ(u) for each y free in Fj). But then u 
φ C also, since x is
not free in C.

Example. To show that the converse of Theorem 2.10(h) is unprovable in Pd we search for a
Kripke countermodel K1 = ((K1,≤),D, δ, χ1, χ2) to (P1 → ∃xP2(x)) → ∃x(P1 → P2(x)), where P1 is
a 0-ary predicate letter and P2(·) is a unary predicate letter (and x may be any variable) of L(Pd).
The underlying tree of the model is K1 = {〈 〉, 〈0〉} and the domain of individuals is D = {d0, d1},
with domain function δ(〈 〉) = {d0}, δ(〈0〉) = {d0, d1}. The representing functions of P1, P2(·) in the
model are χ1, χ2 where

χ1(〈 〉) = 0, χ1(〈0〉) = 1, χ2(〈 〉, d0) = χ2(〈 〉, d1) = 0, χ2(〈0〉, d0) = 0, and χ2(〈0〉, d1) = 1.

Then for any assignment φ to the variables: 〈 〉 
φ (P1 → ∃xP2(x)) since 〈 〉 6
φ P1 and 〈0〉 
φ ∃xP2(x),
but 〈 〉 6
φ ∃x(P1 → P2(x)) because the only witness d1 for ∃xP2(x) at node 〈0〉 does not belong to
the universe δ(〈 〉) of the root 〈 〉. So K1 6
 (P1 → ∃xP2(x)) → ∃x(P1 → P2(x)).

Example. Here is a Kripke countermodel to ∀x¬¬P1(x) → ¬¬∀xP1(x), showing that this formula
is unprovable in Pd. Let D = {d0, d1, d2, . . .} and let K be the tree consisting of all finite sequences
of 0s (so K = {〈 〉, 〈0〉, 〈0, 0〉, . . .}). If u is a sequence of 0s of length n, define δ(u) = {d0, . . . , dn} and
define χ1(u, di) = 1 if and only if i < n. Thus

(a) ≤ linearly orders K, and

(b) χ1(〈 〉, di) = 0 for all i, and

(c) for each u ∈ K there is exactly one di ∈ δ(u) for which χ1(u, di) = 0, and

(d) for each di ∈ D there is some u ∈ K such that χ1(u, di) = 1.

Let φ be any assignment of elements of D to the individual variables. By (a) and (c), u 
φ ¬∀xP1(x)
for every u ∈ K. By (a) and (d), u 
φ ∀x¬¬P1(x). Hence 〈 〉 6
φ ∀x¬¬P1(x) → ¬¬∀xP1(x).

Exercise 3.10. Show that the converse of Theorem 2.10(g) is unprovable in Pd by constructing a
Kripke countermodel to (∀xP1(x) → P2) → ∃x(P1(x) → P2), where P1(·) is a unary predicate letter
and P2 is 0-ary.
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3.4 Digression: Kripke Models with Constant Domain

Definition. A Kripke model K = ((K,≤),D, δ, χ1, . . . , χs) over R1, . . . , Rs has constant domain D if
δ(u) = D for every u ∈ K. In this case, we may write K = ((K,≤),D, χ1, . . . , χs) and the definition
of 
φ can be simplified accordingly.

Exercise 3.11. Show that ∀x(A(x) ∨ B) → ∀xA(x) ∨ B is valid in every Kripke model with
constant domain, assuming x is not free in B. (You may need to use classical reasoning in your proof.)

Exercise 3.12. Construct a Kripke countermodel to ∀x(P1(x)∨P2) → ∀xP1(x)∨P2, where P1(·)
is unary and P2 is 0-ary. (This shows that the converse of Theorem 2.10(a) is not provable in Pd.)

These two exercises suggest that Kripke models with increasing domains are needed to prove e.g.
that 6`Pd ∀x(P1(x) ∨ P2) → ∀xP1(x) ∨ P2. A simple but clever observation by D. H. J. de Jongh
(from an unpublished manuscript circa 1970) suggests otherwise. In effect, de Jongh noticed that the
domain of a countable Kripke model over a finite list of predicate letters can be described using a
“fresh” unary predicate letter of the language. Some definitions are needed here.

Definition. If K = ((K,≤),D, δ, χ1, . . . , χs) is a Kripke model over R1, . . . , Rs and u ∈ K, then
Ku = ((Ku,≤u),D, δu, χu1 , . . . , χ

u
s ) is the submodel of K defined as follows:

(i)u for each finite sequence v of natural numbers, v ∈ Ku if and only if u ∗ v ∈ K,

(ii)u if v, w ∈ Ku, then v ≤u w if and only if u ∗ v ≤ u ∗ w in K,

(iii)u if v ∈ Ku then δu(v) = δ(u ∗ v), and

(iv)u if v ∈ Ku then for each 1 ≤ i ≤ s and all x1, . . . , xni
∈ D:

χui (v, x1, . . . , xni
) = χi(u ∗ v, x1, . . . , xni

).

It is easy to check that Ku is also a Kripke model over R1, . . . , Rs, and so each assignment φ of elements
of D to the individual variables determines a forcing relation 


u
φ on Ku.

Lemma 3.10. If K = ((K,≤),D, δ, χ1, . . . , χs) is a Kripke model over R1, . . . , Rs and u ∈ K, then
for each formula E of the restricted language, each assignment φ of elements of D to the individual
variables, and each v ∈ Ku: v 


u
φ E in Ku if and only if u ∗ v 
φ E in K.

Lemma 3.11. To each Kripke model K = ((K,≤),D, δ, χ1, . . . , χs) over R1, . . . , Rs there corre-
sponds a constant-domain Kripke model K+ = ((K,≤),D, χ1, . . . , χs, χs+1) over R1, . . . , Rs, P where
P (·) is a unary predicate symbol distinct from all of R1, . . . , Rs, such that for each u ∈ K and each
positive integer i: χs+1(u, ai) = 1 if and only if the ith element of D belongs to δ(u). Then K and
K+ are equivalent in the following sense:

u 
φ E(y1, . . . , yk) if and only if u 

+
φ P (y1) & . . .& P (yk) & EP (y1, . . . , yk)

for every assignment φ to a1, a2, . . ., every u ∈ K and every formula E(y1, . . . , yk) (with exactly the
distinct variables y1, . . . , yk free) of the language L′(Pd) restricted to R1, . . . , Rs, where 


+
φ is the

forcing relation in K+ and EP comes from E by restricting every quantifier to P (i.e. by simultaneously
replacing every subformula of E of the form ∀xA(x) by ∀x(P (x) → A(x)), and every subformula of E
of the form ∃yB(y) by ∃y(P (y) & B(y))).

