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Abstract. Using a technique developed by Coquand and Hofmann [3] we
verify that adding the analytical form MP1: ∀α(¬¬∃xα(x) = 0→ ∃xα(x) = 0)
of Markov’s Principle does not increase the class of Π0

2 formulas provable in
Kleene and Vesley’s formal system for intuitionistic analysis, or in subsystems
obtained by omitting or restricting various axiom schemas in specified ways.

Introduction

In [6] Kleene proved that Markov’s Principle MP1 is neither provable nor
refutable in his formal system I for intuitionistic analysis. By the Friedman-
Dragalin translation, Markov’s Rule is admissible for I and many subsystems.

We show that adding MP1 as an axiom to I does not increase consistency
strength, in the sense that no additional Π0

2 formulas become provable. The
method, adapted from Coquand and Hofmann’s dynamic modification [3] of the
Friedman-Dragalin translation, works also for subsystems of I with a few interest-
ing exceptions.

1. Language, logic, and basic mathematical axioms

1.1. The two-sorted formal language and intuitionistic predicate logic.
Kleene and Vesley’s language L1 for two-sorted intuitionistic number theory or
“intuitionistic analysis” has variables a,b,c,. . . ,x,y,z,. . . , intended to range over
natural numbers; variables α, β, γ, . . ., intended to range over one-place number-
theoretic functions (choice sequences); finitely many constants 0,′ ,+, ·, f4, . . . , fp,
each representing a primitive recursive function or functional, where fi has ki places
for number arguments and li places for type-1 function arguments; parentheses
indicating function application; and Church’s λ.

The terms (of type 0) and functors (of type 1) are defined inductively as follows.
The number variables and 0 are terms. The function variables and each fi with
ki = 1, li = 0 are functors. If t1, . . . , tki are terms and u1, . . . , uli are functors,
then fi(t1, . . . , tki , u1, . . . ,uli) is a term. If x is a number variable and t is a term,
then λx.t is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between
functors u, v is defined extensionally by u = v ≡ ∀x(u(x) = v(x)) (where x is not
free in u or v). The atomic formulas of L1 are the expressions s = t where s, t
are terms. Composite formulas are defined inductively, using the connectives
&,∨,→,¬, quantifiers ∀,∃ of both sorts, and parentheses (often omitted under
the usual conventions on scope). A↔ B is defined by (A→ B) & (B→ A).

The logical axioms and rules are those of two-sorted intuitionistic predicate
logic, as presented in [6] (building on [4]). If the intuitionistic axiom schema
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¬A→ (A→ B) were replaced by ¬¬A→ A (of which Markov’s Principle MP1 is
a special case), two-sorted classical predicate logic would result.

1.2. Two-sorted intuitionistic arithmetic IA1. This is a conservative exten-
sion, in the language L1, of the first-order intuitionistic arithmetic IA0 in [4] based
on =, 0,′ ,+, ·. The mathematical axioms of IA1 are:

(a) The axiom-schema of mathematical induction (for all formulas of L1):
A(0) & ∀x(A(x)→ A(x′))→ A(x).

(b) The axioms of IA0 for =, 0,′ ,+, · (axioms 14-21 on page 82 of [4]) and
the axioms expressing the primitive recursive definitions of the additional
function constants f4, . . . , f26 given in [6] and [5].1

(c) The open equality axiom: x = y→ α(x) = α(y).
(d) The axiom-schema of λ-conversion: (λx.t(x))(s) = t(s), where t(x) is a

term and s is free for x in t(x).

For readers familiar with [6], IA1 is the subsystem of the “basic system” B ob-
tained by omitting the axiom schemas of countable choice and bar induction (x2.1
and x26.3, respectively).

In addition to the open equality axiom (c), the equality axioms

α1 = β1 & . . .& αli = βli → fi(x1, . . . , xki , α1, . . . , αli) = fi(x1, . . . , xki , β1, . . . , βli),

are provable for all function constants fi. Thus IA1 satisfies the replacement
property of equality for functors as well as for terms.

IA1 can only prove the existence of primitive recursive sequences, in the sense
that each closed theorem of the form ∃αA(α) has a primitive recursive witness.
The finite list of primitive recursive function constants, with their correspond-
ing axioms, is intended to be expanded as needed. Here we use the λ notation
to explicitly define termwise multiplication of sequences: (α · β) will abbreviate
λx(α(x) · β(x)). We also define sg(α) = λx.sg(α(x)), in effect adding binary se-
quence variables to L1.

