MARKOV'S PRINCIPLE AND SUBSYSTEMS OF INTUITIONISTIC ANALYSIS

J. R. MOSCHOVAKIS

ABSTRACT. Using a technique developed by Coquand and Hofmann [3] we verify that adding the analytical form MP₁: $\forall \alpha (\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0)$ of Markov's Principle does not increase the class of Π_2^0 formulas provable in Kleene and Vesley's formal system for intuitionistic analysis, or in subsystems obtained by omitting or restricting various axiom schemas in specified ways.

INTRODUCTION

In [6] Kleene proved that Markov's Principle MP_1 is neither provable nor refutable in his formal system I for intuitionistic analysis. By the Friedman-Dragalin translation, Markov's Rule is admissible for I and many subsystems.

We show that adding MP₁ as an axiom to **I** does not increase consistency strength, in the sense that no additional Π_2^0 formulas become provable. The method, adapted from Coquand and Hofmann's dynamic modification [3] of the Friedman-Dragalin translation, works also for subsystems of **I** with a few interesting exceptions.

1. LANGUAGE, LOGIC, AND BASIC MATHEMATICAL AXIOMS

1.1. The two-sorted formal language and intuitionistic predicate logic. Kleene and Vesley's language \mathcal{L}_1 for two-sorted intuitionistic number theory or "intuitionistic analysis" has variables $a, b, c, \ldots, x, y, z, \ldots$, intended to range over natural numbers; variables $\alpha, \beta, \gamma, \ldots$, intended to range over one-place number-theoretic functions (choice sequences); finitely many constants $0, ', +, \cdot, f_4, \ldots, f_p$, each representing a primitive recursive function or functional, where f_i has k_i places for number arguments and l_i places for type-1 function arguments; parentheses indicating function application; and Church's λ .

The terms (of type 0) and functors (of type 1) are defined inductively as follows. The number variables and 0 are terms. The function variables and each f_i with $k_i = 1, l_i = 0$ are functors. If t_1, \ldots, t_{k_i} are terms and u_1, \ldots, u_{l_i} are functors, then $f_i(t_1, \ldots, t_{k_i}, u_1, \ldots, u_{l_i})$ is a term. If x is a number variable and t is a term, then $\lambda x.t$ is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between functors u, v is defined extensionally by $u = v \equiv \forall x(u(x) = v(x))$ (where x is not free in u or v). The atomic formulas of \mathcal{L}_1 are the expressions s = t where s, t are terms. Composite formulas are defined inductively, using the connectives $\&, \lor, \rightarrow, \neg$, quantifiers \forall, \exists of both sorts, and parentheses (often omitted under the usual conventions on scope). A \leftrightarrow B is defined by $(A \rightarrow B) \& (B \rightarrow A)$.

The logical axioms and rules are those of two-sorted intuitionistic predicate logic, as presented in [6] (building on [4]). If the intuitionistic axiom schema

 $\neg A \rightarrow (A \rightarrow B)$ were replaced by $\neg \neg A \rightarrow A$ (of which Markov's Principle MP₁ is a special case), two-sorted classical predicate logic would result.

1.2. Two-sorted intuitionistic arithmetic IA₁. This is a conservative extension, in the language \mathcal{L}_1 , of the first-order intuitionistic arithmetic IA₀ in [4] based on =, 0, ', +, \cdot . The mathematical axioms of IA₁ are:

- (a) The axiom-schema of mathematical induction (for all formulas of \mathcal{L}_1): A(0) & $\forall x(A(x) \to A(x')) \to A(x)$.
- (b) The axioms of \mathbf{IA}_0 for $=, 0, ', +, \cdot$ (axioms 14-21 on page 82 of [4]) and the axioms expressing the primitive recursive definitions of the additional function constants f_4, \ldots, f_{26} given in [6] and [5].¹
- (c) The open equality axiom: $x = y \rightarrow \alpha(x) = \alpha(y)$.

property of equality for functors as well as for terms.

(d) The axiom-schema of λ -conversion: $(\lambda x.t(x))(s) = t(s)$, where t(x) is a term and s is free for x in t(x).