Theorem 3.12. (de Jongh’s Observation) A closed formula E is Kripke-valid if and only if
∃xP (x) → EP is valid in every Kripke model with constant domain, where P (·) is a unary predicate
symbol not occurring in E.

Proof, assuming Lemmas 3.10 and 3.11. Suppose E is closed and ∃xP (x) → EP is valid in every
Kripke model with constant domain. Given any Kripke model K for the language of E, let K+ be the
corresponding constant-domain model (for the language expanded by a new unary relation symbol
P (·)) defined in the statement of Lemma 3.11. Then for each assignment φ to the individual variables,
〈 〉 


+
φ (∃xP (x) → EP ) by assumption. Hence by Lemma 3.11, 〈 〉 
φ E. So E is Kripke-valid.
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Conversely, suppose E is closed and Kripke-valid, and let K = ((K,≤),D, χ1, . . . , χs, χs+1) be a
constant-domain Kripke model for the language of E expanded by one new unary relation symbol P (·),
which is interpreted in the model by χs+1. Suppose u ∈ K and φ is an assignment to the individual
variables such that u 
φ ∃xP (x) in K. For each v ∈ K define δ(v) = {d ∈ D | χs+1(v, d) = 1}.
Then K− = ((K,≤),D, δ, χ1, . . . , χs) is a Kripke model for the language of E, with a corresponding
forcing relationship 


−
φ , so by assumption E is valid in K−. In particular, u 


−
φ E, so by Lemma 3.10:

〈 〉 

−u
φ E in the submodel (K−)u of K− determined by u. But then 〈 〉 


u
φ ∃xP (x) → EP in the

submodel Ku of K determined by u, by Lemma 3.11, since (K−)+ is K. So u 
φ ∃xP (x) → EP by
Lemma 3.10. Hence ∃xP (x) → EP is valid in every Kripke model with a constant domain.

3.5 Completeness of the Kripke Semantics for Pd

Saturation for L(Pd) concerns existential formulas as well as disjunctions, and “fresh” variables (or
constants) will be needed as witnesses. Instead of expanding the language to provide these witnesses,
we consider sublanguages of L(Pd), as follows. In general, a set is inhabited if it has an element.
(From the constructive viewpoint, being inhabited is a stronger requirement than being nonempty.)

Definition. Let V0 be an inhabited subset of the set V = {a1, a2, . . .} of individual variables of
L(Pd). Let R1, . . . , Rs be any distinct predicate letters of L(Pd), where Ri is ni-ary (1 ≤ i ≤ s). Then
L(V0,{R1, . . . , Rs}) is the sublanguage of L(Pd) consisting of all formulas involving only variables from
V0 and relation symbols from {R1, . . . , Rs}.

Definition. Let V0 ⊆W ⊆ V1 be inhabited subsets of V . Let R1, . . . , Rs be any distinct predicate
letters of L(Pd), where Ri is ni-ary (1 ≤ i ≤ s). For j = 0, 1 let L′(Vj) = L(Vj ,{R1, . . . , Rs}). Then
a collection Γ of formulas of L′(V1) is L′(V0)-saturated with witnesses in W if

(i) Γ is consistent.

(ii) If A ∨ B is a formula of L′(V0) such that Γ `Pd A ∨ B with all variables held constant, then
A ∈ Γ or B ∈ Γ.

(iii) If ∃xA(x) is a formula of L′(V0) such that Γ `Pd ∃xA(x) with all variables held constant, then
A′(y) ∈ Γ for some formula A′(x) of L′(V1) congruent to A(x) and some y ∈ W which is free for
x in A′(x).

If V0 = W = V1, so Γ is a collection of formulas of L′(V1) which is L′(V1)-saturated with witnesses
in V1, we say Γ is L′(V1)-saturated.

Convention. For the rest of this section, “Γ ` E” abbreviates “Γ `Pd E with all variables free in Γ
held constant,” and “Γ 6` E” abbreviates “there is no derivation of E from Γ in Pd with all variables
held constant.”

Exercise 3.13. Show that if Γ is an L′(V0)-saturated collection of formulas of L′(V1) with witnesses
in W (where V0 ⊆ W ⊆ V1), and if E is a formula of L′(V0) which has a congruent E ′ in L′(V1) such
that Γ ` E′, then E ∈ Γ. [Congruence is discussed in Section 2.7 of these notes.]

Exercise 3.14. Show that if Γ is an L′(V1)-saturated collection of formulas of L′(V1), then for all
formulas E,E′ of L′(V1):

(a) Γ ` E if and only if E ∈ Γ.
(b) If E and E′ are congruent, then E ∈ Γ if and only if E ′ ∈ Γ.

Lemma 3.13. (Saturation Lemma for Pd) Let R1, . . . , Rs be distinct predicate letters of L(Pd),
where Ri is ni-ary. Let V0 ⊂ V1 ⊆ V where V0 is inhabited and V1 - V0 is countably infinite, let
L′(Vj) = L(Vj ,{R1, . . . , Rs}) for j = 0, 1, and suppose C is a formula of L′(V0) and ∆ a collection of
formulas of L′(V0) such that ∆ 6` C. Then

(a) There is a Γ ⊆ L′(V1) which is L′(V0)-saturated with witnesses in V1, such that ∆ ⊆ Γ and
Γ 6` C.

