Exercise 1. Work out in detail the winding number argument to show that there are solutions to \(e^z = z \).

Proof. Let \(f(z) = e^z - z \), and consider a square of side length \(4\pi N \) centered at 0 with sides parametrized by
\[
\gamma_1(t) = (1 - 2t)2\pi N + 2\pi iN, \ t \in [0, 1];
\gamma_2(t) = -2\pi N + (1 - 2t)2\pi iN, \ t \in [0, 1];
\gamma_3(t) = (1 + 2t)2\pi N - 2\pi iN, \ t \in [-1, 0];
\gamma_4(t) = 2\pi N + (1 + 2t)2\pi iN, \ t \in [-1, 0].
\]
We will compute the winding number of the image of this square under \(f \).

The image of each side of the square is as follows:
\[
f(\gamma_1(t)) = (e^{(1-2t)2\pi N} - (1 - 2t)2\pi N) - 2\pi iN, \ t \in [0, 1];
\]
\[
f(\gamma_2(t)) = e^{-2\pi N}e^{(1-2t)2\pi iN} + (2\pi N - (1 - 2t)2\pi iN), \ t \in [0, 1];
\]
\[
f(\gamma_3(t)) = (e^{(1+2t)2\pi N} - (1 + 2t)2\pi N) + 2\pi iN, \ t \in [-1, 0];
\]
\[
f(\gamma_4(t)) = e^{2\pi N}e^{(1+2t)2\pi iN} - (2\pi N + (1 + 2t)2\pi iN), \ t \in [-1, 0].
\]
Note that \(f(\gamma_1(t)) \) and \(f(\gamma_3(t)) \) have fixed imaginary parts of \(-2\pi N \) and \(2\pi N \) and are contained in the fourth and first quadrants, respectively. Note also that \(f(\gamma_2(t)) \) is approximately a vertical line segment connecting \(f(\gamma_1(1)) \) and \(f(\gamma_3(-1)) \) (if \(N \) is large, then \(e^{-2\pi N} \) is very small). Finally, note that \(f(\gamma_4(t)) \) is approximately a circle of radius \(e^{2\pi N} \) that winds around the origin \(2N \) times, beginning at \(f(\gamma_1(0)) \) and ending at \(f(\gamma_3(0)) \). Thus, we have the picture displayed below:
It follows that $e^z - z$ has $2N$ zeros inside our square. In particular, there are solutions to $e^z = z$.

\[\square\]

Exercise 2. The quadratic formula shows that the two roots of $z^2 + 4z + 15 = 0$ lie in the second and third quadrant. Show how this works with winding numbers.

Proof. Let $f(z) = z^2 + 4z + 15$, and consider a pie slice of radius R in the second quadrant parametrized by $\gamma_1(t) = it$, $t \in [0, R]$; $\gamma_2(t) = Re^{it}$, $t \in \left[\frac{\pi}{2}, \pi\right]$; and $\gamma_3(t) = t$, $t \in [-R, 0]$. We will compute the winding number of the image of this pie slice under f.

First, note that

$$f(\gamma_1(t)) = (15 - t^2) + 4it,$$

so the image of γ_1 under f is a parabolic arc in the upper-half plane (except for $f(\gamma_1(0)) = 15$). Thus, the argument of $f(\gamma_1(t))$ increases from 0 to approximately π.

Next,

$$f(\gamma_2(t)) = R^2 e^{2it} + 4Re^{it} + 15 = R^2 e^{2it} \left(1 + \frac{4}{Re^{it}} + \frac{15}{R^2 e^{2it}}\right),$$

which, for large R, is approximately a half-circle of radius R^2. Thus, the argument of $f(\gamma_2(t))$ increases from approximately π to exactly 2π.

Finally, we see that

$$f(\gamma_3(t)) = t^2 + 4t + 15 \in \mathbb{R} \quad \text{for all} \quad t \in [-R, 0],$$

so the argument of $f(\gamma_3(t))$ is constant.

It follows that the image of the pie slice has winding number 1 around $z = 0$ (see the image above), and thus that $z^2 + 4z + 15$ has a root in the second quadrant. The computation for the third quadrant is analogous.

\[\square\]
Exercise 3. Suppose h is harmonic (real-valued) on an open set containing $\{z | |z| \leq 1\}$ and that h is positive on $\{z | |z| = 1\}$ (and hence on $\{z | |z| < 1\}$). Show that there is an $M > 1$ such that

$$M|h(0)| \geq |h(z)| \geq \frac{1}{M}|h(0)|$$

for every z with $0 \leq |z| \leq \frac{1}{2}$. What is the smallest M you can show will work?

