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Outline:

1. Intuitionistic vs. classical logic

2. Intuitionistic vs. classical first-order arithmetic

3. Intuitionistic vs. classical Baire space (”the continuum”):
I Brouwer’s choice sequences (infinitely proceeding sequences)
I Classical sequences (arbitrary, completely determined)
I Brouwer’s lawlike sequences (definable, determined)

4. Embedding the classical continuum R in the intuitionistic
continuum FIM via a 3-sorted system FIRM. Using logic
and language to separate the recursive, constructive,
intuitionistic, and classical components of the continuum.

5. Kreisel’s intensionally lawless sequences LS

6. An extensional alternative: relatively lawless sequences RLS

7. A definably well ordered subset (R,≺R) of the continuum

8. Consistency of FIRM, assuming R is countable



Intuitionistic logic differs from classical logic in three ways:

1. All four intuitionistic connectives ¬, &, ∨ and → are needed
for intuitionistic propositional logic because none can be
defined in terms of the others.

2. Intuitionistic propositional logic replaces the classical laws of
excluded middle A ∨ ¬A and double negation ¬¬A→ A by
the law of contradiction ¬A→ (A→ B).

3. Both ∀ and ∃ are needed for intuitionistic predicate logic, as
neither can be defined in terms of the other and negation.
¬∀x¬A(x)↔ ¬¬∃xA(x) and ¬∃x¬A(x)↔ ∀x¬¬A(x) are
valid intuitionistically, but the double negations cannot be
eliminated.

Remark. ¬¬∃ and ∀¬¬ express the classical existential and
universal quantifiers, respectively, in intuitionistic logic.



Intuitionistic first-order arithmetic has the same mathematical
axioms as classical first-order arithmetic: axioms for equality, 0,
successor, addition and multiplication, and the axiom schema of
mathematical induction. The only difference is the restriction to
intuitionistic logic. Formally, intuitionistic arithmetic IA is a proper
subsystem of classical (Peano) arithmetic PA. However,
Gentzen’s and Gödel’s negative translations showed that

“the system of intuitionistic arithmetic and number theory is only
apparently narrower than the classical one, and in truth contains it,
albeit with a somewhat deviant interpretation.” (Gödel 1933)

Gentzen’s negative translation associates to each formula E of the
language of arithmetic a formula E g without ∨ or ∃, so that

1. If E contains no ∨ or ∃ then E g is E .

2. `PA E ↔ E g .

3. `PA E ⇔ `IA E g .



How Intuitionistic Logic Affects Consistency:

Intuitionistic propositional logic proves ¬¬(A ∨ ¬A), so every
consistent formal system based on intuitionistic logic is consistent
with every sentence (closed formula) of the form A ∨ ¬A.
Brouwer wrote: “Consequently, the theorems which are usually
considered as proved in mathematics, ought to be divided into
those that are true and those that are non-contradictory.”

Intuitionistic predicate logic does not prove ¬¬∀x(A(x) ∨ ¬A(x)).

If intuitionistic arithmetic IA is consistent, then every arithmetical
sentence of the form ∀x(A(x) ∨ ¬A(x)) is consistent with IA
because IA is contained in PA.

But if A(x) is ∃zT (x , x , z), expressing “the computation of {x}(x)
converges,” then ¬∀x(A(x) ∨ ¬A(x)) is also consistent with IA
(and in fact true in Russian recursive mathematics).

Intuitionistic logic permits divergent mathematical views.



“The Continuum”: The points of the linear continuum can be
represented by infinite sequences of natural numbers. Instead of
studying the linear continuum directly, we focus on Baire space
(the collection ωω of all such sequences with the finite initial
segment topology), called “the continuum” from now on.

Brouwer’s intuitionistic continuum consists of infinitely proceeding
sequences or “choice sequences” α of natural numbers, generated
by more or less freely choosing one integer after another. At each
stage, the chooser may or may not specify restrictions (consistent
with those already made) on future choices.

Since the first n values of a choice sequence α may be the only
information available at the nth stage of its construction,

¬∀α(∀x(α(x) = 0) ∨ ¬∀x(α(x) = 0)) is intuitionistically true.

The classical continuum consists of all possible infinite sequences
of natural numbers, each considered to be completely determined.