(b) There is a Γ∗ ⊆ L′(V1) which is L′(V1)-saturated, such that ∆ ⊆ Γ∗ and Γ∗ 6` C.
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Proof of (a). Let F1, F2, F3, . . . be an enumeration of the formulas of L′(V0) without repetition.
Define an increasing sequence {Γi} of consistent subsets of L′(V1) as follows. Let Γ0 = ∆, so Γ0 6` C
by assumption. If i ≥ 0 and Γi ⊆ L′(V1) has already been defined such that Γi 6` C, consider Fi+1

and define Γi+1 by cases:
Case 1. Γi ∪ {Fi+1} ` C. Then Γi+1 = Γi.
Case 2. Γi ∪ {Fi+1} 6` C, and Fi+1 is of the form ∃xA(x). Then Γi+1 = Γi ∪ {Fi+1, A(y)} where

y is the first variable in V1 which is free for x in A(x) and does not occur free in Γi ∪ {Fi+1} or in
C. Observe that if Γi+1 ` C, then Γi ∪ {Fi+1} ` A(y) → C by the Deduction Theorem for Pd, so
Γi ∪ {Fi+1} ` ∃yA(y) → C by R3 since y is not free in C or in Γi ∪ {Fi+1}; hence Γi ∪ {Fi+1} ` C
by R1 with Exercise 2.15. But this contradicts the case assumption, so Γi+1 6` C.

Case 3. Γi ∪ {Fi+1} 6` C, and Fi+1 is not of the form ∃xA(x). Then Γi+1 = Γi ∪ {Fi+1}.
Finally, let Γ =

⋃
i≥0 Γi. Observe that Γ 6` C and ∆ ⊆ Γ ⊆ L′(V1) by construction. We need to

prove that Γ satisfies (ii) and (iii) of the definition of L′(V0)-saturation with witnesses in V1.
For (ii), suppose Fi+1 is A ∨B where Γ ` A ∨B. Both A and B are formulas of L′(V0), say A is

Fj+1 and B is Fk+1. If Γj ∪ {A} 6` C then A ∈ Γ by construction. If Γk ∪ {B} 6` C then B ∈ Γ by
construction. And if both Γj ∪ {A} ` C and Γk ∪{B} ` C then Γ∪{A∨B} ` C and so Γ ` C, which
is impossible. By classical reasoning, it follows that one of A,B must be in Γ.

For (iii), suppose Fi+1 is ∃xA(x) where Γ ` ∃xA(x). Then Γ∪ {∃xA(x)} 6` C, so Γi ∪ {Fi+1} 6` C,
so A(y) ∈ Γ for some y ∈ V1 free for x in A(x), by construction.

Proof of (b). Partition V1 - V0 into infinitely many infinite subsets, and use the partition to define
{V∗

j} so that V0 = V∗
0, V1 =

⋃
j∈ω V∗

j and for j = 0, 1, 2, . . . : V∗
j ⊆ V∗

j+1 and V∗
j+1 - V∗

j is infinite.
Using (a), define by induction on j an increasing sequence {Γ∗

j} of subsets of L′(V1) such that ∆ ⊆ Γ∗
0

and for each j = 0, 1, . . .: Γ∗
j is a subset of L′(V∗

j+1) which is L′(V∗
j )-saturated with witnesses in V∗

j+1,
and Γ∗

j 6` C. Let Γ∗ =
⋃
j≥0 Γ∗

j . Then ∆ ⊆ Γ∗ by construction, Γ∗ 6` C, and Γ∗ is L′(V1)-saturated
because V1 =

⋃
j≥0V

∗
j+1 and Γ∗

0 ⊆ Γ∗
1 ⊆ . . . ⊆ Γ∗ ⊆ L′(V1) =

⋃
j≥0 L

′(V∗
j ).

Lemma 3.14. Suppose A(x1, . . . , xm, xm+1) is a formula in which only the distinct variables
x1, . . . , xm, xm+1 occur free, and z1, . . . , zm, zm+1 are any variables such that zi is free for xi in
∀xm+1A(x1, . . . , xm, xm+1) (or equivalently in ∃xm+1A(x1, . . . , xm, xm+1)) for 1 ≤ i ≤ m. Then

(a) If zm+1 is free for xm+1 inA(z1, . . . , zm, xm+1), then zm+1 is free for xm+1 inA(x1, . . . , xm, xm+1).
(b) If zm+1 is free for xm+1 in A(x1, . . . , xm, xm+1) and if A′(x1, . . . , xm, xm+1) is any congruent

formula in which none of the variables z1, . . . , zm, zm+1, xm+1 occur bound, then zm+1 is free for xm+1

in A′(z1, . . . , zm, xm+1), and ∃xm+1A
′(z1, . . . , zm, xm+1) is congruent to ∃xm+1A(z1, . . . , zm, xm+1).

Theorem 3.15. (Completeness for Pd) Suppose E is a formula of L(V,{R1, . . . , Rs}) such that
6`Pd E. Then there is a Kripke model K = ((K,≤),V, δ, χ1, . . . , χs) over R1, . . . , Rs, with domain V,
such that 〈 〉 6
φ E where φ(y) = y for every y ∈ V, and φ(x) ∈ δ(〈 〉) for every x free in E.

Proof. Define an increasing sequence V0 ⊆ V1 ⊆ . . . of subsets of V such that each Vj+1 - Vj is
infinite, V0 is infinite and contains all variables occurring in E, and V =

⋃
j≥0 Vj . For each j ≥ 0 let

F j1 , F
j
2 , . . . be an enumeration without repetitions of all the formulas of L′(Vj) = L(Vj ,{R1, . . . , Rs}).

Since 6` E, by (b) of the Saturation Lemma there is an L′(V0)-saturated Γ0 ⊆ L′(V0) such that Γ0 6` E.
(K,≤) is defined inductively, with nodes u = 〈n1, . . . , nk〉 representing chains Γ0 ⊆ . . . ⊆ Γk

where each Γj is an L′(Vj)-saturated collection of formulas of L′(Vj), and we say Γk is attached to
the node u. First attach Γ0 to the root 〈 〉 of K. For each node u of length k with Γk attached,
enumerate all the finite sequences F k+1

i1
, . . . , F k+1

ir
, F k+1

ir+1
of formulas of L′(Vk+1) such that r ≥ 1 and

{F k+1
i1

, . . . , F k+1
ir

} ∩ Γk = ∅ and Γk ∪ {F k+1
i1

, . . . , F k+1
ir

} 6` F k+1
ir+1

. For each m: If F k+1
i1

, . . . , F k+1
ir

, F k+1
ir+1

is the mth such sequence, by (b) of the Saturation Lemma there is an L′(Vk+1)-saturated Γk+1 such
that Γk ∪ {F k+1

i1
, . . . , F k+1

ir
} ⊆ Γk+1 and Γk+1 6` F k+1

ir+1
. Attach this Γk+1 to u ∗ 〈m〉.

