MARKOV'S PRINCIPLE AND SUBSYSTEMS OF INTUITIONISTIC ANALYSIS

J. R. MOSCHOVAKIS (4/6/2018 DRAFT)

ABSTRACT. Using a technique developed by Coquand and Hofmann [2] we verify that adding the analytical form MP₁: $\forall \alpha (\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0)$ of Markov's Principle does not increase the class of Π_2^0 formulas provable in Kleene and Vesley's formal system for intuitionistic analysis, or in subsystems obtained by omitting or restricting various axiom schemas in specified ways.

INTRODUCTION

In [5] Kleene proved that Markov's Principle MP_1 is neither provable nor refutable in his formal system I for intuitionistic analysis. By the Friedman-Dragalin translation, Markov's Rule is admissible for I and many subsystems.

We show that adding MP₁ as an axiom to \mathbf{I} does not increases consistency strength, in the sense that no additional Π_2^0 formulas become provable. The method adapted from [2] works also for subsystems of \mathbf{I} , with a few interesting exceptions.

1. LANGUAGE, LOGIC, AND BASIC MATHEMATICAL AXIOMS

1.1. The two-sorted formal language and intuitionistic predicate logic. Kleene and Vesley's language \mathcal{L}_1 for two-sorted intuitionistic number theory or "intuitionistic analysis" has variables $a, b, c, \ldots, x, y, z, \ldots$, intended to range over natural numbers; variables $\alpha, \beta, \gamma, \ldots$, intended to range over one-place numbertheoretic functions (choice sequences); finitely many constants $0, ', +, \cdot, f_4, \ldots, f_p$, each representing a primitive recursive function or functional, where f_i has k_i places for number arguments and l_i places for type-1 function arguments; parentheses indicating function application; and Church's λ .

The terms (of type 0) and functors (of type 1) are defined inductively as follows. The number variables and 0 are terms. The function variables and each f_i with $k_i = 1, l_i = 0$ are functors. If t_1, \ldots, t_{k_i} are terms and u_1, \ldots, u_{l_i} are functors, then $f_i(t_1, \ldots, t_{k_i}, u_1, \ldots, u_{l_i})$ is a term. If x is a number variable and t is a term, then $\lambda x.t$ is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between functors u, v is defined extensionally by $u = v \equiv \forall x(u(x) = v(x))$ (where x is not free in u or v). The atomic formulas of \mathcal{L}_1 are the expressions s = t where s, t are terms. Composite formulas are defined inductively, using the connectives $\&, \lor, \rightarrow, \neg$, quantifiers \forall, \exists of both sorts, and parentheses (often omitted under the usual conventions on scope). A \leftrightarrow B is defined by $(A \rightarrow B) \& (B \rightarrow A)$.

The logical axioms and rules are those of two-sorted intuitionistic predicate logic, as presented in [5] (building on [3]). If the intuitionistic axiom schema $\neg A \rightarrow (A \rightarrow B)$ were replaced by $\neg \neg A \rightarrow A$ (of which Markov's Principle MP₁ is a special case), two-sorted classical predicate logic would result.

1.2. Two-sorted intuitionistic arithmetic IA_1 . This is a conservative extension, in the language \mathcal{L}_1 , of the first-order intuitionistic arithmetic IA_0 in [3] based on =, 0, ', +, \cdot . The mathematical axioms of IA_1 are:

- (a) The axiom-schema of mathematical induction (for all formulas of \mathcal{L}_1): A(0) & $\forall x(A(x) \to A(x')) \to A(x)$.
- (b) The axioms of \mathbf{IA}_0 for $=, 0, ', +, \cdot$ (axioms 14-21 on page 82 of [3]) and the axioms expressing the primitive recursive definitions of the additional function constants f_4, \ldots, f_{26} given in [5] and [4].¹
- (c) The open equality axiom: $x = y \rightarrow \alpha(x) = \alpha(y)$.
- (d) The axiom-schema of λ -conversion: $(\lambda x.t(x))(s) = t(s)$, where t(x) is a term and s is free for x in t(x).

For readers familiar with [5], IA_1 is the subsystem of the "basic system" **B** obtained by omitting the axiom schemas of countable choice and bar induction (*2.1 and *26.3, respectively).