∀α(A(α) ∨ ¬A(α)) is classically true for every A(α).



So while intuitionistic and classical arithmetic are equivalent, the
intuitionistic continuum seems incompatible with the classical
continuum. Still, there are areas of agreement, including

I 2-sorted primitive recursive arithmetic,

I the axiom of countable choice, and

I induction up to a countable ordinal (bar induction).

Kleene and Vesley, in “Foundations of Intuitionistic Mathematics”
(1965), formalized the common core B using intuitionistic logic.

I An intuitionistic theory FIM results from B by adjoining a
strong axiom schema of continuous choice, ensuring that
every function defined on the entire intuitionistic continuum is
continuous in the finite initial segment topology.

I The classical theory C results from B by strengthening the
logic to classical logic. So C conflicts with FIM, but Kleene
proved FIM is consistent relative to B. Is his result optimal?



How complex and how large is the intuitionistic continuum?

Brouwer called “lawlike” any choice sequence all of whose values
are determined in advance according to some fixed law.
He did not specify which laws are to be permitted, but each lawlike
sequence must be definable in some sense.

Brouwer distinguished three infinite cardinalities:

1. denumerably infinite, as the natural numbers.

2. denumerably unfinished, when “each element can be
individually realized, and . . . for every denumerably infinite
subset there exists an element not belonging to this subset.”
(footnote to “Intuitionism and Formalism” [1912])

3. nondenumerable, as the intuitionistic continuum.

The collection of all lawlike sequences is denumerably unfinished.
If b0, b1, b2, . . . is a lawlike sequence of lawlike sequences, the
sequence b∗(n) = bn(n) + 1 is lawlike and differs from every bn.



Lawlike and classical sequences are similar in two important ways:

I The collection of all lawlike sequences does not have a lawlike
enumeration, and the collection of all classical sequences does
not have a classical enumeration.

I Lawlike sequences, like classical sequences, are considered to
be individually realized and completely determined.

They differ in two important ways:

I Not every choice sequence is lawlike, in fact “most” choice
sequences are incomplete objects.

I Properties of classical sequences, but not lawlike sequences,
are assumed to obey the law of excluded middle (the LEM).

Kleene proved that the LEM for arithmetical formulas is consistent
with his intuitionistic system FIM if C is consistent.

Is the LEM for formulas concerning numbers and lawlike sequences
only consistent with the intuitionistic theory of the continuum?



Embedding Theorem. (a) A unified axiomatic theory FIRM of the
continuum extends Kleene’s FIM in a language with a third sort of
variable over lawlike sequences. FIRM proves that every lawlike
sequence is extensionally equal to a choice sequence, but not
conversely. The subsystem of FIRM without lawlike sequence
variables is FIM. A subsystem R of FIRM without choice sequence
variables is a notational variant of C. The logic of R is classical.

(b) Assuming a certain definably well ordered subset R of the
continuum is countable, a classical realizability interpretation
establishes the consistency of an extension FIRM(≺) of FIRM
in which ≺ well orders the lawlike sequences.

(c) The subsystem IR of R with intuitionistic logic expresses
Bishop’s constructive mathematics BCM, and Russian recursive
mathematics RRM = IR + ECT + MP is consistent with the
subsystem of FIRM with intuitionistic logic exclusively.



Why can’t we assume all lawlike sequences are recursive?

Kleene’s formal language had variables x , y , z , . . . over numbers
and α, β, γ, . . . over choice sequences, but no special variables
a, b, c, . . . over lawlike sequences. All the lawlike sequences he
needed were recursive.
Brouwer seems to have expressed no opinion on Church’s Thesis,
although it is likely that he was aware of it.
Primitive recursive sequences are lawlike, so recursive sequences
are lawlike by the comprehension axiom:

ACR
00! ∀x∃!yA(x , y)→ ∃b∀xA(x , b(x))

for A(x , y) with only number and lawlike sequence variables, where

∃!yB(y) ≡ ∃yB(y) & ∀x∀y(B(x) & B(y)→ x = y).

In R with classical logic, by ACR
00! all classical analytic functions

(with sequence quantifiers ranging over the lawlike part of the
continuum) are lawlike. So why aren’t all sequences lawlike?