The domain function δ assigns to each node u = 〈n1, . . . , nk〉 of length k the set Vk; and for
1 ≤ i ≤ s we let χi(u, y1, . . . , yni

) = 1 if and only if Ri(y1, . . . , yni
) ∈ Γk where Γk is attached to u.

By construction, K = ((K,≤),V, δ, χ1, . . . , χs) is a Kripke model over R1, . . . , Rs with domain V.
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Suppose φ is an assignment to the variables which maps Vk into Vk and C(x1, . . . , xm) is a formula
of L′(Vk) with only the distinct variables x1, . . . , xm free. We call φ free in C if and only if φ(xi) is
free for xi in C for each 1 ≤ i ≤ m.

Claim. Suppose u is a node of K with Γk attached, φ(y) ∈ Vk for every y ∈ Vk, and φ(xi) = zi for
1 ≤ i ≤ m. Then for every formula C(x1, . . . , xm) of L′(Vk) in which φ is free and only the distinct
variables x1, . . . , xm occur free:

(∗) u 
φ C(x1, . . . , xm) if and only if C(z1, . . . , zm) ∈ Γk.

If C is prime, the claim is true by construction of the model. For the inductive cases, assume the
claim holds (at all appropriate nodes, for all appropriate assignments) for all proper subformulas of
C(x1, . . . , xm), and let u be a node of length k with Γk attached and φ be an assignment free in C
such that φ(y) ∈ Vk for all y ∈ Vk, and φ(xi) = zi for 1 ≤ i ≤ m. We must prove (∗) holds for C.

The propositional cases are exercises for the energetic reader. For the quantifier cases, if z, x ∈ Vk

and φ is an assignment, then φ[z/x] is a standard abbreviation for the assignment ψ such that ψ(x) = z
and ψ(y) = φ(y) for all y 6= x.

Case 6. C(x1, . . . , xm) is ∀xm+1A(x1, . . . , xm, xm+1) where (∗) holds for A(x1, . . . , xm, xm+1) at
every node of length ≥ k. If u 
φ C(x1, . . . , xm), choose zm+1 ∈ Vk+1 − Vk, so zm+1 is free for xm+1

in A(z1, . . . , zm, xm+1). If Γk 6` A(z1, . . . , zm, zm+1), by construction of the model u has an immediate
successor v with some Γk+1 attached such that Γk ( Γk+1 but A(z1, . . . , zm, zm+1) 6∈ Γk+1. By the
induction hypothesis, v 6
ψ A(x1, . . . , xm, xm+1) where ψ = φ[zm+1/xm+1]. But v 
φ C(x1, . . . , xm)
by monotonicity, so v 
ψ A(x1, . . . , xm, xm+1), which is impossible. So Γk ` A(z1, . . . , zm, zm+1).
Then Γk ` C(z1, . . . , zm) by Exercise 2.13, since zm+1 is not free in Γk, so C(z1, . . . , zm) ∈ Γk by
Exercise 3.14(a).

Conversely, if C(z1, . . . , zm) ∈ Γk and v ≥ u is a node of length h ≥ k with Γh attached, then
for every zm+1 ∈ Vh which is free for xm+1 in A(z1, . . . , zm, xm+1): Γh ` A(z1, . . . , zm, zm+1) so
A(z1, . . . , zm, zm+1) ∈ Γh by Exercise 3.14(a), and ψ = φ[zm+1/xm+1] is free in A(x1, . . . , xm, xm+1)
so by the induction hypothesis v 
ψ A(x1, . . . , xm, xm+1), so u 
φ C(x1, . . . , xm).

Case 7. C(x1, . . . , xm) is ∃xm+1A(x1, . . . , xm, xm+1) where (∗) holds for A(x1, . . . , xm, xm+1) at
every node of length ≥ k. If u 
φ C(x1, . . . , xm) then there is some zm+1 ∈ Vk which is free for
xm+1 in A(x1, . . . , xm, xm+1) such that u 
ψ A(x1, . . . , xm, xm+1) where ψ = φ[zm+1/xm+1]. Then
ψ is free in A(x1, . . . , xm, xm+1), so A(z1, . . . , zm, zm+1) ∈ Γk by the induction hypothesis. If zm+1

is free for xm+1 in A(z1, . . . , zm, xm+1) then Γk ` C(z1, . . . , zm) so C(z1, . . . , zm) ∈ Γk by satura-
tion. Otherwise, choose a congruent A′(x1, . . . , xm, xm+1) of A(x1, . . . , xm, xm+1) in which none of
the variables z1, . . . , zm, zm+1, xm+1 occur bound, so zm+1 is free for xm+1 in A′(z1, . . . , zm, xm+1) and
A′(z1, . . . , zm, zm+1) ∈ Γk by Exercise 3.14(b). Then Γk ` ∃xm+1A

′(z1, . . . , zm, xm+1) and therefore
C(z1, . . . , zm) ∈ Γk by Exercise 3.14(a) with Lemma 3.14(b).

Conversely, if C(z1, . . . , zm) ∈ Γk then A′(z1, . . . , zm, zm+1) ∈ Γk for some A′(x1, . . . , xm, xm+1)
congruent to A(x1, . . . , xm, xm+1) and some zm+1 ∈ Vk which is free for xm+1 in A′(z1, . . . , zm, xm+1),
so if ψ = φ[zm+1/xm+1] then ψ is free in A′(x1, . . . , xm, xm+1) and by the induction hypothesis
u 
ψ A

′(x1, . . . , xm, xm+1). Hence u 
ψ C(x1, . . . , xm), and so u 
φ C(x1, . . . , xm).
By the claim, 〈 〉 6
φ E if φ(x) = x for every x ∈ V, since E 6∈ Γ0 by construction. So the Kripke

semantics is complete for Pd.