 \mathbf{IA}_1 can only prove the existence of primitive recursive sequences, in the sense that each closed theorem of the form $\exists \alpha A(\alpha)$ has a primitive recursive witness. The finite list of primitive recursive function constants, with their corresponding axioms, is intended to be expanded as needed. Here we use the λ notation to explicitly define termwise multiplication of sequences. Let $(\alpha \cdot \beta)$ abbreviate $\lambda x(\alpha(x) \cdot \beta(x))$.

1.3. Intuitionistic recursive analysis IRA. The principle of countable choice for numbers is expressed in \mathcal{L}_1 by the schema (*2.2 in [5]):

$$AC_{00}: \forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)),$$

where α , x must be free for y in A(x, y). Intuitionistic recursive analysis **IRA** can be axiomatized, as a subsystem of Kleene and Vesley's **B**, by $\mathbf{IA}_1 + qf\text{-AC}_{00}$, where qf-AC₀₀ is the restriction of AC₀₀ to formulas A(x, y) without sequence quantifiers and with only bounded number quantifiers. **IRA** ensures that the range of the type-1 variables contains all general recursive sequences and is closed under general recursive processes. Troelstra's **EL** and Veldman's **BIM** are alternative axiomatizations of **IRA**, cf. [7], [6].

In the two-sorted language, $IRA + MP_1 + CT_1$ formalizes Russian recursive analysis (**RUSS** in [1]), where MP₁ is the functional form of Markov's Principle

$$MP_1: \quad \forall \alpha [\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0]$$

and CT_1 expresses Church's Thesis:

$$CT_1: \quad \forall \alpha \exists e \forall x \exists y [T_0(e, x, y) \& U(y) = \alpha(x)].$$

The general recursive functions form a classical ω -model of **RUSS** and hence of **IRA**, but **RUSS** + AC₀₀ (unlike **IRA** + AC₀₀) is inconsistent with classical logic.

2. Definition of the Translation, and Properties Proved in IA_1

2.1. **Definition.** Let $Z(\alpha)$ abbreviate $\exists x \alpha(x) = 0$. To each formula E of \mathcal{L}_1 and each sequence variable α not occurring in E, we associate another formula E^{α} with the same free variables plus α , by induction on the logical form of E as follows. For cases 4 and 5, β should be distinct from α . For case 4, $B^{\alpha \cdot \beta}$ is the result of substituting $\alpha \cdot \beta$ for γ in the definition of B^{γ} , where γ does not occur in B.²

- (1) P^{α} is $P \vee Z(\alpha)$ if P is prime.
- (2) (A & B)^{α} is A^{α} & B^{α}.
- (3) $(\mathbf{A} \vee \mathbf{B})^{\alpha}$ is $\mathbf{A}^{\alpha} \vee \mathbf{B}^{\alpha}$.
- (4) $(A \to B)^{\alpha}$ is $\forall \beta \in 2^{\mathbb{N}}(A^{\beta} \to B^{\alpha \cdot \beta}).$
- (5) $(\neg A)^{\alpha}$ is $\forall \beta \in 2^{\mathbb{N}}(A^{\beta} \to Z(\alpha \cdot \beta)).$
- (6) $(\forall x A(x))^{\alpha}$ is $\forall x A^{\alpha}(x)$.
- (7) $(\exists x A(x))^{\alpha}$ is $\exists x A^{\alpha}(x)$.
- (8) $(\forall \gamma A(\gamma))^{\alpha}$ is $\forall \gamma A^{\alpha}(\gamma)$.
- (9) $(\exists \gamma A(\gamma))^{\alpha}$ is $\exists \gamma A^{\alpha}(\gamma)$.

2.2. **Proposition.** IA₁ $\vdash \forall \alpha, \beta \in 2^{\mathbb{N}}(\mathbb{Z}(\alpha \cdot \beta) \leftrightarrow \mathbb{Z}(\alpha) \vee \mathbb{Z}(\beta)).$

2.3. Lemma. IA₁ $\vdash \forall \alpha, \beta, \gamma \in 2^{\mathbb{N}}(\mathbb{E}^{\alpha} \& \gamma = \alpha \cdot \beta \to \mathbb{E}^{\gamma}).$

Proof. Only Cases 4 and 5 require attention. If E is $A \to B$ where A, B both satisfy the lemma, assume $\alpha, \beta, \gamma \in 2^{\mathbb{N}}$ & $(A \to B)^{\alpha}$ & $\gamma = \alpha \cdot \beta$. If $\delta \in 2^{\mathbb{N}}$ & A^{δ} then $B^{\alpha \cdot \delta}$ by definition of $(A \to B)^{\alpha}$, and $\delta \cdot \gamma = (\alpha \cdot \delta) \cdot \beta$ so $B^{\delta \cdot \gamma}$ by the induction hypothesis on B. So $(A \to B)^{\gamma}$.