For readers familiar with [6], \mathbf{IA}_1 is the subsystem of the "basic system" **B** obtained by omitting the axiom schemas of countable choice and bar induction (*2.1 and *26.3, respectively).

In addition to the open equality axiom (c), the equality axioms

$$\alpha_1 = \beta_1 \& \dots \& \alpha_{l_i} = \beta_{l_i} \to f_i(x_1, \dots, x_{k_i}, \alpha_1, \dots, \alpha_{l_i}) = f_i(x_1, \dots, x_{k_i}, \beta_1, \dots, \beta_{l_i}),$$

are provable for all function constants f_i . Thus **IA**₁ satisfies the replacement

 \mathbf{IA}_1 can only prove the existence of primitive recursive sequences, in the sense that each closed theorem of the form $\exists \alpha A(\alpha)$ has a primitive recursive witness. The finite list of primitive recursive function constants, with their corresponding axioms, is intended to be expanded as needed. Here we use the λ notation to explicitly define termwise multiplication of sequences: $(\alpha \cdot \beta)$ will abbreviate $\lambda x(\alpha(x) \cdot \beta(x))$. We also define $sg(\alpha) = \lambda x.sg(\alpha(x))$, in effect adding binary sequence variables to \mathcal{L}_1 .

1.3. Intuitionistic recursive analysis IRA. The principle of countable choice for numbers is expressed in \mathcal{L}_1 by the schema (*2.2 in [6]):

$$AC_{00}: \forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)),$$

 $^{{}^{1}}f_{0} - f_{3}$ are $0, ', +, \cdot$ respectively. $f_{4}(a, b) = a^{b}$ (exponentiation), and f_{5}, \ldots, f_{20} represent the primitive recursive function(al)s a!, a - b, pd(a), min(a,b), max(a,b), $\overline{sg}(a) = 1 - a$, sg(a) = a - b, sg(a) $1-(1-a), |a-b|, rm(a,b), [a/b], \Sigma_{y < b}\alpha(y), \Pi_{y < b}\alpha(y), min_{y \leq b}\alpha(y), max_{y \leq b}\alpha(y), p_a$ (the a^{th} prime, with $p_0 = 2$), and $(a)_i$ (the exponent of p_i in the prime factorization of a) respectively. We write (a)_i for $f_{20}(a, i)$, and similarly for the other function constants. $f_{21}(a) = \ln(a) = \sum_{i \le a} \operatorname{sg}((a)_i)$ represents the number of positive exponents in the prime factorization of a. Bounded quantifiers are defined with the help of bounded sum and product. Seq(a) is a prime formula equivalent to $a > 0 \& \forall i < lh(a) (a)_i > 0$, expressing "a codes the finite sequence $((a)_0 - 1, \ldots, (a)_{lh(a)-1} - 1)$ ". $f_{22}(a, b) = a * b$ produces a code for the concatenation of two finite sequences from their codes. $\langle \rangle = 1$ codes the empty sequence, and $f_{23}(x, \alpha) = \overline{\alpha}(x) = \prod_{i < x} p_i^{\alpha(i)+1}$ represents the standard code $\langle \alpha(0) + 1, \ldots, \alpha(x-1) + 1 \rangle$ for the x^{th} initial segment of α . This coding is not onto \mathbb{N} , but it satisfies $\langle a_0 + 1, \dots, a_k + 1 \rangle * \langle a_{k+1} + 1, \dots, a_m + 1 \rangle = \langle a_0 + 1, \dots, a_m + 1 \rangle$. In contrast, $f_{24}(x, \alpha) = \tilde{\alpha}(x) = \prod_{i < x} p_i^{\alpha(i)}$ cannot code finite sequences directly as $\langle a_0, \dots, a_k \rangle = \langle a_0, \dots, a_k, 0 \rangle$. $f_{25}(a,b) = a \circ b = \prod_{i < \max(a,b)} p_i^{\max((a)_i,(b)_i)}, \text{ and } f_{26}(y) = \operatorname{ccp}(y) \text{ represents the course-of-values}$ function for the characteristic function of the predicate "y is a computation tree number." These suffice for Kleene's formal treatment ([5] Part I) of recursive partial functionals, including the recursion theorem and a normal form theorem.

where α , x must be free for y in A(x, y). Intuitionistic recursive analysis **IRA** can be axiomatized, as a subsystem of Kleene and Vesley's **B**, by **IA**₁ + qf-AC₀₀, where qf-AC₀₀ is the restriction of AC₀₀ to formulas A(x, y) without sequence quantifiers and with only bounded number quantifiers. **IRA** ensures that the range of the type-1 variables contains all general recursive sequences and is closed under general recursive processes. Troelstra's **EL** and Veldman's **BIM** are alternative axiomatizations of **IRA**, cf. [8], [7].