Exercise 3.15. Give the inductive argument for the claim (∗) in the proof of Theorem 3.15, for the
case that C is of the form A ∨B.

Exercise 3.16. Give the inductive argument for the claim (∗) in the proof of Theorem 3.15, for the
case that C is of the form A→ B.

Note the nonconstructive steps in the proof of the Soundness Theorem for Pd. These cannot be
entirely eliminated. A constructive reformulation of the theorem would be something like this: If E
is a Kripke-valid formula of L(Pd) then it is impossible that there is no proof in Pd of E. Hence by
Markov’s Principle, if 
 E then `Pd E.
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3.6 Applications of Kripke Semantics for Pd

Theorem 3.16. For any distinct binary predicate letters P (·), Q(·) and unary predicate letter R of
L(Pd), the following classically provable formulas are unprovable in Pd:

(a) ¬¬∀x(¬P (x) ∨ ¬¬P (x)).
(b) ∀x(¬¬P (x) → P (x)).
(c) ∀x(¬¬P (x) → P (x)) → ∀x(P (x) ∨ ¬P (x)).
(d) ∀x¬¬P (x) → ¬¬∀xP (x).
(e) ¬¬∃xP (x) → ∃x¬¬P (x).
(f) ∀x(P (x) ∨ ¬P (x)) & ¬∀x¬P (x) → ∃xP (x).
(g) ∀x(Q(x) ∨R) → (∀xQ(x) ∨R).
(h) (∀xQ(x) → R) → ∃x(Q(x) → R).
(i) (R→ ∃xQ(x)) → ∃x(R→ Q(x)).
(j) (¬R→ ∃xQ(x)) → ∃x(¬R→ Q(x)).

Proof, in each case, is by providing a Kripke countermodel. The forms (d), (g)-(i) have already
been treated in examples and exercises. A countermodel to (b) can be obtained from the propositional
countermodel to part (c) of Theorem 3.5 by adding a one-element constant domain. That is, if
K5 = ((K5,≤), {d0}, χ) where K5 = K1 = {〈 〉, 〈0〉}, and χ(u, d0) = 1 if and only if u = 〈0〉, then K5

is a countermodel to (b). We leave the rest as (sometimes challenging) exercises.

Exercise 3.17. Provide a Kripke countermodel to one of (a), (c), (e), (f), (j).

Unlike Pp, intuitionistic predicate logic Pd is not (recursively) decidable, so we have no analogue
of Theorem 3.6. The completeness of Kripke semantics for Pd does give classical proofs of some
interesting admissible rules of Pd, including the disjunction and existence properties (first established
constructively, essentially by Gentzen in 1935) and a form of Markov’s Rule. First we collect some
easy facts in a lemma which holds constructively.

Lemma 3.17.
(a) If B is a closed formula of L′(V) = L(V,{R1, . . . , Rs}) and K is a Kripke model over R1, . . . , Rs

with domain D such that 〈 〉 
φ B for some assignment φ of elements of D to V, then 〈 〉 
ψ B for
every assignment ψ of elements of D to V, so K 
 B.

(b) Let K be a Kripke model over R1, . . . , Rs with domain D, and V0 = {b1, b2, . . .} a countably
infinite subset of V. Define f(ai) = bi for each i ≥ 1, and let Kf be the Kripke model over L′(V0)
obtained from K by replacing δ by δf where δf (u) = {f(x) : x ∈ δ(u)} and Df = ∪u∈Kδ

f (u). Then
for every formula E of L′(V0) and every assignment φ of elements of D to the variables in V0:

K 
φ E if and only if Kf

fφ E.

(c) Let m ≥ 1 and for 1 ≤ j ≤ m let Kj = ((Kj,≤),Dj , δj , χj,1, . . . , χj,s) be a Kripke model over
R1, . . . , Rs. Suppose d0 ∈

⋂
1≤j≤m δj(〈 〉). Define a new Kripke model K′ = ((K′,≤),D, δ′, χ′

1, . . . , χ
′
s)

where

K′ = {〈 〉} ∪
⋃

1≤j≤m

{〈j〉 ∗ u : u ∈ Kj}, δ′(〈 〉) = {d0} and δ′(〈j〉 ∗ u) = δj(u) if u ∈ Kj ,

and if 1 ≤ i ≤ s then for all x1, . . . , xin ∈ V: χ′
i(〈 〉, x1, . . . , xni

) = 0 and for every 1 ≤ j ≤ m and
every u ∈ Kj : χ′

i(〈j〉 ∗ u, x1, . . . , xni
) = χj,i(u, x1, . . . , xni

). Suppose for each 1 ≤ j ≤ m there is a
closed formula Ej of L′(V) such that Kj 6
 Ej . Then K′ 6
 E1 ∨ . . . ∨ Em.

Exercise 3.18. Prove Lemma 3.17(b).

The process of building K′ from Kj (1 ≤ j ≤ m) described in (c) of the lemma is due to Smorynski,
and is used with considerable versatility in his Chapter 5 of Troelstra [1973]. We use it to give classical
proofs of four admissible rules of Pd, two of which do not hold for classical predicate logic cPd. None
of these rules is derivable in Pd.
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Theorem 3.18. For all formulas A(x), B,C of L(Pd) such that only x is free in A(x), and B,C are
closed:

(a) If `Pd B ∨ C then `Pd B or `Pd C.

(b) If `Pd ∃xA(x) then `Pd A(x) and hence `Pd ∀xA(x).

(c) If `Pd ¬B → ∃xA(x) then `Pd ∃x(¬B → A(x)).

(d) If `Pd ∀x(A(x) ∨ ¬A(x)) and `Pd ¬∀x¬A(x) then `Pd ∃xA(x) (and hence by (b), also
`Pd ∀xA(x)). (Markov’s Rule for Pd).

