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Abstract. Using a technique developed by Coquand and Hofmann [2] we
verify that adding the analytical form MP1: ∀α(¬¬∃xα(x) = 0→ ∃xα(x) = 0)
of Markov’s Principle does not increase the class of Π0

2 formulas provable in
Kleene and Vesley’s formal system for intuitionistic analysis, or in subsystems
obtained by omitting or restricting various axiom schemas in specified ways.

Introduction

In [5] Kleene proved that Markov’s Principle MP1 is neither provable nor
refutable in his formal system I for intuitionistic analysis. By the Friedman-
Dragalin translation, Markov’s Rule is admissible for I and many subsystems.

We show that adding MP1 as an axiom to I does not increases consistency
strength, in the sense that no additional Π0

2 formulas become provable. The
method adapted from [2] works also for subsystems of I, with a few interesting
exceptions.

1. Language, logic, and basic mathematical axioms

1.1. The two-sorted formal language and intuitionistic predicate logic.
Kleene and Vesley’s language L1 for two-sorted intuitionistic number theory or
“intuitionistic analysis” has variables a,b,c,. . . ,x,y,z,. . . , intended to range over
natural numbers; variables α, β, γ, . . ., intended to range over one-place number-
theoretic functions (choice sequences); finitely many constants 0,′ ,+, ·, f4, . . . , fp,
each representing a primitive recursive function or functional, where fi has ki places
for number arguments and li places for type-1 function arguments; parentheses
indicating function application; and Church’s λ.

The terms (of type 0) and functors (of type 1) are defined inductively as follows.
The number variables and 0 are terms. The function variables and each fi with
ki = 1, li = 0 are functors. If t1, . . . , tki are terms and u1, . . . , uli are functors,
then fi(t1, . . . , tki , u1, . . . ,uli) is a term. If x is a number variable and t is a term,
then λx.t is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between
functors u, v is defined extensionally by u = v ≡ ∀x(u(x) = v(x)) (where x is not
free in u or v). The atomic formulas of L1 are the expressions s = t where s, t
are terms. Composite formulas are defined inductively, using the connectives
&,∨,→,¬, quantifiers ∀,∃ of both sorts, and parentheses (often omitted under
the usual conventions on scope). A↔ B is defined by (A→ B) & (B→ A).

The logical axioms and rules are those of two-sorted intuitionistic predicate
logic, as presented in [5] (building on [3]). If the intuitionistic axiom schema
¬A→ (A→ B) were replaced by ¬¬A→ A (of which Markov’s Principle MP1 is
a special case), two-sorted classical predicate logic would result.

1



2 J. R. MOSCHOVAKIS (4/6/2018 DRAFT)

1.2. Two-sorted intuitionistic arithmetic IA1. This is a conservative exten-
sion, in the language L1, of the first-order intuitionistic arithmetic IA0 in [3] based
on =, 0,′ ,+, ·. The mathematical axioms of IA1 are:

(a) The axiom-schema of mathematical induction (for all formulas of L1):
A(0) & ∀x(A(x)→ A(x′))→ A(x).

(b) The axioms of IA0 for =, 0,′ ,+, · (axioms 14-21 on page 82 of [3]) and
the axioms expressing the primitive recursive definitions of the additional
function constants f4, . . . , f26 given in [5] and [4].1

(c) The open equality axiom: x = y→ α(x) = α(y).
(d) The axiom-schema of λ-conversion: (λx.t(x))(s) = t(s), where t(x) is a

term and s is free for x in t(x).

For readers familiar with [5], IA1 is the subsystem of the “basic system” B ob-
tained by omitting the axiom schemas of countable choice and bar induction (x2.1
and x26.3, respectively).

IA1 can only prove the existence of primitive recursive sequences, in the sense
that each closed theorem of the form ∃αA(α) has a primitive recursive witness.
The finite list of primitive recursive function constants, with their correspond-
ing axioms, is intended to be expanded as needed. Here we use the λ notation
to explicitly define termwise multiplication of sequences. Let (α · β) abbreviate
λx(α(x) · β(x)).

1.3. Intuitionistic recursive analysis IRA. The principle of countable choice
for numbers is expressed in L1 by the schema (∗2.2 in [5]):

AC00 : ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)),

where α, x must be free for y in A(x, y). Intuitionistic recursive analysis IRA
can be axiomatized, as a subsystem of Kleene and Vesley’s B, by IA1 + qf-AC00,
where qf-AC00 is the restriction of AC00 to formulas A(x, y) without sequence
quantifiers and with only bounded number quantifiers. IRA ensures that the range
of the type-1 variables contains all general recursive sequences and is closed under
general recursive processes. Troelstra’s EL and Veldman’s BIM are alternative
axiomatizations of IRA, cf. [7], [6].