Proof. By the Poisson integral formula, we have

$$h(z) = \frac{1}{2\pi} \int_0^{2\pi} h(e^{it}) \frac{1 - r^2}{r^2 - 2r \cos(\theta - t) + 1} dt.$$

We can bound the Poisson kernel for $0 \leq r \leq \frac{1}{2}$ as follows:

$$\frac{1 - r}{1 + r} = \frac{1 - r^2}{1 + 2r + 1} \leq \frac{1 - r^2}{r^2 - 2r \cos(\theta - t) + 1} \leq \frac{1 - r^2}{r^2 - 2r + 1} = \frac{1 + r}{1 - r},$$

so the bounds on r imply that

$$\frac{1}{3} \leq \frac{1 - r}{1 + r} \leq \frac{1 - r^2}{r^2 - 2r \cos(\theta - t) + 1} \leq \frac{1 + r}{1 - r} \leq 3.$$

Hence, we have

$$\frac{1}{3} h(0) = \frac{1}{6\pi} \int_0^{2\pi} h(e^{it}) \frac{1 - r^2}{r^2 - 2r \cos(\theta - t) + 1} dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} h(e^{it}) \frac{1 - r^2}{r^2 - 2r \cos(\theta - t) + 1} dt$$

$$\leq \frac{3}{2\pi} \int_0^{2\pi} h(e^{it}) dt$$

$$= 3h(0),$$

where the equalities follow from the mean value property of harmonic functions. The result follows. \qed

Exercise 4. Suppose f is holomorphic on $\{z | |z| < 1\}$ and $|f(z)| < 1$ for all z with $|z| < 1$. Suppose also that $f(0) = 0$. Show that $|f(z)| \leq |z|$ for every z with $|z| < 1$.

Proof. Note that, since $\lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{f(z) - f(0)}{z} = f'(0)$, the function $\frac{f(z)}{z}$ has a removable singularity at $z = 0$. Thus, the function

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0, \\ f'(0) & z = 0 \end{cases}$$

is holomorphic in the unit disk.
Now, for \(z \) in the circle of radius \(R < 1 \) centered at 0, we have
\[
\left| \frac{f(z)}{z} \right| = \frac{|f(z)|}{R} < \frac{1}{R}.
\]

Thus, by the maximum modulus principle (applied to \(g \)), \(|f(z)| \leq \frac{|z|}{R} \) for all \(z \) with \(0 < |z| < R \). If \(R < R' < 1 \), then \(|f(z)| < \frac{|z|}{R'} < \frac{|z|}{R} \) for all \(z \) with \(0 < |z| < R' \), which includes all \(z \) with \(0 < |z| < R \). Thus, if we let \(R \to 1 \), we see that \(|f(z)| \leq |z| \) if \(0 < |z| < 1 \). Since \(f(0) = 0 \), we are done. \(\square \)

Exercise 5. What happens in Exercise 4 if \(|f(z)| = |z| \) for some \(z \) with \(0 < |z| < 1 \)?

Proof. In Exercise 4, we proved that \(\left| \frac{f(z)}{z} \right| \leq 1 \) for all \(z \) with \(0 < |z| < 1 \). By the maximum modulus principle (applied to the function \(g \) from Exercise 4), if \(\left| \frac{f(z)}{z} \right| \) attains a maximum value (in this case, 1) at some \(z \) with \(0 < |z| < 1 \), then \(\left| \frac{f(z)}{z} \right| = 1 \) for all \(z \) with \(0 < |z| < 1 \). But, as we showed in Exercise 4,
\[
g(z) = \begin{cases}
\frac{f(z)}{z} & z \neq 0 \\
 f'(0) & z = 0
\end{cases}
\]
is holomorphic in \(\mathbb{D} \), so if \(|g(z)| \) is constant, then \(g(z) \) is constant as well. (This follows from the Cauchy-Riemann equations.) Hence, \(\frac{f(z)}{z} = e^{i\theta} \) for some real \(\theta \), and \(f(z) = e^{i\theta} z \) is a rotation of the disk. \(\square \)

Exercise 6. Use Rouché’s theorem to prove the fundamental theorem of algebra.

Proof. It suffices to prove the theorem for monic polynomials, as dividing by a leading term does not change roots. So let \(f(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) be a polynomial and set \(g(z) = z^n \). Then on the boundary of a disk with sufficiently large radius \(R \),
\[
|f(z) - g(z)| = |a_{n-1}z^{n-1} + \cdots + a_1z + a_0| \\
\leq |a_{n-1}||z|^{n-1} + \cdots + |a_1||z| + |a_0| \\
= |a_{n-1}|R^{n-1} + \cdots + |a_1|R + |a_0| \\
< R^n \quad \text{if } R \text{ is large} \\
= |z|^n \\
= |g(z)|.
\]

Thus, by Rouché’s theorem, \(f \) and \(g \) have the same number of roots in a large disk centered at 0. Since \(g \) clearly has a root at \(z = 0 \), the result follows. \(\square \)