In “Lawless sequences of natural numbers,” Comp. Math. (1968),
Kreisel described a system LS of axioms for numbers, lawlike
sequences b, c , . . . and intensionally “lawless” sequences α, β, . . .
in which “the simplest kind of restriction on restrictions is made,
namely some finite initial segment of values is prescribed, and,
beyond this, no restriction is to be made”.

I Equality (= identity) of lawless sequences is decidable, and
distinct lawless sequences are independent.

I Every neighborhood contains a lawless sequence.

I The axiom of open data holds: If A(α) where α is lawless,
then A(β) for all lawless β in some neighborhood of α.

I Lawless sequences satisfy strong effective continuous choice:
If ∀α∃bA(α, b) then for some lawlike b, e: e codes a total
continuous function, b codes a sequence of sequences (b)n,
and ∀αA(α, (b)e(α)). Arbitrary choice sequences do not
appear explicitly, but e must be defined on them too.



Troelstra, in “Choice Sequences: A Chapter of Intuitionistic
Mathematics”(1977) and in Chapter 12 of “Constructivism in
Mathematics: An Introduction” (Troelstra and van Dalen, 1988),
analyzed and corrected the axioms of LS. Troelstra formulated

The Extension Principle: Every function defined (and continuous)
on all the lawless sequences has a continuous total extension.

This justified strong effective continuous choice. He noted that
identity is the only lawlike operation under which the class of
lawless sequences is closed. He suggested that lawlike sequence
variables may be interpreted as ranging over “the classical universe
of sequences.” And he provided a detailed proof of Kreisel’s

Theorem: Every formula E of LS without free lawless sequence
variables can be translated into an equivalent formula τ(E ) with
only number and lawlike sequence variables, so “lawless sequences
can be regarded as a figure of speech.”



Relatively Lawless Sequences: an Extensional Alternative

In 1987-1996 I developed a system RLS of axioms for numbers,
lawlike sequences a, b, . . . , h and choice sequences α, β, . . .
extending Kleene’s B. An arbitrary choice sequence α is defined to
be “R-lawless” (lawless relative to the class R of lawlike sequences)
if every lawlike predictor correctly predicts α somewhere:

RLS(α) ≡ ∀b(Pred(b)→ ∃xα ∈ α(x) ∗ b(α(x))),

where α(0) = 〈 〉, α(x + 1) = 〈α(0), . . . , α(x)〉; Pred(b) says that
b maps finite sequence codes to finite sequence codes; α ∈ u says
that u codes an initial segment of α of length lh(u); and u ∗ v
codes the concatenation of sequences with codes u, v .

Extensional equality between arbitrary R-lawless sequences α, β is
not assumed to be decidable. Two R-lawless sequences α and β
are independent if and only if their merge [α, β] is R-lawless, where
[α, β](2n) = α(n) and [α, β](2n + 1) = β(n). (cf. Fourman)



RLS has logical axioms and rules for all three sorts of quantifiers
and an inductive definition of term and functor. R-terms and
R-functors are those without choice sequence variables.

The new mathematical axioms of RLS include two density axioms:

RLS1. ∀w(Seq(w)→ ∃α(RLS(α) & α ∈ w)),

RLS2. ∀α[RLS(α)→ ∀w(Seq(w)→ ∃β(RLS([α, β]) & β ∈ w))],

where Seq(w) expresses that w codes a finite sequence of numbers.

Definition. A formula is restricted if its choice sequence quantifiers
all vary over independent R-lawless sequences, so
∀α(RLS([α, β])→ B(α, β)) and ∃α(RLS([α, β]) & B(α, β)) are
restricted if B(α, β) is restricted and has no choice sequence
variables free other than α, β.

For A(x , y) restricted, with no free occurrences of choice sequence
variables, RLS has the lawlike comprehension axiom

ACR
00! ∀x∃!yA(x , y)→ ∃b∀xA(x , b(x)).



For the axioms of open data

RLS3. ∀α[RLS(α)→ (A(α)→
∃y∀β(RLS(β)→ (β ∈ α(y)→ A(β))))]

and effective continuous choice for R-lawless sequences

RLS4. ∀α[RLS(α)→ ∃bA(α, b)]→
∃e∃b∀α[RLS(α)→ e(α) ↓ & A(α, (b)e(α))]

and the restricted law of excluded middle

RLEM. ∀α[RLS(α)→ A(α) ∨ ¬A(α)]

the A(α) and A(α, b) must be restricted, with no choice sequence
variables free but α. The LEM for formulas with only number and
lawlike sequence variables follows from RLEM by RLS1.