If E is $\neg A$ where A satisfies the lemma, assume $\alpha, \beta, \gamma \in 2^{\mathbb{N}}$ & $(\neg A)^{\alpha}$ & $\gamma = \alpha \cdot \beta$. If $\delta \in 2^{\mathbb{N}}$ & A^{δ} , then $Z(\alpha \cdot \delta)$ by definition of $(\neg A)^{\alpha}$, so $Z(\gamma \cdot \delta)$ by Proposition 2.2. So $(\neg A)^{\gamma}$.

2.4. Lemma. $\mathbf{IA}_1 \vdash \forall \beta \in 2^{\mathbb{N}}(\mathbb{Z}(\beta) \to \mathbb{E}^{\beta})$ for all formulas E.

2.5. Lemma.

(a) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}}((A \to B)^{\alpha} \to (A^{\alpha} \to B^{\alpha})).$

(b) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} (\mathbf{A} \to \mathbf{B})^{\alpha} \leftrightarrow \forall \alpha \in 2^{\mathbb{N}} (\mathbf{A}^{\alpha} \to \mathbf{B}^{\alpha}).$

Proofs. (a) follows immediately from the definition with the fact that $\alpha \cdot \alpha = \alpha$ for all $\alpha \in 2^{\mathbb{N}}$.

For (b), the implication from left to right follows from (a) by logic. For the implication from right to left assume $\forall \alpha \in 2^{\mathbb{N}}(A^{\alpha} \to B^{\alpha})$ and $\alpha, \beta \in 2^{\mathbb{N}}$ and A^{β} ; then $A^{\alpha,\beta}$ by Lemma 2.3, so $B^{\alpha,\beta}$ by the assumption. So $(A \to B)^{\alpha}$.

2.6. Lemma. If E is $\exists x \alpha(x) = 0$ (i.e., $Z(\alpha)$) then IA_1 proves:

- (a) $\forall \beta \in 2^{\mathbb{N}}(E^{\beta} \leftrightarrow E \lor Z(\beta)).$
- (b) $\forall \beta \in 2^{\mathbb{N}}((\neg E)^{\beta} \leftrightarrow (E \rightarrow Z(\beta))).$
- (c) $\forall \beta \in 2^{\mathbb{N}}((\neg \neg E)^{\beta} \leftrightarrow E \lor Z(\beta)).$
- (d) $\forall \beta \in 2^{\mathbb{N}} (\neg \neg E \leftrightarrow E)^{\beta}$.

²This simplifying convention, which will be used extensively in what follows, could be avoided by replacing $B^{\alpha\cdot\beta}$ by $\forall \gamma \in 2^{\mathbb{N}}(\gamma = \alpha \cdot \beta \to B^{\gamma})$, as in the statement of Lemma 2.3.

Proofs. (a) is immediate by Definition 2.1 with intuitionistic logic. For (b), under the assumption $\beta \in 2^{\mathbb{N}}$ and using (a), Proposition 2.2, intuitionistic logic and the fact that $\beta \cdot \beta = \beta$, we have the following chain of equivalences:

$$\begin{aligned} (\neg \mathbf{E})^{\beta} &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E}^{\gamma} \to \mathbf{Z}(\beta \cdot \gamma)) \\ &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E} \lor \mathbf{Z}(\gamma) \to \mathbf{Z}(\beta \cdot \gamma)) \\ &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E} \to \mathbf{Z}(\beta \cdot \gamma)) \leftrightarrow (\mathbf{E} \to \mathbf{Z}(\beta)). \end{aligned}$$

For (c), under the assumption $\beta \in 2^{\mathbb{N}}$, by (b) we have

$$(\neg \neg \mathbf{E})^{\beta} \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((\neg \mathbf{E})^{\gamma} \to \mathbf{Z}(\beta \cdot \gamma)) \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((\mathbf{E} \to \mathbf{Z}(\gamma)) \to \mathbf{Z}(\beta \cdot \gamma)).$$

If $\forall \gamma \in 2^{\mathbb{N}}((E \to Z(\gamma)) \to Z(\beta \cdot \gamma))$, let $\gamma = \lambda x.sg(\alpha(x))$; then $Z(\gamma) \leftrightarrow Z(\alpha)$ and $\gamma \in 2^{\mathbb{N}}$. Then $(Z(\gamma) \to Z(\gamma)) \to Z(\beta \cdot \gamma)$ since E is $Z(\alpha)$, so $Z(\beta \cdot \gamma)$, so $Z(\beta) \vee Z(\gamma)$ by Proposition 2.2, so $Z(\beta) \vee E$, so $E \vee Z(\beta)$. For the converse use Proposition 2.2. Then (d) follows from (a) and (c) with Lemma 2.5(b).