Proof of (b). Assume `Pd ∃xA(x), so by soundness 
 ∃xA(x), and suppose 6`Pd A(x).
Then by completeness there is a Kripke model K = ((K,≤),D, δ, χ1, . . . , χs) over R1, . . . , Rs and an
assignment φ of elements of D to the individual variables such that φ(x) ∈ δ(〈 〉) and 〈 〉 6
φ A(x).
Without loss of generality, suppose φ(x) = d0. Apply Lemma 3.17(c) with m = 1 to get a new model
K′ = ((K′,≤),D, δ′, χ′

1, . . . , χ
′
s) such that δ′(〈 〉) = {d0} and K = K′(〈1〉) (see the definition of submodel

in section 3.4). Let 

′ be the forcing relation on K′.

By Lemma 3.10, 〈1〉 6
′
φ A(x), so by monotonicity 〈 〉 6
′

φ A(x). But 〈 〉 

′ ∃xA(x) by soundness,

so 〈 〉 

′
φ A(x) because φ(x) is the only element in δ′(〈 〉). Contradiction.

Proof of (d). Assume `Pd ∀x(A(x)∨¬A(x)) and `Pd ¬∀x¬A(x). Then `Pd ∃x(A(x)∨¬A(x)) by
Exercise 2.11, so `Pd (∃xA(x) ∨ ∃x¬A(x)) by Theorem 2.10(b). Hence `Pd ∃xA(x) or `Pd ∃x¬A(x)
by Part (a) of this theorem, whose proof is left as an exercise.

Suppose `Pd ∃x¬A(x). Consider a one-node Kripke model K0 = (({〈 〉},≤),D, χ1, . . . , χs) where
D = {d0}. The only assignment of elements of D to the individual variables is the constant function φ
such that φ(y) = d0 for every variable y, and by soundness 〈 〉 
 ∃x¬A(x), so 〈 〉 
φ ¬A(x). But then
〈 〉 
 ∀x¬A(x), which is impossible because 〈 〉 
 ¬∀x¬A(x) by soundness. So 6`Pd ∃x¬A(x), and the
only other possibility is `Pd ∃xA(x).

Exercise 3.19. Prove Theorem 3.18(a).

Exercise 3.20. Prove Theorem 3.18(c).

Question. It is known that the collection of admissible rules of Pd is complete Π0
2, so no simple

syntactical characterization is possible. Is there any reasonable syntactical characterization of this
class? The question is apparently still open.

4 Intuitionistic Logic in Mathematics: Cautious Constructivism

Any branch of mathematics can be studied using intuitionistic instead of classical logic, resulting in
an intuitionistic subtheory of the classical theory. In fact, one cautious constructivist has said that
constructive mathematics is just mathematics with intuitionistic logic. The first step in any such
application is to axiomatize equality.

4.1 Intuitionistic Predicate Logic with Equality Pd[=]

It is possible to treat equality axiomatically within L(Pd), by choosing a particular binary predicate
symbol (say P1(·, ·)) to express equality; alternatively, one can add a binary predicate constant to the
language. We let L(Pd[=]) be L(Pd) with a special binary predicate symbol · = ·, so if s, t are terms
then s = t is a prime formula in which all the variables free in s or t are free. Every prime formula
of L(Pd) is also a prime formula of L(Pd[=]), and the formulas of L(Pd[=]) are built up from the
prime formulas using &,∨,→,¬,∀ and ∃ as before.

The axioms of Pd[=] are all formulas of L(Pd[=]) of the forms X1-X12 (the axiom schemas of Pd),
XE1 and XE2 (asserting that equality is an equivalence relation), and XE3 (allowing the substitution
of equals for equals in prime formulas not involving =). In XE1 and XE2, x, y and z are distinct
variables. For XE3, P (z) may be any prime formula of L(Pd), x and y are distinct variables free for
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z in P (z), and P (x), P (y) are the results of substituting x and y respectively for all free occurrences
of z in P (z).

XE1. x = x.

XE2. x = y → (x = z → y = z).

XE3. x = y → (P (x) → P (y)).

The rules of inference of Pd[=] are R1-R3 extended to L(Pd[=]). A deduction (or derivation) in
Pd[=] of a formula E from a collection Γ of formulas is a finite sequence of formulas, each of which
is an axiom by X1-X12 or XE1-XE3, or a member of Γ, or follows by a rule of inference from one
or two formulas earlier in the list. If such a deduction exists, we write Γ `Pd[=] E. The notions of
dependence and variation are defined just as for Pd, and a proof is a deduction from no assumptions.

Remarks. Alternatively, we could have replaced P (z) in XE3 by an arbitrary formula A(z) of
L(Pd[=]), and omitted XE2 (which would then be provable). We choose this axiomatization because
it separates the axioms XE1-2 (from which it is easy to prove that = is an equivalence relation)
from the schema XE3 comprising the equality axioms (such as x = y → (Ri(w, x) → Ri(w, y)) and
x = y → (Ri(x,w) → Ri(y, w))) for the other predicate symbols of the language. We follow Kleene
[1952] in choosing open equality axioms, from which their universal closures can easily be proved.
However, we treat XE1-3 as axiom schemas rather than particular axioms.

Lemma 4.1. The Deduction Theorem holds for Pd[=].

Proof. Exactly as for Pd, with the new axioms XE1-3 treated using X1 and R1 as usual.

Lemma 4.2. Pd[=] proves that = is an equivalence relation. If x, y and z are distinct individual
variables, then

(a) `Pd[=] ∀x(x = x).
(b) `Pd[=] ∀x∀y(x = y → y = x).
(c) `Pd[=] ∀x∀y∀z(x = y & y = z → x = z).

Theorem 4.3. (The Replacement Property of Equality) For every formula A(z) of L(Pd[=])
and any distinct variables x, y which are free for z in A(z):

`Pd[=] ∀x∀y(x = y → (A(x) ↔ A(y))).

Proof, by induction on the logical form of A(z). Lemma 4.1 is useful for the case that A(z) is s = z
or z = s or z = z, where s is a term in which z does not occur free (i.e. s is a variable other than z).
XE3 takes care of the other prime formulas, and Theorem 4.3 helps with the inductive cases.