In the two-sorted language, IRA + MP1 + CT1 formalizes Russian recursive
analysis (RUSS in [1]), where MP1 is the functional form of Markov’s Principle

MP1 : ∀α[¬¬∃xα(x) = 0→ ∃xα(x) = 0]

and CT1 expresses Church’s Thesis:

CT1 : ∀α∃e∀x∃y[T0(e, x, y) & U(y) = α(x)].

1f0 − f3 are 0,′ ,+, · respectively. f4(a, b) = ab (exponentiation), and f5, . . . , f20 represent the
primitive recursive function(al)s a!, a−̇b, pd(a), min(a, b), max(a, b), sg(a), sg(a), |a − b|,
rm(a, b), [a/b], Σy<bα(y), Πy<bα(y), miny≤bα(y), maxy≤bα(y), pa (the ath prime, with p0 = 2),
and (a)i (the exponent of pi in the prime factorization of a) respectively. We write (a)i for
f20(a, i), and similarly for the other function constants. f21(a) = lh(a) denotes the number
Σi<asg((a)i) of positive exponents in the prime factorization of a. Bounded quantifiers are
defined with the help of bounded sum and product. Seq(a) is a prime formula equivalent to
a > 0 & ∀i < lh(a) (a)i > 0, expressing “a codes the finite sequence ((a)0−1, . . . , (a)lh(a)−1−1)”.
f??(a, b) = a ∗ b produces a code for the concatenation of two finite sequences from their codes:
〈x0 + 1, . . . , xk + 1〉 ∗ 〈xk+1 + 1, . . . , xm + 1〉 = 〈x0 + 1, . . . , xm + 1〉. (This coding is not onto but
is one-to-one; in contrast, 〈a0, . . . , ak〉 = Πi<k+1p

ai
i = 〈a0, . . . , ak, 0〉.) 〈 〉 = 1 codes the empty

sequence, and α(x) = Πi<xp
α(i)+1
i represents the standard code for the xth initial segment of α.
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The general recursive functions form a classical ω-model of RUSS and hence of
IRA, but RUSS + AC00 (unlike IRA + AC00) is inconsistent with classical logic.

2. Definition of the Translation, and Properties Proved in IA1

2.1. Definition. Let Z(α) abbreviate ∃xα(x) = 0. To each formula E of L1 and
each sequence variable α not occurring in E, we associate another formula Eα with
the same free variables plus α, by induction on the logical form of E as follows.
For cases 4 and 5, β should be distinct from α. For case 4, Bα·β is the result of
substituting α · β for γ in the definition of Bγ , where γ does not occur in B.2

(1) Pα is P ∨ Z(α) if P is prime.
(2) (A & B)α is Aα & Bα.
(3) (A ∨ B)α is Aα ∨ Bα.
(4) (A→ B)α is ∀β ∈ 2N(Aβ → Bα·β).
(5) (¬A)α is ∀β ∈ 2N(Aβ → Z(α · β)).
(6) (∀xA(x))α is ∀xAα(x).
(7) (∃xA(x))α is ∃xAα(x).
(8) (∀γA(γ))α is ∀γAα(γ).
(9) (∃γA(γ))α is ∃γAα(γ).

2.2. Proposition. IA1 ` ∀α, β ∈ 2N(Z(α · β)↔ Z(α) ∨ Z(β)).

2.3. Lemma. IA1 ` ∀α, β, γ ∈ 2N(Eα & γ = α · β → Eγ).

Proof. Only Cases 4 and 5 require attention. If E is A→ B where A,B both
satisfy the lemma, assume α, β, γ ∈ 2N & (A→ B)α & γ = α · β. If δ ∈ 2N & Aδ

then Bα·δ by definition of (A→ B)α, and δ · γ = (α · δ) · β so Bδ·γ by the induction
hypothesis on B. So (A→ B)γ .

If E is ¬A where A satisfies the lemma, assume α, β, γ ∈ 2N & (¬A)α & γ = α · β.
If δ ∈ 2N & Aδ, then Z(α · δ) by definition of (¬A)α, so Z(γ · δ) by Proposition 2.2.
So (¬A)γ .

2.4. Lemma. IA1 ` ∀β ∈ 2N(Z(β)→ Eβ) for all formulas E.

2.5. Lemma.

(a) IA1 ` ∀α ∈ 2N((A→ B)α → (Aα → Bα)).
(b) IA1 ` ∀α ∈ 2N(A→ B)α ↔ ∀α ∈ 2N(Aα → Bα).

Proofs. (a) follows immediately from the definition with the fact that α · α = α
for all α ∈ 2N.