In the two-sorted language, $IRA + MP_1 + CT_1$ formalizes Russian recursive analysis (**RUSS** in [2]), where MP₁ is the functional form of Markov's Principle

$$MP_1: \quad \forall \alpha [\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0]$$

and CT_1 expresses Church's Thesis:

$$CT_1: \quad \forall \alpha \exists e \forall x \exists y [T_0(e, x, y) \& U(y) = \alpha(x)].$$

The general recursive functions form a classical ω -model of **RUSS** and hence of **IRA**, but **RUSS** + AC₀₀ (unlike **IRA** + AC₀₀) is inconsistent with classical logic.

2. Definition of the Translation, and Properties Proved in IA_1

2.1. **Definition.** Let $Z(\alpha)$ abbreviate $\exists x \alpha(x) = 0$. To each formula E of \mathcal{L}_1 and each sequence variable α not occurring in E, we associate another formula E^{α} with the same free variables plus α , by induction on the logical form of E as follows. For cases 4 and 5, β should be distinct from α , and $A^{\operatorname{sg}(\beta)}$ is the result of substituting $\operatorname{sg}(\beta)$ for γ in the definition of A^{γ} . Similarly for $B^{\alpha \cdot \beta}$ in Case 4.

- (1) P^{α} is $P \vee Z(\alpha)$ if P is prime.
- (2) (A & B)^{α} is A^{α} & B^{α}.
- (3) $(\mathbf{A} \vee \mathbf{B})^{\alpha}$ is $\mathbf{A}^{\alpha} \vee \mathbf{B}^{\alpha}$.
- (4) $(A \to B)^{\alpha}$ is $\forall \beta (A^{\operatorname{sg}(\beta)} \to B^{\alpha \cdot \beta}).$
- (5) $(\neg A)^{\alpha}$ is $\forall \beta (A^{\operatorname{sg}(\beta)} \to Z(\alpha \cdot \beta)).$
- (6) $(\forall x A(x))^{\alpha}$ is $\forall x A^{\alpha}(x)$.
- (7) $(\exists x A(x))^{\alpha}$ is $\exists x A^{\alpha}(x)$.
- (8) $(\forall \gamma A(\gamma))^{\alpha}$ is $\forall \gamma A^{\alpha}(\gamma)$.
- (9) $(\exists \gamma A(\gamma))^{\alpha}$ is $\exists \gamma A^{\alpha}(\gamma)$.

From now on, let $\alpha \in 2^{\mathbb{N}}$ abbreviate $\alpha = \operatorname{sg}(\alpha)$.

2.2. Proposition.

- (a) $\mathbf{IA}_1 \vdash \forall \alpha \forall \beta (\mathbf{Z}(\alpha \cdot \beta) \leftrightarrow \mathbf{Z}(\alpha) \lor \mathbf{Z}(\beta)).$
- (b) $\mathbf{IA}_1 \vdash \forall \alpha(\mathbf{E}^\alpha \leftrightarrow \mathbf{E}^{(\mathrm{sg}(\alpha))})$ for all formulas E.
- (c) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}}(\mathcal{E}(\alpha) \leftrightarrow \mathcal{E}(\operatorname{sg}(\alpha))).$

Proofs. (a) holds by intuitionistic logic, (b) is proved by formula induction, and the replacement property of equality for functors guarantees (c).