2.7. Lemma.

- (a) If E has no \rightarrow or \neg then $\mathbf{IA}_1 \vdash (\mathbf{E}^{\lambda \mathbf{z}.1} \leftrightarrow \mathbf{E})$.
- (b) $\mathbf{IA}_1 \vdash (\neg A)^{\lambda z.1} \rightarrow \neg (A^{\lambda z.1})$ for all formulas A.
- (c) If E is constructed from prime formulas and their negations using only & and \lor , then $\mathbf{IA}_1 \vdash (\mathbf{E}^{\lambda \mathbf{z}.1} \to \mathbf{E})$.

3. Applications to Subsystems of Kleene's Formal System I for Intuitionistic Analysis

3.1. **Theorem.** If E is derivable in \mathbf{IA}_1 from assumptions $F_1, \ldots, F_k, F_{k+1}, \ldots, F_m$ such that $\forall \beta \in 2^{\mathbb{N}} (F_i)^{\beta}$ is derivable in \mathbf{IA}_1 from F_1, \ldots, F_k for each $1 \leq i \leq m$, with all free variables held constant in the deductions, then $\forall \beta \in 2^{\mathbb{N}} E^{\beta}$ is also derivable in \mathbf{IA}_1 from F_1, \ldots, F_k with all free variables held constant.

Proof. $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} E^{\alpha}$ when E is any axiom of \mathbf{IA}_1 , using the lemmas in the previous section with $\forall \alpha \in 2^{\mathbb{N}} (\alpha \cdot \alpha = \alpha)$ as appropriate (e.g. for the mathematical induction schema). If $\forall \beta \in 2^{\mathbb{N}} A^{\beta}$ and $\forall \beta \in 2^{\mathbb{N}} (A \to B)^{\beta}$ are derivable in \mathbf{IA}_1 from F_1, \ldots, F_k with the free variables held constant, then by Lemma 2.5(b) so is $\forall \beta \in 2^{\mathbb{N}} B^{\beta}$; and similarly for the other rules of inference.

3.2. Lemma. IA₁ + AC₀₀ $\vdash \forall \beta \in 2^{\mathbb{N}}(AC_{00})^{\beta}$, and similarly for qf-AC₀₀, AC₀₁. *Proofs.* By the definition with Lemma 2.5(b).

3.3. Lemma. $IA_1 + BI_1 \vdash \forall \beta \in 2^{\mathbb{N}}(BI_1)^{\beta}$ where BI_1 is the bar induction schema

$$\begin{split} \forall \alpha \exists \mathbf{x} \rho(\overline{\alpha}(\mathbf{x})) &= 0 \ \& \ \forall \mathbf{w}(\operatorname{Seq}(\mathbf{w}) \ \& \ \rho(\mathbf{w}) = 0 \to \mathbf{A}(\mathbf{w})) \\ & \& \ \forall \mathbf{w}(\operatorname{Seq}(\mathbf{w}) \ \& \ \forall \mathbf{s} \mathbf{A}(\mathbf{w} * \langle \mathbf{s} + 1 \rangle) \to \mathbf{A}(\mathbf{w})) \to \mathbf{A}(\langle \ \rangle). \end{split}$$

Proof. Assume $\beta \in 2^{\mathbb{N}}$ and

- (i) $(\forall \alpha \exists \mathbf{x} \rho(\overline{\alpha}(\mathbf{x})) = 0)^{\beta}$,
- (ii) $(\forall w(\text{Seq}(w) \& \rho(w) = 0 \to A(w)))^{\beta}$,
- (iii) $(\forall w(\text{Seq}(w) \& \forall sA(w * \langle s+1 \rangle) \rightarrow A(w)))^{\beta}$.