1.3. Intuitionistic recursive analysis IRA. The principle of countable choice
for numbers is expressed in L1 by the schema (∗2.2 in [6]):

AC00 : ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)),

1f0 − f3 are 0,′ ,+, · respectively. f4(a, b) = ab (exponentiation), and f5, . . . , f20 represent the
primitive recursive function(al)s a!, a−̇b, pd(a), min(a, b), max(a, b), sg(a) = 1−̇a, sg(a) =
1−̇(1−̇a), |a − b|, rm(a, b), [a/b], Σy<bα(y), Πy<bα(y), miny≤bα(y), maxy≤bα(y), pa (the ath

prime, with p0 = 2), and (a)i (the exponent of pi in the prime factorization of a) respectively. We
write (a)i for f20(a, i), and similarly for the other function constants. f21(a) = lh(a) = Σi<asg((a)i)
represents the number of positive exponents in the prime factorization of a. Bounded quantifiers
are defined with the help of bounded sum and product. Seq(a) is a prime formula equivalent to
a > 0 & ∀i < lh(a) (a)i > 0, expressing “a codes the finite sequence ((a)0−1, . . . , (a)lh(a)−1−1)”.
f22(a,b) = a ∗ b produces a code for the concatenation of two finite sequences from their codes.

〈 〉 = 1 codes the empty sequence, and f23(x, α) = α(x) = Πi<xp
α(i)+1
i represents the standard

code 〈α(0) + 1, . . . , α(x − 1) + 1〉 for the xth initial segment of α. This coding is not onto N,
but it satisfies 〈a0 + 1, . . . , ak + 1〉 ∗ 〈ak+1 + 1, . . . , am + 1〉 = 〈a0 + 1, . . . , am + 1〉. In contrast,

f24(x, α) = α̃(x) = Πi<xp
α(i)
i cannot code finite sequences directly as 〈a0, . . . , ak〉 = 〈a0, . . . , ak, 0〉.

f25(a, b) = a ◦ b = Πi<max(a,b)p
max((a)i,(b)i)
i , and f26(y) = ccp(y) represents the course-of-values

function for the characteristic function of the predicate “y is a computation tree number.” These
suffice for Kleene’s formal treatment ([5] Part I) of recursive partial functionals, including the
recursion theorem and a normal form theorem.
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where α, x must be free for y in A(x, y). Intuitionistic recursive analysis IRA
can be axiomatized, as a subsystem of Kleene and Vesley’s B, by IA1 + qf-AC00,
where qf-AC00 is the restriction of AC00 to formulas A(x, y) without sequence
quantifiers and with only bounded number quantifiers. IRA ensures that the range
of the type-1 variables contains all general recursive sequences and is closed under
general recursive processes. Troelstra’s EL and Veldman’s BIM are alternative
axiomatizations of IRA, cf. [8], [7].

In the two-sorted language, IRA + MP1 + CT1 formalizes Russian recursive
analysis (RUSS in [2]), where MP1 is the functional form of Markov’s Principle

MP1 : ∀α[¬¬∃xα(x) = 0→ ∃xα(x) = 0]

and CT1 expresses Church’s Thesis:

CT1 : ∀α∃e∀x∃y[T0(e, x, y) & U(y) = α(x)].

The general recursive functions form a classical ω-model of RUSS and hence of
IRA, but RUSS + AC00 (unlike IRA + AC00) is inconsistent with classical logic.

2. Definition of the Translation, and Properties Proved in IA1

2.1. Definition. Let Z(α) abbreviate ∃xα(x) = 0. To each formula E of L1 and
each sequence variable α not occurring in E, we associate another formula Eα with
the same free variables plus α, by induction on the logical form of E as follows. For
cases 4 and 5, β should be distinct from α, and Asg(β) is the result of substituting
sg(β) for γ in the definition of Aγ . Similarly for Bα·β in Case 4.

(1) Pα is P ∨ Z(α) if P is prime.
(2) (A & B)α is Aα & Bα.
(3) (A ∨ B)α is Aα ∨ Bα.

(4) (A→ B)α is ∀β(Asg(β) → Bα·β).

(5) (¬A)α is ∀β(Asg(β) → Z(α · β)).
(6) (∀xA(x))α is ∀xAα(x).
(7) (∃xA(x))α is ∃xAα(x).
(8) (∀γA(γ))α is ∀γAα(γ).
(9) (∃γA(γ))α is ∃γAα(γ).