2.3. Lemma. IA₁ $\vdash \forall \alpha \forall \beta \forall \gamma (E^{\alpha} \& \gamma = \alpha \cdot \beta \rightarrow E^{\gamma}).$

Proof. Only Cases 4 and 5 require attention. If E is $A \to B$ where A, B both satisfy the lemma, assume $(A \to B)^{\alpha} \& \gamma = \alpha \cdot \beta$. If $A^{\operatorname{sg}(\delta)}$ then $B^{\alpha \cdot \delta}$ by definition of $(A \to B)^{\alpha}$, and $\delta \cdot \gamma = (\alpha \cdot \delta) \cdot \beta$ so $B^{\delta \cdot \gamma}$ by the induction hypothesis on B. So $(A \to B)^{\gamma}$.

If E is $\neg A$ where A satisfies the lemma, assume $(\neg A)^{\alpha}$ & $\gamma = \alpha \cdot \beta$. If $A^{\operatorname{sg}(\delta)}$, then $Z(\alpha \cdot \delta)$ by definition of $(\neg A)^{\alpha}$, so $Z(\gamma \cdot \delta)$ by Proposition 2.2(a). So $(\neg A)^{\gamma}$.

2.4. Lemma. $IA_1 \vdash \forall \alpha(Z(\alpha) \rightarrow E^{\alpha})$ for all formulas E.

2.5. Lemma.

(a) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}}((A \to B)^{\alpha} \to (A^{\alpha} \to B^{\alpha})).$

(b) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} (\mathbf{A} \to \mathbf{B})^{\alpha} \leftrightarrow \forall \alpha \in 2^{\mathbb{N}} (\mathbf{A}^{\alpha} \to \mathbf{B}^{\alpha}).$

Proofs. (a) follows immediately from the definition and Proposition 2.2(b) with the fact that $\alpha \cdot \alpha = \alpha$ for all $\alpha \in 2^{\mathbb{N}}$.

For (b), the implication from left to right follows from (a) by logic. For the converse assume $\forall \alpha \in 2^{\mathbb{N}}(A^{\alpha} \to B^{\alpha})$ and $\alpha \in 2^{\mathbb{N}}$ and $A^{\operatorname{sg}(\beta)}$; then $B^{\operatorname{sg}(\beta)}$ by the assumption, so B^{β} by Proposition 2.2(b), so $B^{\alpha \cdot \beta}$ by Lemma 2.3. So $(A \to B)^{\alpha}$.

2.6. Lemma. If E is $\exists x \alpha(x) = 0$ (i.e., $Z(\alpha)$) then IA_1 proves:

- (a) $\forall \beta \in 2^{\mathbb{N}}(E^{\beta} \leftrightarrow E \lor Z(\beta)).$
- (b) $\forall \beta \in 2^{\mathbb{N}}((\neg E)^{\beta} \leftrightarrow (E \to Z(\beta))).$
- (c) $\forall \beta \in 2^{\mathbb{N}} ((\neg \neg E)^{\beta} \leftrightarrow E \vee Z(\beta)).$
- (d) $\forall \beta \in 2^{\mathbb{N}} (\neg \neg E \leftrightarrow E)^{\beta}$.

Proofs. (a) is immediate by Definition 2.1 with intuitionistic logic. For (b), under the assumption $\beta \in 2^{\mathbb{N}}$ and using (a), Proposition 2.2, intuitionistic logic and the fact that $\beta \cdot \beta = \beta$, we have the following chain of equivalences:

$$(\neg \mathbf{E})^{\beta} \leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E}^{\gamma} \to \mathbf{Z}(\beta \cdot \gamma)) \leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E} \lor \mathbf{Z}(\gamma) \to \mathbf{Z}(\beta \cdot \gamma)) \leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (\mathbf{E} \to \mathbf{Z}(\beta \cdot \gamma)) \leftrightarrow (\mathbf{E} \to \mathbf{Z}(\beta)).$$

For (c), under the assumption $\beta \in 2^{\mathbb{N}}$, by (b) we have

$$(\neg \neg E)^{\beta} \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((\neg E)^{\gamma} \to Z(\beta \cdot \gamma)) \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((E \to Z(\gamma)) \to Z(\beta \cdot \gamma))$$

If $\forall \gamma \in 2^{\mathbb{N}}((E \to Z(\gamma)) \to Z(\beta \cdot \gamma))$, let $\gamma = sg(\alpha)$; then $Z(\gamma) \leftrightarrow Z(\alpha)$ and $\gamma \in 2^{\mathbb{N}}$. Then $(Z(\gamma) \to Z(\gamma)) \to Z(\beta \cdot \gamma)$ since E is $Z(\alpha)$, so $Z(\beta \cdot \gamma)$, so $Z(\beta) \vee Z(\gamma)$ by Proposition 2.2(a), so $Z(\beta) \vee E$, so $E \vee Z(\beta)$. For the converse use Proposition 2.2(a). Then (d) follows from (a) and (c) with Lemma 2.5(b).