By Lemma 2.5 it will be enough to prove $A^{\beta}(\langle \rangle)$. By the definition and the lemmas in the previous section, over IA_1 the numbered assumptions are equivalent respectively to

(i') $\forall \alpha \exists \mathbf{x}(\rho(\overline{\alpha}(\mathbf{x})) = 0 \lor \mathbf{Z}(\beta)),$

- $\begin{array}{ll} (\mathrm{ii'}) \ \forall \mathbf{w} \forall \gamma \in 2^{\mathbb{N}}((\mathrm{Seq}(\mathbf{w}) \ \& \ \rho(\mathbf{w}) = 0) \lor \mathbf{Z}(\gamma) \to \mathbf{A}^{\beta \cdot \gamma}(\mathbf{w}))), \\ (\mathrm{iii'}) \ \forall \mathbf{w} \forall \gamma \in 2^{\mathbb{N}}(\mathrm{Seq}(\mathbf{w}) \ \& \ \forall \mathbf{s} \mathbf{A}^{\gamma}(\mathbf{w} \ast \langle \mathbf{s} + 1 \rangle) \to \mathbf{A}^{\beta \cdot \gamma}(\mathbf{w})). \end{array}$

In \mathbf{IA}_1 we may define $\sigma \in 2^{\mathbb{N}}$ so that

$$\sigma(\mathbf{w}) = 0 \leftrightarrow \rho(\mathbf{w}) = 0 \lor \exists \mathbf{x} \le \mathbf{w}\beta(\mathbf{x}) = 0.$$

From (i') it follows immediately that $\forall \alpha \exists x \sigma(\overline{\alpha}(x) = 0)$. From (ii') with $\gamma = \beta$ and the fact that $\beta = \beta \cdot \beta$ we have $\forall w(\text{Seq}(w) \& \sigma(w) = 0 \rightarrow A^{\beta}(w))$. From (iii') similarly, $\forall w(\text{Seq}(w) \& \forall s A^{\beta}(w * \langle s+1 \rangle) \to A^{\beta}(w))$, so $A^{\beta}(\langle \rangle)$ follows by BI₁.

3.4. Lemma. IA₁ + CC₁₀ $\vdash \forall \beta \in 2^{\mathbb{N}} (CC_{10})^{\beta}$ where CC₁₀ is

 $\forall \alpha \exists x A(\alpha, x) \rightarrow \exists \sigma \forall \alpha (\exists y \sigma(\overline{\alpha}(y)) > 0 \& \forall y (\sigma(\overline{\alpha}(y)) > 0 \rightarrow A(\alpha, \sigma(\overline{\alpha}(y) - 1)))),$

which is equivalent over $IA_1 + qf-AC_{00}$ to Kleene and Vesley's continuous choice schema *27.2 ("Brouwer's Principle for numbers").

Proof. Assume $\beta \in 2^{\mathbb{N}}$ and $\forall \alpha \exists x A^{\beta}(\alpha, x)$. By Lemma 2.5(b) it will be enough to find a σ such that for all α :

- (i) $\exists y(\sigma(\overline{\alpha}(y)) > 0 \lor Z(\beta))$ and
- (ii) $\forall y \forall \gamma \in 2^{\mathbb{N}}(\sigma(\overline{\alpha}(y)) > 0 \lor Z(\gamma) \to A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) 1))).$

 CC_{10} provides a σ such that for all α :

(i') $\exists y \ \sigma(\overline{\alpha}(y)) > 0$ and

(ii') $\forall y(\sigma(\overline{\alpha}(y)) > 0 \rightarrow A^{\beta}(\alpha, \sigma(\overline{\alpha}(y)-1))).$

Obviously (i') entails (i). To prove (ii), let $y \in \mathbb{N}$ and $\gamma \in 2^{\mathbb{N}}$. If $\sigma(\overline{\alpha}(y)) > 0$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) - 1))$ by (ii') with Lemma 2.3, and if $Z(\gamma)$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) - 1))$ by Lemma 2.4, so $\sigma(\overline{\alpha}(\mathbf{y})) > 0 \lor \mathbf{Z}(\gamma) \to \mathbf{A}^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(\mathbf{y}) - 1)).$

3.5. Lemma. IA₁ + CC₁₁ $\vdash \forall \beta \in 2^{\mathbb{N}} (CC_{11})^{\beta}$ where CC₁₁ is the corresponding equivalent of "Brouwer's Principle for functions" (axiom schema x27.1 of [5]):

$$\begin{split} \forall \alpha \exists \beta \mathbf{A}(\alpha, \beta) &\to \exists \sigma \forall \alpha [\forall \mathbf{x} \exists \mathbf{y} \sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{y})) > 0 \\ &\& \forall \beta (\forall \mathbf{x} \exists \mathbf{y} \sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{y})) = \beta(\mathbf{x}) + 1 \to \mathbf{A}(\alpha, \beta))]. \end{split}$$

The proof is similar to that for CC_{10} and will be omitted.

