Challenge problems

1. Write $3x^3 + 4x^2 + 5x + 6$ in nested form, & evaluate it @ -2, 3.

 Solution: $p(x) = (3x+4)x+5)x+6$; \[p(-2) = \frac{2}{3} \quad p(3) = 56 \] So $p(5) = -12$. This is the "synthetic division" approach.

 Another approach: $2x+4 \rightarrow 13x+5 \rightarrow 10x+6 \rightarrow 10x+5 \rightarrow -\frac{2}{3}$. So $p(-2) = 138$.

2. Evaluate $p(x) = 8x^5 - 20x^4 - 9x^3 + 30x^2 - 100x + 16$ mentally @ $x = 2, 3$.

 Solution: the process is $p(2) = 82 - 20(4) - 9(8) + 30(16) - 100(2) + 16 = -200 = p(2)$;
 $p(3) = 83 - 20(27) - 9(27) + 30(81) - 100(3) + 16 = 67 = p(3)$

3. Given $a < b$, n ∈ N, $h = \frac{b-a}{n}$, $x_k = a + kh$, for $k = 0, \ldots, n$, and $f \in C^n([a, b])$, show that $\| f - p_n \|_\infty \leq \frac{h^{n+1} \| f^{(n+1)} \|_\infty}{(n+1) \cdot n!}$.

 Solution: $\| f - p_n \|_\infty \leq \max_{x \in [a, b]} | f(x) - p_n(x) | = \max_{x \in [a, b]} \left| \frac{1}{(n+1) \cdot n!} \int_{a}^{b} (x - x_k)^{n+1} f^{(n+1)}(x) \, dx \right|$

4. Use the error bound & notation in problem 3 to find an index $n \in N$ such that $\| f - p_n \|_\infty \leq \frac{1}{4}$, where $f(x) = \sin(x)$ in $(5, x)$.

 Solution: $\| f^{(n+1)}(x) \|_{\infty} \leq | f^{(n+1)}(x) |_{\infty}$, so $\| f^n \|_\infty \leq | f^n(x) |_{\infty}$.

5. Find the error in estimating $f^n(x)$ with $f^n(x) = \frac{f(x)-2f(x)+f(2x)}{h^2}$.

 Solution: $\left| f^n(x) - \frac{f(x) - 2f(x) + f(2x)}{h^2} \right| = \left| \frac{h^2}{12} \left[f^{(3)}(x_0) + 2f^{(3)}(x_1) + f^{(3)}(x_2) \right] \right|$

 But $\left| f^n(x) - \frac{f(x) - 2f(x) + f(2x)}{h^2} \right| = \frac{h^2}{12} \left[f^{(3)}(x_0) + 2f^{(3)}(x_1) + f^{(3)}(x_2) \right]$
6. If \(x_0 < x_1 < ... < x_n = b, S: \mathbb{R}^n \) for \(i = 0, ... , n \). Show that the Hermite polynomial \(p \) satisfying \(p^{(k)}(x_i) = f^{(k)}(x_i) \) for all \(i = 0, ... , n \) and all \(k = 0, ... , n \) is the unique polynomial of degree \(\leq n \) satisfying that property.

Solution: Suppose \(g \) is another degree \(\leq n \) polynomial with \(g^{(k)}(x_i) = f^{(k)}(x_i) \) for all \(i = 0, ... , n \) and all \(k = 0, ... , n \).

Then \(g^{(k)}(x_i) = p^{(k)}(x_i) \) \(\forall i = 0, ... , n \), \(\forall k = 0, ... , n \), so we may view \(p \) as a Hermite polynomial for \(g \), and thus we can use the error formula \(g(x) = p(x) + (x-x_i)^2 + (x-x_i)^4 + \cdots + (x-x_i)^{2n} \cdot \sum_{j=0}^{n} \frac{f^{(j)}(x_i)}{j!} \), where \(N = 2n \). But \(g \) is degree \(\leq 2n \), so \(g^{(n)} = 0 \).

Thus \(g = p \), and the Hermite polynomial is unique.

Note: Instead of using the error formula for Hermite polynomials, we can use a direct argument:

Put \(g(x) = p(x) - f(x) \). Then \(g^{(k)}(x_i) = 0 \) \(\forall i = 0, ... , n \), \(\forall k = 0, ... , n \). Then \(g \) has \(\sum_{i=0}^{n} \) zeros (including multiplicities) and is degree \(\leq 2n \).

So \(g^{(n)}(x) = 0 \) for some \(x_i \), \(0 < x_i \), and \(g \) has a zero of multiplicity \(n+1 \) at \(x_i \).

So \(g^{(n)}(x) = 0 \) for some \(x_i \), \(0 < x_i \), and \(g \) has a zero of multiplicity \(n+1 \) at \(x_i \).