From now on, let α ∈ 2N abbreviate α = sg(α).

2.2. Proposition.

(a) IA1 ` ∀α∀β(Z(α · β)↔ Z(α) ∨ Z(β)).

(b) IA1 ` ∀α(Eα ↔ E(sg(α))) for all formulas E.
(c) IA1 ` ∀α ∈ 2N(E(α)↔ E(sg(α))).

Proofs. (a) holds by intuitionistic logic, (b) is proved by formula induction, and
the replacement property of equality for functors guarantees (c).

2.3. Lemma. IA1 ` ∀α∀β∀γ(Eα & γ = α · β → Eγ).

Proof. Only Cases 4 and 5 require attention. If E is A→ B where A,B both
satisfy the lemma, assume (A→ B)α & γ = α · β. If Asg(δ) then Bα·δ by definition
of (A→ B)α, and δ · γ = (α · δ) · β so Bδ·γ by the induction hypothesis on B. So
(A→ B)γ .

If E is ¬A where A satisfies the lemma, assume (¬A)α & γ = α · β. If Asg(δ),
then Z(α · δ) by definition of (¬A)α, so Z(γ · δ) by Proposition 2.2(a). So (¬A)γ .

2.4. Lemma. IA1 ` ∀α(Z(α)→ Eα) for all formulas E.
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2.5. Lemma.

(a) IA1 ` ∀α ∈ 2N((A→ B)α → (Aα → Bα)).
(b) IA1 ` ∀α ∈ 2N(A→ B)α ↔ ∀α ∈ 2N(Aα → Bα).

Proofs. (a) follows immediately from the definition and Proposition 2.2(b) with
the fact that α · α = α for all α ∈ 2N.

For (b), the implication from left to right follows from (a) by logic. For the

converse assume ∀α ∈ 2N(Aα → Bα) and α ∈ 2N and Asg(β); then Bsg(β) by the
assumption, so Bβ by Proposition 2.2(b), so Bα·β by Lemma 2.3. So (A→ B)α.

2.6. Lemma. If E is ∃xα(x) = 0 (i.e., Z(α)) then IA1 proves:

(a) ∀β ∈ 2N(Eβ ↔ E ∨ Z(β)).
(b) ∀β ∈ 2N((¬E)β ↔ (E→ Z(β))).
(c) ∀β ∈ 2N((¬¬E)β ↔ E ∨ Z(β)).
(d) ∀β ∈ 2N(¬¬E↔ E)β.

Proofs. (a) is immediate by Definition 2.1 with intuitionistic logic. For (b),
under the assumption β ∈ 2N and using (a), Proposition 2.2, intuitionistic logic
and the fact that β · β = β, we have the following chain of equivalences:

(¬E)β ↔ ∀γ ∈ 2N(Eγ → Z(β · γ))

↔ ∀γ ∈ 2N(E ∨ Z(γ)→ Z(β · γ))

↔ ∀γ ∈ 2N(E→ Z(β · γ))↔ (E→ Z(β)).

For (c), under the assumption β ∈ 2N, by (b) we have

(¬¬E)β ↔ ∀γ ∈ 2N((¬E)γ → Z(β · γ))↔ ∀γ ∈ 2N((E→ Z(γ))→ Z(β · γ)).

If ∀γ ∈ 2N((E→ Z(γ))→ Z(β · γ)), let γ = sg(α); then Z(γ)↔ Z(α) and γ ∈ 2N.
Then (Z(γ)→ Z(γ))→ Z(β · γ) since E is Z(α), so Z(β · γ), so Z(β) ∨ Z(γ) by
Proposition 2.2(a), so Z(β) ∨ E, so E ∨ Z(β). For the converse use Proposition
2.2(a). Then (d) follows from (a) and (c) with Lemma 2.5(b).

2.7. Lemma.

(a) If E has no → or ¬ then IA1 ` (Eλz.1 ↔ E).
(b) IA1 ` (¬A)λz.1 → ¬(Aλz.1) for all formulas A.
(c) If E is constructed from prime formulas and their negations using only &

and ∨, then IA1 ` (Eλz.1 → E).