3.6. Corollary. If T is IA₁, Kleene's neutral theory $\mathbf{B} = \mathbf{IA}_1 + AC_{01} + BI_1$, I $= \mathbf{B} + CC_{11}$ or any subsystem of I obtained by adding to IA_1 any of the schemas qf-AC₀₀, AC₀₀, AC₀₁, BI₁ and/or CC₁₀, then $\mathbf{T} + MP_1$ and \mathbf{T} prove the same Π_2^0 statements.

Proof. By Lemma 2.6(d), $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} (\mathrm{MP}_1)^{\beta}$. Hence by Theorem 3.1 with Lemmas 3.2 - 3.5, if $\mathbf{T} + MP_1 \vdash E$ then $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} E^{\beta}$.

If E is $\forall x \exists y A(x, y)$ where A(x, y) has only bounded numerical quantifiers, then A(x, y) is equivalent over IA_1 to a formula of the type described in Lemma 2.7(c), so by Theorem 3.1 and Lemma 2.5(b): if $\mathbf{T} \vdash \mathbf{E}^{\lambda \mathbf{z}.1}$ then $\mathbf{T} \vdash \mathbf{E}$.

3.7. Remarks. Lemma 2.7(c) holds also for formulas E constructed from prime formulas and their negations using only $\&, \lor, \lor$ and \exists , in particular for all prenex formulas. It follows, for each subsystem \mathbf{T} of Kleene's \mathbf{I} described in the statement of Corollary 3.6, that any prenex formula provable in $\mathbf{T} + MP_1$ is provable in \mathbf{T} .

The question whether or not the "minimal" system $\mathbf{M} = \mathbf{I}\mathbf{A}_1 + \mathbf{A}\mathbf{C}_{00}!$ (which Kleene used in [4] to formalize the theory of recursive functionals) proves the same Π_2^0 formulas as $\mathbf{M} + MP_1$ is still open, as far as we know. Because the translation

 $E \mapsto E^{\beta}$ essentially involves (binary) sequence quantifiers, the corresponding question is still open for $IA_1 + AC_{00}^{Ar}$ and for Solovay's system $S = IA_1 + AC_{00}^{Ar} + BI_1$, where AC_{00}^{Ar} is the restriction of AC_{00} to arithmetical formulas A(x, y) (with sequence parameters allowed). In the presence of bar induction, weak choice axioms interact with MP₁ in sometimes surprising ways; for example, Solovay proved that S can be interpreted negatively in $IA_1 + BI_1 + MP_1$.³

References

- D. Bridges and F. Richman, Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes, no. 97, Cambridge University Press, 1987.
- T. Coquand and M. Hofmann, A new method for establishing conservativity of classical systems over their intuitionistic version, Math. Struct. Comp. Sci. 9 (1999), 323–333.
- 3. S. C. Kleene, Introduction to Metamathematics, van Nostrand, 1952.
- Formalized recursive functionals and formalized realizability, Memoirs, no. 89, Amer. Math. Soc., 1969.
- S. C. Kleene and R. E. Vesley, The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, North Holland, 1965.
- 6. G. Vafeiadou, A comparison of minimal systems for constructive analysis, unpublished manuscript.
- 7. _____, Formalizing Constructive Analysis: a comparison of minimal systems and a study of uniqueness principles, Ph.D. thesis, National and Kapodistrian University of Athens, 2012.

6

³In fact, his proof justifies a stronger result: **S** can be interpreted negatively in $\mathbf{IA}_1 + \mathbf{BI}_1 + \mathbf{DNS}_1$, where \mathbf{DNS}_1 is the double negation shift principle $\forall \alpha \neg \neg \exists \mathbf{x} \mathbf{A}(\overline{\alpha}(\mathbf{x})) \rightarrow \neg \neg \forall \alpha \exists \mathbf{x} \mathbf{A}(\overline{\alpha}(\mathbf{x}))$ for quantifier-free formulas $\mathbf{A}(\mathbf{w})$.