2.7. Lemma.

- (a) If E has no \rightarrow or \neg then $\mathbf{IA}_1 \vdash (\mathbf{E}^{\lambda z.1} \leftrightarrow \mathbf{E})$.
- (b) $\mathbf{IA}_1 \vdash (\neg A)^{\lambda z.1} \rightarrow \neg (A^{\lambda z.1})$ for all formulas A.
- (c) If E is constructed from prime formulas and their negations using only & and \lor , then $\mathbf{IA}_1 \vdash (\mathbf{E}^{\lambda z.1} \to \mathbf{E})$.

3. Applications to Subsystems of Kleene's Formal System I for Intuitionistic Analysis

3.1. **Theorem.** If **T** is a theory extending \mathbf{IA}_1 by axioms and axiom schemas F_1, \ldots, F_n such that $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} (F_i)^{\beta}$ for $i = 1, \ldots, n$, and if E is derivable in **T** from assumptions A_1, \ldots, A_m with all free variables held constant in the deduction, then E^{β} is derivable in **T** from the assumptions $\beta \in 2^{\mathbb{N}}, (A_1)^{\beta}, \ldots, (A_m)^{\beta}$ with all free variables held constant.

Proof. $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} E^{\alpha}$ when E is any axiom of \mathbf{IA}_1 , using the lemmas in the previous section with $\forall \alpha \in 2^{\mathbb{N}} (\alpha \cdot \alpha = \alpha)$ as appropriate (e.g. for the mathematical induction schema). If B^{β} and $(B \to C)^{\beta}$ are derivable in \mathbf{IA}_1 from $\beta = \mathrm{sg}(\beta)$, $(A_1)^{\beta}, \ldots, (A_m)^{\beta}$ with the free variables held constant, then by Lemma 2.5(a) so is $B^{\beta} \to C^{\beta}$, and therefore also C^{β} . Similarly for the other rules of inference.

4

- 3.2. Lemma. IA₁ + AC₀₀ $\vdash \forall \beta \in 2^{\mathbb{N}}(AC_{00})^{\beta}$, and similarly for qf-AC₀₀, AC₀₁. *Proofs.* By the definition with Lemma 2.5(b).
- 3.3. Lemma. $IA_1 + BI_1 \vdash \forall \beta \in 2^{\mathbb{N}}(BI_1)^{\beta}$ where BI_1 is the bar induction schema

$$\begin{aligned} \forall \alpha \exists \mathbf{x} \rho(\overline{\alpha}(\mathbf{x})) &= 0 \& \forall \mathbf{w}(\operatorname{Seq}(\mathbf{w}) \& \rho(\mathbf{w}) = 0 \to \mathbf{A}(\mathbf{w})) \\ \& \forall \mathbf{w}(\operatorname{Seq}(\mathbf{w}) \& \forall \mathbf{s} \mathbf{A}(\mathbf{w} \ast \langle \mathbf{s} + 1 \rangle) \to \mathbf{A}(\mathbf{w})) \to \mathbf{A}(\langle \rangle). \end{aligned}$$

Proof. Assume $\beta \in 2^{\mathbb{N}}$ and

(i) $(\forall \alpha \exists \mathbf{x} \rho(\overline{\alpha}(\mathbf{x})) = 0)^{\beta}$,

(ii) $(\forall w(\text{Seq}(w) \& \rho(w) = 0 \to A(w)))^{\beta}$,

(iii) $(\forall w(Seq(w) \& \forall sA(w * \langle s+1 \rangle) \to A(w)))^{\beta}$.