RLS1, ACR
00! and RLS4 entail lawlike countable choice:

ACR
01. ∀x∃bA(x , b)→ ∃b∀xA(x , (b)x)

for A(x , b) restricted, with no choice sequence variables free.

ACR
01 entails ACR

00!, and RLS3, ACR
01 and RLEM entail RLS4.



RLS proves:

I ∀a∃!β(∀x a(x) = β(x)). Every lawlike sequence is
(extensionally) equal to an arbitrary choice sequence.

I ∀α[RLS(α)→ ¬∃b(∀x b(x) = α(x))]. No R-lawless sequence
is equal to a lawlike sequence.

I Independent R-lawless sequences are unequal.

I The R-lawless sequences are closed under prefixing an
arbitrary finite sequence of natural numbers.

I If α is R-lawless and b is a lawlike injection with lawlike
range, then α ◦ b is R-lawless.

I The R-lawless sequences are dense in the continuum.

I Troelstra’s extension principle fails. Every R-lawless sequence
contains a (first) 1 but the constant 0 sequence doesn’t.

FIRM (the common extension of RLS and FIM) proves that
equality between arbitrary R-lawless sequences α, β is undecidable.



Theorem 1. Every restricted formula E with no arbitrary choice
sequence variables free is equivalent in RLS to a formula ϕ(E )
with only number and lawlike sequence variables.

Proof: Like Troelstra’s proof for LS but simpler. Kreisel and
Troelstra needed a constant K0 to represent the class of lawlike
codes of continuous total functions. We can define

J0(e) ≡ ∀u[Seq(u) & ∀n < lh(u)(e(u(n)) = 0)→
∃v(Seq(v) & e(u ∗ v) > 0)] &

∀u∀v [Seq(u) & Seq(v) & lh(v) > 0 & e(u) > 0→ e(u ∗ v) = 0].

Then RLS proves ∀e(J0(e)↔ ∀α(RLS(α)→ e(α) ↓)), and the
conclusion of effective continuous choice for R-lawless sequences is
simplified to ∃e∃b[J0(e) & ∀α(RLS(α)→ A(α, (b)e(α)))].

Note: J0(e) only requires e(α) to be defined for R-lawless α.
The R-lawless sequences alone do not satisfy the bar theorem, and
Troelstra’s extension principle does not hold.



Definition. R is the subsystem of RLS obtained by restricting the
language to number and lawlike sequence variables, omitting
RLS1-4, replacing ACR

00! by ACR
01, and replacing RLEM by LEM.

For B(w) and A(w) without lawlike sequence variables, Brouwer’s
bar theorem is expressed by an axiom of Kleene’s B:

BI! ∀α∃!xB(α(x)) & ∀w(Seq(w) & B(w)→ A(w)) &
∀w(Seq(w) & ∀sA(w ∗ 〈s〉)→ A(w))→ A(〈 〉).

BI (like BI! but omitting the !) conflicts with FIM, but
for B(w), A(w) without choice sequence variables, R proves

BIR . ∀a∃xB(a(x)) & ∀w(Seq(w) & B(w)→ A(w)) &
∀w(Seq(w) & ∀sA(w ∗ 〈s〉)→ A(w))→ A(〈 〉),

so R is just a notational variant of C (= B + (A ∨ ¬A)), since B
has the countable axiom of choice AC01 as an axiom.

Definition. FIRM is the common extension of RLS and FIM in
the 3-sorted language.



Definition. RLS(≺) is the system resulting from RLS by extending
the language to include prime formulas u ≺ v where u, v are
functors, and adding axioms W0-W5:

W0. α = β & α ≺ γ → β ≺ γ.
β = γ & α ≺ β → α ≺ γ.

W1. ∀a∀b[a ≺ b → ¬b ≺ a].

W2. ∀a∀b∀c[a ≺ b & b ≺ c → a ≺ c].

W3. ∀a∀b[a ≺ b ∨ a = b ∨ b ≺ a].

W4. ∀a[∀b(b ≺ a→ A(b))→ A(a)]→ ∀aA(a),

where A(a) is any restricted formula, with no choice sequence
variables free, in which b is free for a.