For (b), the implication from left to right follows from (a) by logic. For the
implication from right to left assume ∀α ∈ 2N(Aα → Bα) and α, β ∈ 2N and Aβ;
then Aα·β by Lemma 2.3, so Bα·β by the assumption. So (A→ B)α.

2.6. Lemma. If E is ∃xα(x) = 0 (i.e., Z(α)) then IA1 proves:

(a) ∀β ∈ 2N(Eβ ↔ E ∨ Z(β)).
(b) ∀β ∈ 2N((¬E)β ↔ (E→ Z(β))).
(c) ∀β ∈ 2N((¬¬E)β ↔ E ∨ Z(β)).
(d) ∀β ∈ 2N(¬¬E↔ E)β.

2This simplifying convention, which will be used extensively in what follows, could be avoided
by replacing Bα·β by ∀γ ∈ 2N(γ = α · β → Bγ), as in the statement of Lemma 2.3.
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Proofs. (a) is immediate by Definition 2.1 with intuitionistic logic. For (b),
under the assumption β ∈ 2N and using (a), Proposition 2.2, intuitionistic logic
and the fact that β · β = β, we have the following chain of equivalences:

(¬E)β ↔ ∀γ ∈ 2N(Eγ → Z(β · γ))

↔ ∀γ ∈ 2N(E ∨ Z(γ)→ Z(β · γ))

↔ ∀γ ∈ 2N(E→ Z(β · γ))↔ (E→ Z(β)).

For (c), under the assumption β ∈ 2N, by (b) we have

(¬¬E)β ↔ ∀γ ∈ 2N((¬E)γ → Z(β · γ))↔ ∀γ ∈ 2N((E→ Z(γ))→ Z(β · γ)).

If ∀γ ∈ 2N((E→ Z(γ))→ Z(β · γ)), let γ = λx.sg(α(x)); then Z(γ)↔ Z(α) and
γ ∈ 2N. Then (Z(γ)→ Z(γ))→ Z(β · γ) since E is Z(α), so Z(β · γ), so Z(β) ∨ Z(γ)
by Proposition 2.2, so Z(β) ∨ E, so E ∨ Z(β). For the converse use Proposition 2.2.
Then (d) follows from (a) and (c) with Lemma 2.5(b).

2.7. Lemma.

(a) If E has no → or ¬ then IA1 ` (Eλz.1 ↔ E).
(b) IA1 ` (¬A)λz.1 → ¬(Aλz.1) for all formulas A.
(c) If E is constructed from prime formulas and their negations using only &

and ∨, then IA1 ` (Eλz.1 → E).

3. Applications to Subsystems of Kleene’s Formal System I for
Intuitionistic Analysis

3.1. Theorem. If E is derivable in IA1 from assumptions F1, . . . ,Fk,Fk+1, . . . ,Fm

such that ∀β ∈ 2N (Fi)
β is derivable in IA1 from F1, . . . ,Fk for each 1 ≤ i ≤ m,

with all free variables held constant in the deductions, then ∀β ∈ 2N Eβ is also
derivable in IA1 from F1, . . . ,Fk with all free variables held constant.

Proof. IA1 ` ∀α ∈ 2N Eα when E is any axiom of IA1, using the lemmas in the
previous section with ∀α ∈ 2N(α · α = α) as appropriate (e.g. for the mathematical
induction schema). If ∀β ∈ 2N Aβ and ∀β ∈ 2N (A→ B)β are derivable in IA1

from F1, . . . ,Fk with the free variables held constant, then by Lemma 2.5(b) so is
∀β ∈ 2N Bβ; and similarly for the other rules of inference.

3.2. Lemma. IA1 + AC00 ` ∀β ∈ 2N(AC00)
β, and similarly for qf-AC00, AC01.

Proofs. By the definition with Lemma 2.5(b).

3.3. Lemma. IA1 + BI1 ` ∀β ∈ 2N(BI1)
β where BI1 is the bar induction schema

∀α∃xρ(α(x)) = 0 & ∀w(Seq(w) & ρ(w) = 0→ A(w))

& ∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

Proof. Assume β ∈ 2N and

(i) (∀α∃xρ(α(x)) = 0)β,
(ii) (∀w(Seq(w) & ρ(w) = 0→ A(w)))β,
(iii) (∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w)))β.

By Lemma 2.5 it will be enough to prove Aβ(〈 〉). By the definition and the
lemmas in the previous section, over IA1 the numbered assumptions are equivalent
respectively to

(i’) ∀α∃x(ρ(α(x)) = 0 ∨ Z(β)),
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(ii’) ∀w∀γ ∈ 2N((Seq(w) & ρ(w) = 0) ∨ Z(γ)→ Aβ·γ(w))),
(iii’) ∀w∀γ ∈ 2N(Seq(w) & ∀sAγ(w ∗ 〈s + 1〉)→ Aβ·γ(w)).