By Lemma 2.5 it will be enough to prove $A^{\beta}(\langle \rangle)$. By the definition and the lemmas in the previous section, over IA_1 the numbered assumptions are equivalent respectively to

- (i') $\forall \alpha \exists \mathbf{x}(\rho(\overline{\alpha}(\mathbf{x})) = 0 \lor \mathbf{Z}(\beta)),$
- (ii') $\forall w \forall \gamma \in 2^{\mathbb{N}}((Seq(w) \& \rho(w) = 0) \lor Z(\gamma) \to A^{\beta \cdot \gamma}(w))),$
- (iii') $\forall w \forall \gamma \in 2^{\mathbb{N}}(Seq(w) \& \forall s A^{\gamma}(w * \langle s+1 \rangle) \to A^{\beta \cdot \gamma}(w)).$

In \mathbf{IA}_1 we may define $\sigma \in 2^{\mathbb{N}}$ so that

$$\sigma(\mathbf{w}) = 0 \leftrightarrow \rho(\mathbf{w}) = 0 \lor \exists \mathbf{x} \le \mathbf{w}\beta(\mathbf{x}) = 0$$

From (i') it follows immediately that $\forall \alpha \exists x \sigma(\overline{\alpha}(x) = 0)$. From (ii') with $\gamma = \beta$ and the fact that $\beta = \beta \cdot \beta$ we have $\forall w(\text{Seq}(w) \& \sigma(w) = 0 \rightarrow A^{\beta}(w))$. From (iii') similarly, $\forall w(\text{Seq}(w) \& \forall s A^{\beta}(w * \langle s + 1 \rangle) \rightarrow A^{\beta}(w))$, so $A^{\beta}(\langle \rangle)$ follows by BI₁.

3.4. Lemma. $\mathbf{IA}_1 + \mathbf{CC}_{10} \vdash \forall \beta \in 2^{\mathbb{N}} (\mathbf{CC}_{10})^{\beta}$ where \mathbf{CC}_{10} is

$$\forall \alpha \exists x A(\alpha, x) \to \exists \sigma \forall \alpha (\exists y \sigma(\overline{\alpha}(y)) > 0 \ \& \ \forall y (\sigma(\overline{\alpha}(y)) > 0 \to A(\alpha, \sigma(\overline{\alpha}(y) \dot{-} 1)))).$$

 CC_{10} is a minor variation of, and is equivalent over $IA_1 + qf-AC_{00}$ to, Kleene and Vesley's continuous choice schema *27.2 ("Brouwer's Principle for numbers").

Proof. Assume $\beta \in 2^{\mathbb{N}}$ and $\forall \alpha \exists x A^{\beta}(\alpha, x)$. By Lemma 2.5(b) it will be enough to find a σ such that for all α :

(i) $\exists y(\sigma(\overline{\alpha}(y)) > 0 \lor Z(\beta))$ and

(ii) $\forall \mathbf{y} \forall \gamma \in 2^{\hat{\mathbb{N}}}(\sigma(\overline{\alpha}(\mathbf{y})) > 0 \lor \mathbf{Z}(\gamma) \to \mathbf{A}^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(\mathbf{y}) - 1))).$

 CC_{10} provides a σ such that for all α :

- (i') $\exists y \ \sigma(\overline{\alpha}(y)) > 0$ and
- (ii') $\forall y(\sigma(\overline{\alpha}(y)) > 0 \rightarrow A^{\beta}(\alpha, \sigma(\overline{\alpha}(y) 1))).$

Obviously (i') entails (i). To prove (ii), let $y \in \mathbb{N}$ and $\gamma \in 2^{\mathbb{N}}$. If $\sigma(\overline{\alpha}(y)) > 0$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) - 1))$ by (ii') with Lemma 2.3, and if $Z(\gamma)$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) - 1))$ by Lemmas 2.4 and 2.3, so $\sigma(\overline{\alpha}(y)) > 0 \vee Z(\gamma) \to A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y) - 1))$.