W5. α ≺ β → ¬∀a∀b¬(α = a & β = b).

Definition. FIRM(≺) is the common extension of RLS(≺) and
FIM, so FIRM(≺) is related to FIRM as RLS(≺) is to RLS.



Theorem 2. Iterating definability, quantifying over numbers and
lawlike and independent R-lawless sequences, eventually yields a
definably well ordered subset (R,≺R) of the classical continuum.
Assuming R is countable “from the outside,”

(a) There is a classical model M(≺R) of RLS(≺), with R as the
class of lawlike sequences.

(b) The class RLS of R-lawless sequences of the model is disjoint
from R and is Baire comeager in ωω, with classical measure 0.

(c) A classical realizability interpretation establishes the
consistency of FIRM(≺) and hence of FIRM.

We outline the inductive definition of (R,≺R) and define M(≺R).
For details see “Iterated definability, lawless sequences, and
Brouwer’s continuum,” http://www.math.ucla.edu/∼joan/
and the reference list for that preprint.



Definition. If F (a0, . . . , ak−1) ≡ ∀x∃!yE (x , y , a0, . . . , ak−1) is a
restricted formula where x , y are all the distinct number variables
free in E , and the distinct lawlike sequence variables a0, . . . , ak−1
are all the variables free in F in order of first free occurrence, and
if A ⊂ ωω, ≺A wellorders A, ϕ ∈ ωω and ψ0, . . . , ψk−1 ∈ A, then
E defines ϕ over A from ψ0, . . . , ψk−1 if and only if when lawlike
sequence variables range over A and choice sequence variables over
ωω, ≺ is interpreted by ≺A, and a0, . . . , ak−1 by ψ0, . . . , ψk−1:

(i) F is true, and

(ii) for all x , y ∈ ω: ϕ(x) = y if and only if E (x, y) is true

Definition. Def(A,≺A) is the class of all ϕ ∈ ωω which are defined
over (A,≺A) by some E from some ψ0, . . . , ψk−1 in A.

Observe that A ⊆ Def(A,≺A), since a(x) = y defines every ϕ ∈ A
over A from itself. We have to extend ≺A to a well ordering ≺∗A
of Def(A,≺A) so the process can be iterated.



The classical model M(≺R) of RLS(≺):

An R-formula has no arbitrary choice sequence variables free.
Let E0(x , y),E1(x , y), . . . enumerate all restricted R-formulas in
the language L(≺) containing free no number variables but x , y ,
where E0(x , y) ≡ a(x) = y . For each i , let Fi ≡ ∀x∃!yEi (x , y).

For ϕ, θ ∈ Def(A,≺A), set ϕ ≺∗A θ if and only if ∆A(ϕ) < ∆A(θ)
where ∆A(ϕ) is the smallest tuple (i , ψ0, . . . , ψk−1) in the
lexicographic ordering < of ω ∪

⋃
k>o(ω×Ak) determined by < on

ω and ≺A on A such that Ei defines ϕ over A from ψ0, . . . , ψk−1.

If ϕ ∈ A then ∆A(ϕ) = (0, ϕ), so ≺A is an initial segment of ≺∗A.

Define R0 = φ, ≺0= φ, Rζ+1 = Def(Rζ ,≺ζ), ≺ζ+1=≺∗ζ ,
and at limit ordinals take unions.

By cardinality considerations there is a least ordinal η0 such that
Rη0 = Rη0+1. Let R = Rη0 and ≺R=≺η0 . M(≺R) is the natural
classical model in which lawlike sequence variables range over R.



Key lemmas for the proof that if R is countable then M(≺R) is a
classical model of RLS(≺) with R as the lawlike sequences:

Lemma 1. If R is countable then

(i) There is an R-lawless sequence, and

(ii) If α is R-lawless there is a sequence β such that [α, β] is
R-lawless.

Lemma 2. If α is R-lawless, so are 〈n〉 ∗ α for every natural
number n and α ◦ g for every injection g ∈ R whose range can be
enumerated by an element of R.

Lemma 3. If A(α) satisfies the axiom RLS3 of open data in
M(≺R), so does ¬A(α).

We now appeal to the not uncommon set-theoretic assumption
that every definably well ordered subset of ωω is countable.