3. Applications to Subsystems of Kleene’s Formal System I for
Intuitionistic Analysis

3.1. Theorem. If T is a theory extending IA1 by axioms and axiom schemas
F1, . . . ,Fn such that T ` ∀β ∈2N (Fi)

β for i = 1, . . . , n, and if E is derivable in T
from assumptions A1, . . . ,Am with all free variables held constant in the deduction,
then Eβ is derivable in T from the assumptions β ∈ 2N, (A1)

β,. . . ,(Am)β with all
free variables held constant.

Proof. IA1 ` ∀α ∈ 2N Eα when E is any axiom of IA1, using the lemmas in the
previous section with ∀α ∈ 2N(α · α = α) as appropriate (e.g. for the mathematical
induction schema). If Bβ and (B→ C)β are derivable in IA1 from β = sg(β),
(A1)

β,. . . ,(Am)β with the free variables held constant, then by Lemma 2.5(a) so
is Bβ → Cβ, and therefore also Cβ. Similarly for the other rules of inference.
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3.2. Lemma. IA1 + AC00 ` ∀β ∈ 2N(AC00)
β, and similarly for qf-AC00, AC01.

Proofs. By the definition with Lemma 2.5(b).

3.3. Lemma. IA1 + BI1 ` ∀β ∈ 2N(BI1)
β where BI1 is the bar induction schema

∀α∃xρ(α(x)) = 0 & ∀w(Seq(w) & ρ(w) = 0→ A(w))

& ∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

Proof. Assume β ∈ 2N and

(i) (∀α∃xρ(α(x)) = 0)β,
(ii) (∀w(Seq(w) & ρ(w) = 0→ A(w)))β,
(iii) (∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w)))β.

By Lemma 2.5 it will be enough to prove Aβ(〈 〉). By the definition and the
lemmas in the previous section, over IA1 the numbered assumptions are equivalent
respectively to

(i’) ∀α∃x(ρ(α(x)) = 0 ∨ Z(β)),
(ii’) ∀w∀γ ∈ 2N((Seq(w) & ρ(w) = 0) ∨ Z(γ)→ Aβ·γ(w))),

(iii’) ∀w∀γ ∈ 2N(Seq(w) & ∀sAγ(w ∗ 〈s + 1〉)→ Aβ·γ(w)).

In IA1 we may define σ ∈ 2N so that

σ(w) = 0↔ ρ(w) = 0 ∨ ∃x ≤ wβ(x) = 0.

From (i’) it follows immediately that ∀α∃xσ(α(x) = 0). From (ii’) with γ = β
and the fact that β = β · β we have ∀w(Seq(w) & σ(w) = 0→ Aβ(w)). From (iii’)
similarly, ∀w(Seq(w) & ∀sAβ(w ∗ 〈s + 1〉)→ Aβ(w)), so Aβ(〈 〉) follows by BI1.

3.4. Lemma. IA1 + CC10 ` ∀β ∈ 2N (CC10)
β where CC10 is

∀α∃xA(α, x)→ ∃σ∀α(∃yσ(α(y)) > 0 & ∀y(σ(α(y)) > 0→ A(α, σ(α(y)−̇1)))).

CC10 is a minor variation of, and is equivalent over IA1 + qf-AC00 to, Kleene and
Vesley’s continuous choice schema ∗27.2 (“Brouwer’s Principle for numbers”).

Proof. Assume β ∈ 2N and ∀α∃xAβ(α, x). By Lemma 2.5(b) it will be enough
to find a σ such that for all α:

(i) ∃y(σ(α(y)) > 0 ∨ Z(β)) and
(ii) ∀y∀γ ∈ 2N(σ(α(y)) > 0 ∨ Z(γ)→ Aβ·γ(α, σ(α(y)−̇1))).

CC10 provides a σ such that for all α:

(i’) ∃y σ(α(y)) > 0 and
(ii’) ∀y(σ(α(y)) > 0→ Aβ(α, σ(α(y)−̇1))).

Obviously (i’) entails (i). To prove (ii), let y ∈ N and γ ∈ 2N. If σ(α(y)) > 0 then
Aβ·γ(α, σ(α(y)−̇1)) by (ii’) with Lemma 2.3, and if Z(γ) then Aβ·γ(α, σ(α(y)−̇1))
by Lemmas 2.4 and 2.3, so σ(α(y)) > 0 ∨ Z(γ)→ Aβ·γ(α, σ(α(y)−̇1)).