Graphically: Zeros of \(g^{(n)} \).

7. If \(f \) is the Lagrange polynomial for \(f \) using nodes \(a = x_0 < ... < x_n = b \), find an expression for the error \((f - p) \) in an approximate manner by \(p \) over \([a,b] \).

Solution: \(\forall x \in [a,b] \) we have \(f(x) = p(x) + (x-x_0)(x-x_1)(x-x_2)...(x-x_n) \cdot f[x_0, ... , x_n, x] \). Differentiating \(\forall x \in [a,b] \) yields \(f'(x) = p'(x) + (x-x_0)(x-x_1)(x-x_2)...(x-x_n) \cdot f[x_0, ... , x_n, x] \cdot \text{linear combo of } f(x_0), f(x_1), f(x_2), \ldots, f[x_0, ... , x_n, x] \).

In particular, assuming \(f \) is at least \(C_2 \), we get \(f'(x) = p'(x) + (x-x_0)(x-x_1)(x-x_2)...(x-x_n) \cdot f[x_0, ... , x_n, x] \).

8. If \(f[1] = 16, f[1,2] = 13, \) and \(f[1,2,3] = 7 \), find \(f[3] \).

Solution: \(x_i \):
\[
\begin{array}{c|c|c|c}
1 & 16 & 6 \times 7 & 6 \\
2 & 13 & 4 \times 3 & 4 \\
3 & 7 & 2 \times 4 & 2 \\
\end{array}
\]

By filling in the missing entries:
\[
\begin{array}{c}
7 = \frac{f[1,2] - 13}{2 - 1} \\
-13 = \frac{f[2] - 16}{2 - 1} \\
1 = \frac{f[3] - 7}{2 - 1} \\
\end{array}
\]

Thus \(f[3] = 4 \).

9. Let \(p_{x_0, ..., x_n}(x) \) denote the Lagrange interpolating polynomial matching \(f \) at \(x_0, ... , x_n \). If \(p_5(10) = 56, p_{6}(x) = 8 - 2x, \) find \(p_{5}(3) \).

Solution: Use Neville's method.
\[
p_{3,6}(3) = \frac{8 - 2 \cdot 3}{3 - 1} = \frac{2}{2} = 1
\]

10. Let \(f \) denote the piecewise linear spline \(S \) with knots at \(a = x_0 < x_1 < ... < x_n = b \), and find an expression for the error \(\Delta f \) in approximating \(f \) by \(S \) over \([x_0, x_n] \). Assume \(f \) is the first order Lagrange interpolant for \(f \) over \([x_{i-1}, x_i] \), \(f(x_n) = f[x_0, x_1, ..., x_{n-1}, x_n] \). This defines \(f \) over \([x_0, x_n] \). Over each \([x_{i-1}, x_i] \), \(f \) is the first order Lagrange interpolant for \(f \) over \([x_{i-1}, x_i] \), \(f(x_n) = f[x_0, x_1, ..., x_{n-1}, x_n] \). The definition of \(f \) over \([x_0, x_n] \) gives the spline \(S(x) \) as \(f(x) = (x-x_{i-1}) \cdot f(x_i) + \frac{f(x_{i-1}) + f(x_i)}{2} \cdot \text{error} \).

Note: The definition of the error is the difference between the actual function \(f \) and the approximating spline \(S \).
If \(s(a) \) and \(s''(a) \) are specified, then there are 4 constraints imposed on \(p_i \), which may be viewed as a certain Hermite polynomial, so all 4 coefficients of \(p_i \) can be uniquely determined. Then \(p_i(x), p_i'(x), p_i''(x), \) and \(p_i'''(x) \) are specified (as \(s \) must be \(C^2 \)), so \(p_i \) is uniquely determined, etc. So it seems reasonable to assume that we can impose 2 extra conditions on our spline to uniquely specify it. This leads to the two most common cubic splines: natural & clamped.

Natural: \(s''(a) = 0 = s''(b) \)

Clamped: \(s(a) = f(a), s'(b) = f'(b) \)

Let’s track down the \(c_i \)’s & get a recursive relationship:

\[
\begin{align*}
(p_i(x_i)) &= f(x_i) & \text{for } i = 1, \ldots, n \\
p_i'(x_i) &= f'(x_i) & \text{for } i = 1, \ldots, n \\
p_i''(x_i) &= f''(x_i) & \text{for } i = 1, \ldots, n \\
p_i'''(x_i) &= f'''(x_i) & \text{for } i = 1, \ldots, n
\end{align*}
\]

\[
\begin{align*}
a_i &= f(x_i) \\
b_i + 2c_i + 3d_i &= f'(x_i) \\
b_i + 2c_i + 3d_i &= f''(x_i)
\end{align*}
\]