R and ≺R are definable over ωω with closure ordinal η0. Let
χ : ω × ω → {0, 1} code a well ordering of type η0 and let
Γ : ω → R be a bijection witnessing simultaneously the
countability of R and (via χ) the order of generation of its
elements, so that for each n,m ∈ ω:

Γ(n) ≺R Γ(m)⇔ χ(n,m) = 1.

A Γ-interpretation Ψ of a list Ψ = x1, . . . , xn, α1, . . . , αk , a1, . . . , am
of distinct variables is any choice of n numbers, k elements of ωω

and m numbers r1, . . . , rm. Then Γ(Ψ) is the corresponding list of
n numbers, k sequences and m elements Γ(r1), . . . , Γ(rm) of R.

Lemma 4. To each list Ψ of distinct number and lawlike sequence
variables and each restricted R-formula A(x , y) containing free at
most Ψ, x , y where x , y , a 6∈ Ψ, there is a partial function ξA(Ψ) so
that for each Γ-interpretation Ψ of Ψ: If ∀x∃!yA(x , y) is true-Γ(Ψ)
then ξA(Ψ) is defined and ∀xA(x , a(x)) is true-Γ(Ψ, ξA(Ψ)).



The Γ-realizability interpretation of FIRM(≺):

For π ∈ ωω, E a formula of L(≺) with at most the distinct
variables Ψ free, and Ψ a Γ-interpretation of Ψ, define
π Γ-realizes-Ψ E by induction on the logical form of E :

I π Γ-realizes-Ψ a prime formula P, if P is true-Γ(Ψ).

I π Γ-realizes-Ψ A & B, if (π)0 Γ-realizes-Ψ A and
(π)1 Γ-realizes-Ψ B.

I π Γ-realizes-Ψ A ∨ B, if (π(0))0 = 0 and (π)1 Γ-realizes-Ψ A,
or (π(0))0 6= 0 and (π)1 Γ-realizes-Ψ B.

I π Γ-realizes-Ψ A→ B, if, if σ Γ-realizes-Ψ A, then {π}[σ]
Γ-realizes-Ψ B.

I π Γ-realizes-Ψ ¬A, if π Γ-realizes-Ψ A→ 1 = 0.

I π Γ-realizes-Ψ ∀xA(x), if {π}[x ] Γ-realizes-Ψ, x A(x) for each
x ∈ ω.

I π Γ-realizes-Ψ ∃xA(x), if (π)1 Γ-realizes-Ψ, (π(0))0 A(x).



I π Γ-realizes-Ψ ∀aA(a), if {π}[r ] Γ-realizes-Ψ, r A(a) for each
r ∈ ω.

I π Γ-realizes-Ψ ∃aA(a), if (π)1 Γ-realizes-Ψ, (π(0))0 A(a).

I π Γ-realizes-Ψ ∀αA(α), if {π}[α] Γ-realizes-Ψ, α A(α) for each
α ∈ ωω.

I π Γ-realizes-Ψ ∃αA(α), if (π)1 Γ-realizes-Ψ, {(π)0} A(α).

Theorem 2 (c) (restated). Assuming Γ enumerates R as above,
every closed theorem of FIRM(≺) is Γ-realized by some function
and hence FIRM(≺) is consistent. So the classical continuum can
consistently be viewed as the lawlike part of Brouwer’s continuum.

Theorem 3. If R is countable, the R-lawless sequences are all the
generic sequences with respect to properties of finite sequences of
natural numbers which are definable with parameters over (ω,R)
by formulas with only number and lawlike sequence variables.



In a nutshell:

I R-lawless and random are orthogonal concepts, since a
random sequence of natural numbers should possess certain
regularity properties (e.g. the percentage of even numbers in
its nth initial segment should approach .50 as n increases)
while an R-lawless sequence will possess none.

I Brouwer’s continuum satisfies the bar theorem, countable
choice and continuous choice.

I The lawlike sequences satisfy the bar theorem and countable
choice, but not continuous choice.

I The R-lawless sequences satisfy open data and restricted
continuous choice, but not the bar theorem.

I The recursive sequences satisfy recursive countable choice but
not the bar theorem or even the fan theorem.

I Bishop’s constructive sequences satisfy countable choice.