3.5. Lemma. IA1 + qf-AC00 + CC11 ` ∀γ ∈ 2N (CC11)
γ where CC11 is

∀α∃βA(α, β)→ ∃σ∀α∃β[∀x∃y(σ(〈x + 1〉 ∗ α(y)) = β(x) + 1

& ∀z < y σ(〈x + 1〉 ∗ α(z)) = 0) & A(α, β)],

which is equivalent over IA1 + qf-AC00 to Kleene’s strongest continuous choice
principle, “Brouwer’s Principle for functions” (axiom schema x27.1 in [6]).



6 J. R. MOSCHOVAKIS

Proof. Assume γ ∈ 2N and ∀α∃βAγ(α, β). By Lemma 2.5(b) it will be enough
to find a σ such that

∀α∃β∀δ ∈ 2N[∀x∃y((σ(〈x + 1〉 ∗ α(y)) = β(x) + 1

& ∀z < y σ(〈x + 1〉 ∗ α(z)) = 0) ∨ Z(δ)) & Aγ·δ(α, β)].

CC11 provides a σ such that

∀α∃β[∀x∃y(σ(〈x + 1〉 ∗ α(y)) = β(x) + 1

& ∀z < y σ(〈x + 1〉 ∗ α(z)) = 0) & Aγ(α, β)],

which suffices by the definition with Lemma 2.3.

3.6. Corollary. If T is IA1, Kleene’s neutral theory B = IA1 + AC01 + BI1,
Kleene’s intuitionistic analysis I = B + CC11 or any subsystem of I obtained by
adding to IA1 any of the schemas qf-AC00, AC00, AC01, BI1 and/or CC10, then
T + MP1 and T prove the same Π0

2 statements.

Proof. By Lemma 2.6(d), T ` ∀β ∈ 2N(MP1)
β. Hence by Theorem 3.1 with

Lemmas 3.2 - 3.5, if T + MP1 ` E then T ` ∀β ∈ 2N Eβ.
If E is ∀x∃yA(x, y) where A(x, y) has only bounded numerical quantifiers, then

A(x, y) is equivalent over IA1 to a formula of the type described in Lemma 2.7(c),
so by Theorem 3.1: if T + MP1 ` E then T ` Eλz.1 so T ` E.

3.7. Remarks. Lemma 2.7(c) holds also for formulas E constructed from prime
formulas and their negations using only &,∨,∀ and ∃, in particular for all prenex
formulas. It follows, for each subsystem T of Kleene’s I described in the statement
of Corollary 3.6, that any prenex formula provable in T + MP1 is provable in T.

Kleene’s original versions of the continuous choice principles would also satisfy
Lemmas 3.4 and 3.5 over IA1 + qf-AC00. By Theorem 3.1 and Lemma 2.5, the
equivalences between our versions and Kleene’s persist under the translation, and
the proofs for CC10 and CC11 are simpler.

The question whether or not the “minimal” system M = IA1 + AC00! proves
the same Π0

2 formulas as M + MP1 is still open, as far as we know, because
(∀x∃!yA(x, y))α does not entail ∀x∃!yAα(x, y) unless α = λx.1. However, if

AC∨00 : ∀x(A(x) ∨ B(x))→ ∃α∀x[(α(x) = 0 & A(x)) ∨ (α(x) 6= 0 & B(x))]

is the axiom of countable choice for two alternatives, then IRA + AC∨00 + MP1

is Π0
2-conservative over IRA + AC∨00 by Theorem 3.1. Since AC00! is equivalent

over IRA to
∀x(A(x) ∨ ¬A(x))→ ∃α∀x(α(x) = 0↔ A(x))

by [7], any prenex formula provable in M + MP1 is provable in IRA + AC∨00.
Because the translation E 7→ Eβ essentially involves binary sequence quantifiers,

it does not appear to solve the corresponding problem for IA1 + ACAr
00 or for

Solovay’s system S = IA1 + ACAr
00 + BI1, where ACAr

00 is the restriction of AC00 to
arithmetical formulas A(x, y) (with sequence parameters allowed). In the presence
of bar induction, arithmetical countable choice interacts strongly with MP1; e.g.
Solovay showed that the classical version S + (¬¬A→ A) of S can be interpreted
negatively in IRA + BI1 + MP1.

2

2In fact, his proof justifies a stronger result: S + (¬¬A→ A) can be interpreted negatively
in IRA + BI1 + DNS1, where DNS1 is the schema ∀α¬¬∃xA(α(x))→ ¬¬∀α∃xA(α(x)) for
quantifier-free formulas A(w). Another note with this and related results is in progress.
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