\[
\begin{align*}
-2b_i - c_i + 3d_i &= f'''(x_i) \\
-3b_i - 2c_i + 3d_i &= f''''(x_i)
\end{align*}
\]

\[
\begin{align*}
2b_i &= -c_i + 3d_i \\
\frac{1}{3}c_i + \frac{1}{3}b_i &= -c_i + \frac{2}{3}a_i \\
\frac{1}{3}b_i + \frac{1}{3}c_i &= -c_i + \frac{2}{3}a_i
\end{align*}
\]

\[
\begin{align*}
c_{i-1} - 3b_i - 2c_i + 3d_i &= f'''(x_i) \\
c_{i-1} - 3b_i - 2c_i + 3d_i &= f''''(x_i)
\end{align*}
\]

\[
\begin{align*}
c_{i-1} - 3b_i - 2c_i + 3d_i &= f'''(x_i) \\
c_{i-1} - 3b_i - 2c_i + 3d_i &= f''''(x_i)
\end{align*}
\]

\[
\begin{align*}
c_{i-1} - 3b_i - 2c_i + 3d_i &= f'''(x_i) \\
c_{i-1} - 3b_i - 2c_i + 3d_i &= f''''(x_i)
\end{align*}
\]

Thus, writing a linear system for the \(c_i \)’s, we get:

\[
\begin{pmatrix}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & -2 & 1
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{pmatrix}
=
\begin{pmatrix}
f_1 - f_{n-1} \\
f_2 - f_{n-1} \\
\vdots \\
f_n - f_{n-1}
\end{pmatrix}
\]

Thus, the linear system is:

\[
\begin{pmatrix}
-a_1 & 0 & \cdots & 0 \\
1 & -a_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
=
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & \cdots & 0 \\
0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{pmatrix}
=
\begin{pmatrix}
\frac{b_1}{2} + 2c_1 + 3d_1 \\
\frac{b_2}{2} + 2c_2 + 3d_2 \\
\vdots \\
\frac{b_n}{2} + 2c_n + 3d_n
\end{pmatrix}
\]

Side note: this linear system will generally be better conditioned if we instead use \(p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 \), but for the case of equispaced knots \((h = b - a) \), it is not matter.
The resulting linear system for either natural or clamped cubic splines is diagonally dominant: \[A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad |a_{ii}| > \sum_{j \neq i} |a_{ij}|. \]

Suppose \(Ax = 0 \) for some \(x \neq 0 \). Set \(k \) so that \(|x_k| = \|x\|_{\infty} \). Then \(|x_k| > 0 \), and looking at the \(k \)-th row of \(Ax = 0 \) we get:

\[
0 = \sum_{j \neq i} a_{ij} x_j \geq |a_{ik} x_k| - \sum_{j \neq i, j \neq k} |a_{ij} x_j| - \sum_{j \neq i} |a_{ij} x_j| = |a_{ik} x_k| - \sum_{j \neq i} |a_{ij} x_j| = |x_k| - \sum_{j \neq i} |a_{ij} x_j| = 0,
\]

contradiction by the triangle inequality.

Hence \(\ker(A) = \{0\} \), so \(A \) is invertible.

This proves existence & uniqueness of both natural & clamped cubic splines, as we've just shown that every diagonally dominant matrix is invertible, so we can uniquely solve all the coefficients \(\phi_i \) of the spline.

Also, the system for the \(c_i \)'s is tridiagonal in addition to being diagonally dominant. Thus it admits a handy LU-factorization as follows

\[
A = LU,
\]

where

\[
L = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
l_2 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
l_n & l_{n-1} & l_{n-2} & \cdots & 1 \\
\end{pmatrix},
\]

\[
U = \begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
0 & \alpha_{22} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{nn} \\
\end{pmatrix}.
\]

Note: If \(k \) is least such that \(d_k = 0 \), then \(A_k := \begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\
0 & \alpha_{22} & \cdots & \alpha_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{kk} \\
\end{pmatrix}\) is not invertible; but \(A_k \) is diagonally dominant, so it must be invertible; contradiction. Thus no \(d_k \) is \(0 \), and the above algorithm for finding the LU-factorization works.

Then the linear system for the \(c_i \) coefficients of the cubic spline is of the form \(LU \boldsymbol{x} = \boldsymbol{b} \).