In IA1 we may define σ ∈ 2N so that

σ(w) = 0↔ ρ(w) = 0 ∨ ∃x ≤ wβ(x) = 0.

From (i’) it follows immediately that ∀α∃xσ(α(x) = 0). From (ii’) with γ = β
and the fact that β = β · β we have ∀w(Seq(w) & σ(w) = 0→ Aβ(w)). From (iii’)
similarly, ∀w(Seq(w) & ∀sAβ(w ∗ 〈s + 1〉)→ Aβ(w)), so Aβ(〈 〉) follows by BI1.

3.4. Lemma. IA1 + CC10 ` ∀β ∈ 2N (CC10)
β where CC10 is

∀α∃xA(α, x)→ ∃σ∀α(∃yσ(α(y)) > 0 & ∀y(σ(α(y)) > 0→ A(α, σ(α(y)−̇1)))),

which is equivalent over IA1 + qf-AC00 to Kleene and Vesley’s continuous choice
schema ∗27.2 (“Brouwer’s Principle for numbers”).

Proof. Assume β ∈ 2N and ∀α∃xAβ(α, x). By Lemma 2.5(b) it will be enough
to find a σ such that for all α:

(i) ∃y(σ(α(y)) > 0 ∨ Z(β)) and
(ii) ∀y∀γ ∈ 2N(σ(α(y)) > 0 ∨ Z(γ)→ Aβ·γ(α, σ(α(y)−̇1))).

CC10 provides a σ such that for all α:

(i’) ∃y σ(α(y)) > 0 and
(ii’) ∀y(σ(α(y)) > 0→ Aβ(α, σ(α(y)−̇1))).

Obviously (i’) entails (i). To prove (ii), let y ∈ N and γ ∈ 2N. If σ(α(y)) > 0 then
Aβ·γ(α, σ(α(y)−̇1)) by (ii’) with Lemma 2.3, and if Z(γ) then Aβ·γ(α, σ(α(y)−̇1))
by Lemma 2.4, so σ(α(y)) > 0 ∨ Z(γ)→ Aβ·γ(α, σ(α(y)−̇1)).

3.5. Lemma. IA1 + CC11 ` ∀β ∈ 2N (CC11)
β where CC11 is the corresponding

equivalent of “Brouwer’s Principle for functions” (axiom schema x27.1 of [5]):

∀α∃βA(α, β)→ ∃σ∀α[∀x∃yσ(〈x + 1〉 ∗ α(y)) > 0

& ∀β(∀x∃yσ(〈x + 1〉 ∗ α(y)) = β(x) + 1→ A(α, β))].

The proof is similar to that for CC10 and will be omitted.

3.6. Corollary. If T is IA1, Kleene’s neutral theory B = IA1 + AC01 + BI1, I
= B + CC11 or any subsystem of I obtained by adding to IA1 any of the schemas
qf-AC00, AC00, AC01, BI1 and/or CC10, then T + MP1 and T prove the same Π0

2

statements.

Proof. By Lemma 2.6(d), T ` ∀β ∈ 2N(MP1)
β. Hence by Theorem 3.1 with

Lemmas 3.2 - 3.5, if T + MP1 ` E then T ` ∀β ∈ 2N Eβ.
If E is ∀x∃yA(x, y) where A(x, y) has only bounded numerical quantifiers, then

A(x, y) is equivalent over IA1 to a formula of the type described in Lemma 2.7(c),
so by Theorem 3.1 and Lemma 2.5(b): if T ` Eλz.1 then T ` E.

3.7. Remarks. Lemma 2.7(c) holds also for formulas E constructed from prime
formulas and their negations using only &,∨, ∀ and ∃, in particular for all prenex
formulas. It follows, for each subsystem T of Kleene’s I described in the statement
of Corollary 3.6, that any prenex formula provable in T + MP1 is provable in T.

The question whether or not the “minimal” system M = IA1 + AC00! (which
Kleene used in [4] to formalize the theory of recursive funcionals) proves the same
Π0

2 formulas as M + MP1 is still open, as far as we know. Because the translation
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E 7→ Eβ essentially involves (binary) sequence quantifiers, the corresponding ques-
tion is still open for IA1 + ACAr

00 and for Solovay’s system S = IA1 + ACAr
00 +

BI1, where ACAr
00 is the restriction of AC00 to arithmetical formulas A(x, y) (with

sequence parameters allowed). In the presence of bar induction, weak choice ax-
ioms interact with MP1 in sometimes surprising ways; for example, Solovay proved
that S can be interpreted negatively in IA1 + BI1 + MP1.
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