A natural deduction system NPd[=] equivalent to Pd[=] can be obtained by extending the rules
of inference of NPd to L(Pd[=]) and adding two new rules, one (requiring no premises) expressing
the reflexive property, and the other the substitutivity property, of =:

= I · x = x

D1

A(s)
D2

s = t
= E

A(t)

For (= I), x may be any individual variable. For (= E), A(x) is a formula of L(Pd[=]), and D1 and
D2 are given NPd[=]-deductions from Γ of A(s) and s = t respectively, where s and t are terms free
for x in A(x). Each resulting proof tree is a deduction from Γ of its last formula.

Theorem 4.4. NPd[=] and Pd[=] are equivalent in the sense that if E is a formula, and Γ a
collection of formulas, of L(Pd[=]) then the following are equivalent:

(a) Γ `Pd[=] E by a deduction in which no variable is varied.

(b) Γ `NPd[=] E .

Corollary 4.5. The Replacement Theorem holds for Pd[=]
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4.2 Kripke Semantics for Pd[=]

A Kripke model K= = ((K,≤),D, δ, χ1, . . . , χs, χ=) over R1, . . . , Rs with equality is a Kripke model
over R1, . . . , Rs with an additional ternary characteristic function χ= interpreting = by an equivalence
relation on δ(u) for each u ∈ K, with the usual monotonicity requirement so that if u ≤ v in K and
χ=(u, x, y) = 1 then x, y ∈ δ(u) and χ=(v, x, y) = 1. A normal Kripke model is one in which = is
interpreted by identity at each node, so χ=(u, x, y) = 1 if and only if x = y ∈ δ(u).

It is not hard to show that monotonicity and soundness hold for Kripke models with equality,
for the restricted language L′

= = L=(V, {R1, . . . , Rs}) which is like L(Pd[=]) but with only finitely
many predicate letters R1, . . . , Rs. Completeness holds as well. For theories with decidable equality
(that is, theories such as Heyting arithmetic, in which (x = y) ∨ ¬(x = y) is provable for distinct
individual variables x and y), completeness holds with respect to normal Kripke models. Leaving
the justifications of these statements as sometimes challenging exercises for the reader, we turn to an
important example of the use of intuitionistic logic in constructive mathematics.

4.3 Heyting Arithmetic HA

Heyting arithmetic HA is related to Peano arithmetic PA as Pd is related to cPd, that is, HA is
arithmetic with intuitionistic logic. We follow Kleene [1952] in choosing an economical axiomatization
with symbols and axioms for zero, successor, addition and multiplication, and the axiom schema of
mathematical induction for all predicates of L(Pd[=]). The resulting theory will be strong enough
to develop the theory of partial and general recursive functions and to prove Gödel’s incompleteness
theorem. The consistency question for intuitionistic arithmetic is constructively equivalent to that for
classical arithmetic, by a negative interpretation due independently to Gödel and Gentzen.

The language L(HA) of HA has the distinct individual variables a1, a2, a3, . . . , an individual
constant 0, a unary function symbol ′, two binary function symbols + and ·, and the binary predicate
symbol =. There are no other predicate symbols. Terms and prime formulas are defined inductively
as follows:

• 0 is a term.

• Each individual variable is a term.

• If s and t are terms then s′, (s+ t) and (s · t) are terms.

• If s and t are terms then (s = t) is a prime formula.

Every occurrence of a variable x in a term s or t is free in (s = t). Parentheses and the symbol · may
be omitted according to the usual mathematical conventions when there is no chance of confusion.

Formulas are built from prime formulas as for L(Pd), using &,∨,→,¬,∀ and ∃. The scope of a
quantifier, and free and bound variables in a formula, are as for L(Pd) but with the current definition
of formula.

The axioms of HA are of three kinds: the logical axiom schemas X1 - X12 (for formulas of L(HA)),
the axiom schema X13 of mathematical induction, and the particular arithmetical axioms X14-X21
(from which XE1-3 for L(HA) will follow). For X13, A(x) may be any formula of L(HA) and x any
variable. For X14 - X21 choose a, b, c to be three particular distinct individual variables (for example
a1, a2, a3), so these axioms (unlike X13) are formulas rather than schemas.

X13. A(0) & ∀x(A(x) → A(x′)) → A(x).

X14. (a′ = b′) → (a = b).

X15. ¬(a′ = 0).

X16. (a = b) → ((a = c) → (b = c)).
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X17. (a = b) → (a′ = b′).

X18. (a+ 0) = a.

X19. (a+ b′) = (a+ b)′.

X20. (a · 0) = 0.

X21. (a · b′) = (a · b) + a.

The only rules of inference are the predicate logical rules R1 - R3, for L(HA), with the usual
restrictions on the variables. . A deduction (or derivation) of E from Γ is a finite sequence F1, . . . , Fn of
formulas each of which is an axiom by one of the schemas X1-X13, or one of the particular arithmetical
axioms X14-X21, or follows from one or more formulas earlier on the list by R1, R2 or R3. If such a
deduction exists we write Γ `HA E and say that E is deducible from Γ in HA, and if `HA E then E
is a theorem (or provable formula) of HA. The notions of dependence of one formula in a deduction
on an earlier one, and variation of a variable in a deduction, carry over from Pd, as does the proof of
the Deduction Theorem.

Observe that the universal closures of X14-X21 are provable by the method of Exercise 2.13, and
hence every formula obtained by replacing a, b, c in X14-X21 by (not necessarily distinct) individual
variables x, y, z is provable. After proving Lemma 4.7 we use this fact without comment. Also observe
that the conclusion of X13 can be strengthened to ∀xA(x) by R2, since x is not free in the hypothesis.

Important Remark. This standard axiomatization follows Kleene [1952], even preserving Kleene’s
numbers for the arithmetical axioms (though not for the logical axioms and rules). Note that X18-X19
and X20-X21 are the primitive recursive definitions of + and · respectively.

All other primitive recursive functions such as ab can be defined from these, in the sense that
one can find a formula A(a, b, c) of L(HA) for which A(a, 0, 0′) and A(a, b, c) → A(a, b′, (c · a)) and
A(a, b, c) → (A(a, b, d) → (c = d)) are provable in HA. Thus it is possible to add a function symbol for
exponentiation, and its primitive recursive definition, to HA without increasing the class of provable
formulas of the original language; such an extension of a theory is called an inessential or conservative
extension. Kleene’s precise formal development of the theory of partial and general recursive functions
along these lines has never been improved on, and will be used rather than repeated here.