Set \(\tilde{\boldsymbol{x}} = \boldsymbol{U} \boldsymbol{x} \). Solve \(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{x}} = \tilde{\boldsymbol{b}} \) for \(\tilde{\boldsymbol{x}} \) by back-substitution:

\[
\begin{pmatrix}
l_1 & 0 & 0 & \cdots & 0 \\
l_2 & l_1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
l_n & l_{n-1} & l_{n-2} & \cdots & 1 \\
\end{pmatrix}
\begin{pmatrix}
w_1 \\
w_2 \\
\vdots \\
w_n \\
\end{pmatrix} =
\begin{pmatrix}
1 \\
l_2 \\
\vdots \\
l_n \\
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\end{pmatrix},
\]

so

\[
w_k = b_k - l_{k-1} w_{k-1} \quad (\text{for } k = 2, \ldots, n).
\]

Then solve \(\boldsymbol{U} \boldsymbol{x} = \tilde{\boldsymbol{x}} \) for \(\boldsymbol{x} \) by back-substitution:

\[
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
0 & \alpha_{22} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{nn} \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{pmatrix} =
\begin{pmatrix}
w_1 \\
w_2 \\
\vdots \\
w_n \\
\end{pmatrix},
\]

so

\[
x_k = w_k - d_k x_{k-1} \quad (\text{for } k = n-1, n-2, \ldots, 1).
\]

Normally, Gaussian elimination takes \(O(n^3) \) time (multiplications/divisions). But by the above process, solving a diagonally dominant tridiagonal system only takes about \(5n \) multiplications/divisions, so the system is solved in \(O(n) \) time, a remarkable improvement!

Note: instead of doing this LU factorization, you can equivalently do Gaussian elimination on \(A \) and still solve the system in \(O(n) \) time, as \(A \) is tridiagonal.
Error in approximating functions by splines: if the cubic spline instead satisfied \(s(x) = f(x) \) (breaking continuity of the 2nd derivative) is then the spline \(S \) over \([x_0, x_5]\) can be viewed as a Hermite interpolating polynomial, so using the Hermite interpolation error bound, we get:

\[
|\text{error}| \leq \frac{h^4}{16} \left(\max_{x \in [x_0, x_5]} |f^{(4)}(x)| \right)
\]

where \(h = \max_{i} x_i \). The error for natural \& clamped cubic splines is harder to show, but for clamped it's \(O(h^4) \) everywhere, and for natural it's \(O(h^3) \) near endpoints a & b and \(O(h^4) \) away from a & b.

The two types of cubic splines mentioned also have a “least curvature” property:

Suppose \(g \in C^2([a,b]) \), \(g(x_i) = f(x_i) \) \(i = 0, \ldots, n \), and \(s \) is the natural cubic spline for \(f \) with knots \(x_0, \ldots, x_n \). Then

\[
\int_a^b (s''(x))^2 \, dx \leq \int_a^b (g''(x))^2 \, dx,
\]

with equality if \(g = s \).

Proof: Set \(e(x) = g(x) - s(x) \). Then

\[
\int_a^b (e''(x))^2 \, dx = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} (e''(x))^2 \, dx = \sum_{i=1}^n \left[e(x_i) s''(x_i) - e(x_{i-1}) s''(x_{i-1}) \right] = e'(b)s''(b) - e'(a)s''(a) - \sum_{i=1}^n e(x_i) s''(x_i)
\]

\[
\implies -\sum_{i=1}^n e(x_i) s''(x_i) = -\sum_{i=1}^n \left[e(x_i) s''(x_i) - e(x_{i-1}) s''(x_{i-1}) \right] = 0
\]

for natural cubic splines.

Thus

\[
\int_a^b (g''(x))^2 \, dx = \int_a^b (e''(x))^2 \, dx + \int_a^b (s''(x))^2 \, dx + \int_a^b (e''(x))^2 \, dx = \int_a^b (s''(x))^2 \, dx + \int_a^b (g''(x))^2 \, dx
\]

If \(e''(x) \neq 0 \) for some \(x \), then \(g \) is not the same as \(s \), and \(\int_a^b (e''(x))^2 \, dx \geq \int_a^b (s''(x))^2 \, dx \).

If \(e''(x) = 0 \), then by integrating, \(g(x) = ax + b + s(x) \). But then

\[
\int_a^b (g''(x))^2 \, dx < \int_a^b (s''(x))^2 \, dx
\]

If \(g''(x) = 0 \), then by integrating, \(g(x) = ax + b + s(x) \). But then

\[
\int_a^b (g''(x))^2 \, dx = \int_a^b (s''(x))^2 \, dx
\]

We can get a similar result for clamped splines by forcing \(g \) to also satisfy

\[
g'(a) = f'(a) \quad \text{and} \quad g'(b) = f'(b),
\]

since this makes \(e(x) \) true as well, since then

\[
e'(a) = g'(a) - s'(a) = f'(a) - f'(a) = 0
\]

and similarly for \(e'(b) = 0 \). There are many other types of splines, but we won't cover them here. They generalize Hermite polynomial interpolation, which already generalizes Lagrange interpolation & Taylor polynomials, and they don't suffer from problems with high-order polynomial interpolation associated with Runge's phenomenon. They are a rich and useful class of functions to study.