3.5. Lemma. IA₁ + qf-AC₀₀ + CC₁₁ $\vdash \forall \gamma \in 2^{\mathbb{N}} (CC_{11})^{\gamma}$ where CC₁₁ is

$$\begin{aligned} \forall \alpha \exists \beta \mathbf{A}(\alpha, \beta) &\to \exists \sigma \forall \alpha \exists \beta [\forall \mathbf{x} \exists \mathbf{y}(\sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{y})) = \beta(\mathbf{x}) + 1 \\ &\& \forall \mathbf{z} < \mathbf{y} \, \sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{z})) = 0) \& \ \mathbf{A}(\alpha, \beta)], \end{aligned}$$

which is equivalent over $\mathbf{IA}_1 + \text{qf-AC}_{00}$ to Kleene's strongest continuous choice principle, "Brouwer's Principle for functions" (axiom schema ^x27.1 in [6]).

Proof. Assume $\gamma \in 2^{\mathbb{N}}$ and $\forall \alpha \exists \beta A^{\gamma}(\alpha, \beta)$. By Lemma 2.5(b) it will be enough to find a σ such that

$$\begin{aligned} \forall \alpha \exists \beta \forall \delta \in 2^{\mathbb{N}} [\forall \mathbf{x} \exists \mathbf{y} ((\sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{y})) = \beta(\mathbf{x}) + 1 \\ \& \forall \mathbf{z} < \mathbf{y} \, \sigma(\langle \mathbf{x} + 1 \rangle * \overline{\alpha}(\mathbf{z})) = 0) \lor \mathbf{Z}(\delta)) \& \mathbf{A}^{\gamma \cdot \delta}(\alpha, \beta)]. \end{aligned}$$

 CC_{11} provides a σ such that

$$\begin{aligned} \forall \alpha \exists \beta [\forall x \exists y (\sigma(\langle x+1 \rangle * \overline{\alpha}(y)) = \beta(x) + 1 \\ \& \forall z < y \, \sigma(\langle x+1 \rangle * \overline{\alpha}(z)) = 0) \& A^{\gamma}(\alpha, \beta)], \end{aligned}$$

which suffices by the definition with Lemma 2.3.

3.6. Corollary. If **T** is IA_1 , Kleene's neutral theory $B = IA_1 + AC_{01} + BI_1$, Kleene's intuitionistic analysis $I = B + CC_{11}$ or any subsystem of **I** obtained by adding to IA_1 any of the schemas qf-AC₀₀, AC₀₀, AC₀₁, BI₁ and/or CC₁₀, then $T + MP_1$ and **T** prove the same Π_2^0 statements.

Proof. By Lemma 2.6(d), $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} (\mathrm{MP}_1)^{\beta}$. Hence by Theorem 3.1 with Lemmas 3.2 - 3.5, if $\mathbf{T} + \mathrm{MP}_1 \vdash \mathrm{E}$ then $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} \mathrm{E}^{\beta}$.

If E is $\forall x \exists y A(x, y)$ where A(x, y) has only bounded numerical quantifiers, then A(x, y) is equivalent over \mathbf{IA}_1 to a formula of the type described in Lemma 2.7(c), so by Theorem 3.1: if $\mathbf{T} + MP_1 \vdash E$ then $\mathbf{T} \vdash E^{\lambda z.1}$ so $\mathbf{T} \vdash E$.

3.7. **Remarks.** Lemma 2.7(c) holds also for formulas E constructed from prime formulas and their negations using only $\&, \lor, \forall$ and \exists , in particular for all prenex formulas. It follows, for each subsystem **T** of Kleene's **I** described in the statement of Corollary 3.6, that any prenex formula provable in **T** + MP₁ is provable in **T**.

Kleene's original versions of the continuous choice principles would also satisfy Lemmas 3.4 and 3.5 over $IA_1 + qf$ -AC₀₀. By Theorem 3.1 and Lemma 2.5, the equivalences between our versions and Kleene's persist under the translation, and the proofs for CC₁₀ and CC₁₁ are simpler.

