A Formalism of Mixed Sheaves in Positive Characteristic

Jens Niklas Eberhardt
25. Januar 2017
Joint work with Shane Kelly.
Motivation

To a complex variety X/\mathbb{C} one associates categories of:

- Mixed sheaves on X (mixed ℓ-adic sheaves, mixed Hodge modules, ...)
- Constructible sheaves on X ($\mathbb{C}(X)$ equipped with metric topology)
Motivation

To a complex variety X/\mathbb{C} one associates categories of:

- **Constructible sheaves** on $X(\mathbb{C})$
- $(X(\mathbb{C})$ equipped with metric topology)
To a complex variety X/\mathbb{C} one associates categories of:

- **Mixed sheaves** on X
 (mixed ℓ-adic sheaves, mixed Hodge modules, ...)

- **Constructible sheaves** on $X(\mathbb{C})$
 ($X(\mathbb{C})$ equipped with metric topology)
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck's six functor formalism (f_\ast, f^\ast, $f_!$, $f^!$, \otimes, Hom)
- Deligne's Yoga of weights
- BBDG/Saito: decomposition theorem for perverse sheaves

But only work with characteristic zero coefficients.
Motivation

Mixed \(\ell \)-adic sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism* \((f^*, f_*, f!, f^!, \otimes, \mathcal{H}om) \)
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism* ($f^*, f_*, f^!, f_!, \otimes, \mathcal{H}om$)
- Deligne’s *Yoga of weights*
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck six functor formalism ($f^*, f_*, f^!, f_!$, \otimes, $\mathcal{H}om$)
- Deligne’s Yoga of weights
- BBDG/Saito: decomposition theorem for perverse sheaves
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck six functor formalism $(f^*, f_*, f!, f^!, \otimes, \mathcal{H}om)$
- Deligne’s Yoga of weights
- BBDG/Saito: *decomposition theorem* for perverse sheaves
- …
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck six functor formalism ($f^*, f_*, f^!, f_! , \otimes, \mathcal{H}om$)
- Deligne’s Yoga of weights
- BBDG/Saito: decomposition theorem for perverse sheaves
- …

But only work with \textit{characteristic zero} coefficients
Motivation

Mixed ℓ-adic sheaves, mixed Hodge modules come with:

- Grothendieck six functor formalism $(f^*, f_*, f^!, f_!, \otimes, \mathcal{H}om)$
- Deligne’s Yoga of weights
- BBDG/Saito: decomposition theorem for perverse sheaves
- ...

But only work with characteristic zero coefficients

Frobenius acting on $\mathcal{H}^i_{\text{ét}}(X/\overline{\mathbb{F}}_p, \mathbb{Z}/\ell)$
Our proposal for *mixed sheaves* with coefficients in a field \(\mathbb{k} \) (\(\text{char}\mathbb{k} = p \)):

Theorem (E.-K. 2016)

There is a system of monoidal, \(\mathbb{k} \)-linear, triangulated categories of motives \(H(X, \mathbb{k}) \) for quasi-projective varieties \(X/\mathbb{F}_p \).

Which has a full six functor formalism (using Ayoub, Cisinski–Déglise), a formalism of weights (after Bondarko), and computes higher Chow groups \(\text{CH}_n(X, 2n-i; \mathbb{k}) \approx \text{Hom}_{H(X, \mathbb{k})}(1_{\mathbb{X}}, 1_{\mathbb{X}}(n)[i]) \) for \(X/\mathbb{F}_p \) smooth (using Geisser-Levine).
Proposal

Our proposal for *mixed sheaves* with coefficients in a field \mathbb{k} ($\text{char } \mathbb{k} = p$):

Theorem (E.-K. 2016)

There is a system of monoidal, \mathbb{k}-linear, triangulated categories of motives

$$H(X, \mathbb{k})$$

*for quasi-projective varieties $X/\overline{\mathbb{F}}_p$.***
Our proposal for *mixed sheaves* with coefficients in a field \mathbb{k} ($\text{char} \mathbb{k} = p$):

Theorem (E.-K. 2016)

There is a system of monoidal, \mathbb{k}-linear, triangulated categories of motives $\mathcal{H}(X, \mathbb{k})$ for quasi-projective varieties $X/\overline{\mathbb{F}}_p$. Which has

- a full six functor formalism (using Ayoub, Cisinski–Déglise),
Our proposal for *mixed sheaves* with coefficients in a field k (char $k = p$):

Theorem (E.-K. 2016)

There is a system of monoidal, k-linear, triangulated categories of motives

$$H(X, k)$$

for quasi-projective varieties X / \overline{F}_p. Which has

- a full six functor formalism (using Ayoub, Cisinski–Déglise),
- a formalism of weights (after Bondarko),
Proposal

Our proposal for mixed sheaves with coefficients in a field \(k \) (\(\text{char} \ k = p \)):

Theorem (E.-K. 2016)

There is a system of monoidal, \(k \)-linear, triangulated categories of motives

\[H(X, k) \]

for quasi-projective varieties \(X/\overline{F}_p \). Which has

- a full six functor formalism (using Ayoub, Cisinski–Déglise),
- a formalism of weights (after Bondarko),
- and computes higher Chow groups

\[\text{CH}^n(X, 2n-i; k) \cong \text{Hom}_{H(X, k)}(\mathbb{1}_X, \mathbb{1}_X(n)[i]) \]

for \(X/\overline{F}_p \) smooth (using Geisser-Levine).
G/\mathbb{k} split reductive group, $X^\vee/\overline{\mathbb{F}}_p$ Langlands dual flag variety.
G/\mathbb{k} split reductive group, $X^\vee / \overline{\mathbb{F}}_p$ Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:
G/k split reductive group, X^\vee / \overline{F}_p Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:

\[\text{Derived graded modular category } \mathcal{O} \text{ (subquotient of } \text{Rep}_0^Z(G), \text{ defined by Soergel)} \]
Applications in Representation Theory

G/\mathbb{k} split reductive group, $X^\vee/\overline{\mathbb{F}}_p$ Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:

$$\text{MTDer}_{(B)}(X^\vee/\overline{\mathbb{F}}_p, \mathbb{k}) \sim \text{Der}^b(\mathcal{O}^\mathbb{Z}(G))$$

Stratified mixed Tate motives (full subcategory of $\mathcal{H}(X^\vee, \mathbb{k})$, defined as in Soergel’s talk.)

Derived graded modular category \mathcal{O} (subquotient of $\text{Rep}_0^\mathbb{Z}(G)$, defined by Soergel)
G/\mathbb{k} split reductive group, X^\vee/\overline{F}_p Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:

$$\text{MTDer}^{(B)}(X^\vee/\overline{F}_p, \mathbb{k}) \sim \text{Der}^b(\mathcal{O}^\mathbb{Z}(G))$$

\textbf{Stratified mixed Tate motives} (full subcategory of $\mathcal{H}(X^\vee, \mathbb{k})$, defined as in Soergel’s talk.) \textbf{Derived graded modular category} \mathcal{O} (subquotient of $\text{Rep}_0^\mathbb{Z}(G)$, defined by Soergel)

\textit{Shadow of graded Finkelberg-Mirkovic conjecture.}