Lemma 4.6. The Deduction Theorem holds for HA.

Lemma 4.7. HA proves that = is an equivalence relation. If x, y, z are distinct variables, then
(a) `HA ∀x(x = x).
(b) `HA ∀x∀y(x = y → y = x).
(c) `HA ∀x∀y∀z(x = y & y = z → x = z).

Proofs. For (a), first use the method of Exercise 2.13 to prove the universal closures of X16 and X18.
Then using X11 with R1, we have (x+0) = x from X18, and ((x+0) = x) → (((x+0) = x) → (x = x))
from X16, so x = x by R1 twice, and ∀x(x = x) follows by (the method of) Exercise 2.13. For (b),
observe that (x = y) → ((x = x) → (y = x)) is an instance of the schema corresponding to X16, and
use (a). For (c), use (b) with X16.

Lemma 4.8. If x, y, z are distinct variables, then
(a) `HA ∀x((x = 0) ∨ ¬(x = 0)).
(b) `HA ∀y((y = 0) ∨ ∃z(y = z′)).
(c) `HA ∀x∀y((x = y) ∨ ¬(x = y)).
Proofs are by mathematical induction. (a) is proved by induction on x, using Lemma 4.7(a) for

the basis and (the schema corresponding to) X15 for the induction step. (b) is by induction on y.
For (c) use induction on x to prove ∀y((x = y) ∨ ¬(x = y)) as follows. By (a) with Lemma

4.7(b), ∀y((0 = y) ∨ ¬(0 = y)). Assuming ∀y((x = y) ∨ ¬(x = y)), to show (x′ = y) ∨ ¬(x′ = y)
use (constructive) cases from (b). If y = 0 then ¬(x′ = y) by X15 with Lemma 4.7(c). If y = z′

then by the induction hypothesis: (x = z) ∨ ¬(x = z), so (x′ = z′) ∨ ¬(x′ = z′) by X17 and X14, so
(x′ = y) ∨ ¬(x′ = y), and since this conclusion does not contain z free it follows from ∃z(y = z ′).
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4.4 Kripke Semantics for HA

Since HA is an applied predicate logic with equality in which prime formulas are decidable (by Lemma
4.8(c)), we need only consider normal Kripke models in which = is interpreted by identity. To satisfy
the axioms, the individual constant 0 must be interpreted by a unique element of the domain and the
function constants ′, +, · must be interpreted at each node u by functions on δ(u) with the obvious
monotonicity conditions. Thus we need an element 0K of D, a unary function γ1 from D to D, and
two binary functions γ2, γ3 from D×D to D such that for each node u ∈ K:

(i) 0K ∈ δ(〈 〉).

(ii) γ1(x) ∈ δ(u) for each x ∈ δ(u).

(iii) γ2(x, y) ∈ δ(u) for each x, y ∈ δ(u).

(iv) γ3(x, y) ∈ δ(u) for each x, y ∈ δ(u).

Then K = ((K,≤),D, δ, 0K, γ1, γ2, γ3) is a normal Kripke model for L(HA) if (K,≤) is a tree, δ is a
monotone function from K into the class of all subsets of D such that D =

⋃
u∈K δ(u), and 0K, γ1, γ2, γ3

satisfy (i) - (iv). Each assignment φ of values in D to the individual variables determines a valuation
function Φ which assigns to each term s of L(HA) an element Φ(s) of D, such that Φ(0) = 0K,
Φ(s′) = γ1(Φ(s)), Φ(s + t) = γ2(Φ(s),Φ(t)) and Φ(s · t) = γ3(Φ(s),Φ(t)). Forcing with respect to an
assignment φ is defined for prime formulas so that u 
φ s = t if and only if φ(x) ∈ δ(u) for every
variable x free in s or t, and Φ(s) = Φ(t) ∈ δ(u). The induction for compound formulas follows the
pattern of Pd.

A normal Kripke model for HA is a normal Kripke model for L(HA) which forces the universal clo-
sures of X13 - X21 at each node. The definition is justified by a soundness theorem, and completeness
holds by the remarks in Section 4.2.

Theorem 4.9. (Soundness for HA) If K is a normal Kripke model for HA and E is a formula of
L(HA) such that `HA E, then K 
 E.

Theorem 4.10. (Completeness for HA). If E is a formula of L(HA) such that 6`HA E, then
there is a normal Kripke model K for HA such that K 6
 E.

The numerals of L(HA) are the terms 0, 0′, 0′′, . . . representing the natural numbers 0, 1, 2, . . .
respectively. If K is a normal Kripke model for HA then δ(〈 〉) contains a distinct element nK for
every numeral n. These are the standard natural numbers of K, and we call the set of them ωK.

Corollary 4.11. For all formulas A(x), B,C and terms s(x), t(x) of L(HA) such that no variable
other than x is free in A(x) and B,C are closed:

(a) If `HA B ∨ C then `HA B or `HA C.

(b) If `HA ∃xA(x) then `HA A(n) for some numeral n.

(c) If `HA ¬B → ∃xA(x) then `HA ∃x(¬B → A(x)).

(d) If `HA ¬∀x¬(s(x) = t(x)) then `HA ∃x(s(x) = t(x)) and hence, if no variable other than x
is free in s(x) or t(x), also `HA s(n) = t(n) for some numeral n. (This is one form of Markov’s
Rule for HA.)

End of the half-course. I thank Cristofer Anagnostopoulos, Anastasia Fasouli, Konstantina Garoufi,
Alexandra Sirokofsky, Nikos Theodorou, Giorgos Tsotakos and Nick Vaporis for their participation
and patience with the text-in-progress. Without them, these notes would not exist. I am greatly
indebted to Garyfallia Vafeiadou and Giorgos Stavrinos for their continued interest in intuitionistic
logic and mathematics. And I thank Costas Dimitracopoulos and MΠΛA for giving me the chance to
teach the subject I know best.

If any reader of these notes finds errors, please e-mail me: joan@math.ucla.edu. New sections will
be added to the posted version as they are written.
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