The question whether or not the "minimal" system $\mathbf{M} = \mathbf{I}\mathbf{A}_1 + \mathbf{A}\mathbf{C}_{00}!$ proves the same Π_2^0 formulas as $\mathbf{M} + \mathbf{M}\mathbf{P}_1$ is still open, as far as we know, because $(\forall \mathbf{x}\exists !\mathbf{y}\mathbf{A}(\mathbf{x},\mathbf{y}))^{\alpha}$ does not entail $\forall \mathbf{x}\exists !\mathbf{y}\mathbf{A}^{\alpha}(\mathbf{x},\mathbf{y})$ unless $\alpha = \lambda \mathbf{x}.1$. However, if

$$AC_{00}^{\vee}: \quad \forall \mathbf{x}(\mathbf{A}(\mathbf{x}) \lor \mathbf{B}(\mathbf{x})) \to \exists \alpha \forall \mathbf{x}[(\alpha(\mathbf{x}) = 0 \& \mathbf{A}(\mathbf{x})) \lor (\alpha(\mathbf{x}) \neq 0 \& \mathbf{B}(\mathbf{x}))]$$

is the axiom of countable choice for two alternatives, then $\mathbf{IRA} + AC_{00}^{\vee} + MP_1$ is Π_2^0 -conservative over $\mathbf{IRA} + AC_{00}^{\vee}$ by Theorem 3.1. Since $AC_{00}!$ is equivalent over \mathbf{IRA} to

$$\forall \mathbf{x}(\mathbf{A}(\mathbf{x}) \lor \neg \mathbf{A}(\mathbf{x})) \to \exists \alpha \forall \mathbf{x}(\alpha(\mathbf{x}) = \mathbf{0} \leftrightarrow \mathbf{A}(\mathbf{x}))$$

by [7], any prenex formula provable in $\mathbf{M} + MP_1$ is provable in $\mathbf{IRA} + AC_{00}^{\vee}$.

Because the translation $E \mapsto E^{\beta}$ essentially involves binary sequence quantifiers, it does not appear to solve the corresponding problem for $\mathbf{IA}_1 + AC_{00}^{Ar}$ or for Solovay's system $\mathbf{S} = \mathbf{IA}_1 + AC_{00}^{Ar} + BI_1$, where AC_{00}^{Ar} is the restriction of AC_{00} to arithmetical formulas A(x, y) (with sequence parameters allowed). In the presence of bar induction, arithmetical countable choice interacts strongly with MP₁; e.g. Solovay showed that the classical version $\mathbf{S} + (\neg \neg A \rightarrow A)$ of \mathbf{S} can be interpreted negatively in $\mathbf{IRA} + BI_1 + MP_1$.²

²In fact, his proof justifies a stronger result: $\mathbf{S} + (\neg \neg A \rightarrow A)$ can be interpreted negatively in **IRA** + BI₁ + DNS₁, where DNS₁ is the schema $\forall \alpha \neg \neg \exists x A(\overline{\alpha}(x)) \rightarrow \neg \neg \forall \alpha \exists x A(\overline{\alpha}(x))$ for quantifier-free formulas A(w). Another note with this and related results is in progress.

3.8. Acknowledgements. I am grateful to the editor for timely handling of this submission, and to both referees for their useful comments, questions and corrections. One referee suggested that the coding techniques in [1] might yield the Π_2^0 -conservativity of $\mathbf{S} + MP_1$ over \mathbf{S} , but that is a project for younger minds. Any errors remaining are my own.

References

- J. Avigad, Interpreting classical theories in constructive ones, Jour. Symb. Logic 65 (2000), 1785–1812.
- 2. D. Bridges and F. Richman, *Varieties of Constructive Mathematics*, London Math. Soc. Lecture Notes, no. 97, Cambridge University Press, 1987.
- 3. T. Coquand and M. Hofmann, A new method for establishing conservativity of classical systems over their intuitionistic version, Math. Struct. Comp. Sci. 9 (1999), 323–333.
- 4. S. C. Kleene, Introduction to Metamathematics, van Nostrand, 1952.
- _____, Formalized recursive functionals and formalized realizability, Memoirs, no. 89, Amer. Math. Soc., 1969.
- S. C. Kleene and R. E. Vesley, The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, North Holland, 1965.
- 7. G. Vafeiadou, A comparison of minimal systems for constructive analysis, arXiv:1808.000383.
- 8. _____, Formalizing Constructive Analysis: a comparison of minimal systems and a study of uniqueness principles, Ph.D. thesis, National and Kapodistrian University of Athens, 2012.