1. Solve the following constant-coefficient difference equations.

(a)
\[x_{k+1} - x_k - 6x_{k-1} = 0 \]
\[x_0 = 3 \]
\[x_1 = 4 \]

(b)
\[x_{k+1} + 6x_k + 9x_{k-1} = 0 \]
\[x_0 = 1 \]
\[x_1 = 0 \]

(c)
\[x_{k+1} + 9x_{k-1} = 0 \]
\[x_0 = 3 \]
\[x_1 = 2 \]

(d)
\[x_{k+1} - 2x_k + 2x_{k-1} = 0 \]
\[x_0 = 2 \]
\[x_1 = 0 \]

(e)
\[x_{k+1} + 2x_k + 4x_{k-1} = 0 \]
\[x_0 = 0 \]
\[x_1 = 1 \]

2. 42) 2,3,4,5,6,7,9.

3. This continues 42) # 7 above. Recall that the linearization from part a) is

\[\frac{dx}{dt} = -ax(t - t_d). \]

(a) The Lambert-W function is defined as \(W(x) = f^{-1}(x) \), where \(f(x) = xe^x \). Show that if \(a < 0 \) then \(x = e^{rt} \) is a solution when \(r = \frac{1}{td} W(-at_d) \)

(b) Show that if \(a > 0 \) then there are two solutions of the form \(e^{rt} \) when \(0 < t_d < \frac{1}{ae} \).

(Hint: There are lots of ways to do this. Draw the picture of \(r = -ae^{-rt_d} \) when there are two solutions. Now subtract \(r \) and \(-ae^{-rt} \). There are then two solutions when \(r + ae^{-rt_d} \) crosses below the \(r \) axis. Solve for the value of \(r \) that gives the minimum, and then set the minimum to zero.)
(c) This means when \(a > 0 \) and \(at_d > \frac{1}{e} \), there are no real solutions for \(r \), but there are complex solutions. Show that if \(r = \alpha + \beta i \) solves \(r = -ae^{-rt_d} \) then so does \(r = \alpha - \beta i \). Use this to conclude that there are oscillatory solutions to \(\frac{dx}{dt} = -ax(t-t_d) \) of the form \(x = e^{\alpha t} \cos(\beta t) \). (Use Euler’s Identity!)

(d) When \(\alpha > 0 \), the oscillatory solutions \(e^{\alpha t} \cos(\beta t) \) become unstable. Show this happens when \(at_d > \frac{\pi}{2} \). (Hint: Use Euler’s Identity and set \(\alpha = 0 \) to solve \(r = -ae^{-t_dr} \).)

(e) It is a (nonobvious) theorem that a critical point of a nonlinear delay DE is stable if and only if the solutions of the form \(x(t) = e^{rt} \) of the linearization at the critical point satisfy \(\lim_{t \to \infty} x(t) = 0 \). We have been discussing the linearization of the logistic equation around the equilibrium \(N = \frac{a}{b} \). For what values of \(t_d \) are there stable oscillations around the critical point? For what values of \(t_d \) do the oscillations become unstable?

(f) How does this compare with the answer for the discrete logistic equation with delay? (Section 42... look for the values of \(a\Delta t \) that give convergent oscillation and unstable oscillation, and remember that \(t_d = \Delta t \) there.)

4.
\[
\begin{align*}
\frac{dx}{dt} &= x(9 - 3y) \\
\frac{dy}{dt} &= y(10x - 5)
\end{align*}
\]

(a) Find the nullclines and direction arrows.

(b) Sketch the general solution.

(c) Sketch \(x(t) \) and \(y(t) \) if \(x(0) = 1, y(0) = 3 \).

5.
\[
\begin{align*}
\frac{dx}{dt} &= x(5 - x - 3y) \\
\frac{dy}{dt} &= y(3x - 6)
\end{align*}
\]

(a) Find the nullclines and direction arrows.

(b) Show that the critical point with \(x_c, y_c > 0 \) is a spiral in, by finding the eigenvalues of the Jacobian.

(c) Sketch the general solution.

(d) Sketch \(x(t) \) and \(y(t) \) if \(x(0) = 1, y(0) = 2 \).

6. 50) 4,5,7,12,15