UCLA ALGEBRA QUALIFYING EXAM

Solutions

JED YANG

R. Rings

Convention. We do not require proper containment when using \subset.

Errors. We require S to be nonempty for Qual Problem R3f3. One direction of Qual Problem R1f3-b is (obviously) false.

R9s1. Show that the ring $\mathbb{Z}[2i]$ consisting of all complex numbers $a + 2bi$ with $a, b \in \mathbb{Z}$ is not principal.

Proof. Let $\mathcal{N}(a + 2bi) = a^2 + 4b^2$ be the norm. Notice that since $\mathcal{N}(z)$ coincides with the usual (square of the) norm $|z|^2$, it is multiplicative (it can also be checked by direct computation). Furthermore, \mathcal{N} sends $\mathbb{Z}[2i] \setminus \{0\}$ to \mathbb{Z}^+. If z is invertible, then $1 = \mathcal{N}(1) = \mathcal{N}(zz^{-1}) = \mathcal{N}(z)\mathcal{N}(z^{-1})$, yielding that $\mathcal{N}(z) = 1$. Conversely, if $\mathcal{N}(z) = 1$, then obviously $z = \pm 1$, so is a unit. Moreover, if $\mathcal{N}(z) = 4$ then z is irreducible. Indeed, since the norm takes values 0, 1, 4, 5, . . ., if $\mathcal{N}(xy) = 4$, then one of x or y must have norm 1. Now notice that $2 \cdot 2 = 2i \cdot (-2i)$, each factor have norm 4 hence is irreducible. Finally, it suffice to notice that $2i$ and 2 does not differ by a unit, since $2i/2 = i$ is not even a member of $\mathbb{Z}[2i]$. Therefore 4 has different factorizations, so $\mathbb{Z}[2i]$ is not factorial, much less principal. \(\square\)

R9s2. Let $M_n(F)$ be the matrix ring of $n \times n$ matrices over a field F. Suppose that there is a subring of $M_n(F)$ isomorphic to $M_m(F)$ for some m. Prove that m divides n.

Proof.

R9s3. Two polynomials $f, g \in R[x]$ over a commutative ring R are called coprime over R if f and g generate the unit ideal in $R[x]$. Let $f, g \in \mathbb{Z}[x]$ be two polynomials such that f and g are coprime over \mathbb{Q} and the residues of f and g in $(\mathbb{Z}/p)[x]$ are coprime for every prime integer p. Prove that f and g are coprime over \mathbb{Z}.

Proof. Let $\frac{a}{b_1} f + \frac{a}{b_2} g = 1$, where $a_i, b_i \in \mathbb{Z}$ and $(a_i, b_i) = 1$. Let $s = b_1b_2 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$, where the p_i are distinct primes. Then $a_1b_2f + a_2b_1g = s$.

Since (the residues of) f and g in $(\mathbb{Z}/p_i)[t]$ are coprime, there exists $c_i, d_i \in \mathbb{Z}$ such that $c_i f + d_i g = 1 + p_i h_i$, where $h_i \in R[x]$.

Since $p_1^{\alpha_1}$ and $p_2^{\alpha_2}$ are coprime, there exists $m_1, n_1 \in \mathbb{Z}$ such that $m_1p_2^{\alpha_2} + n_1p_1^{\alpha_1} = 1$, by the Euclidian algorithm. Then $m_1p_2^{\alpha_2}(c_1 f + d_1 g) + n_1p_1^{\alpha_1}(c_2 f + d_2 g) = 1 + p_1^{\alpha_1} p_2^{\alpha_2} k_2$, for some $k_2 \in R[x]$. We collect the coefficients of f and g as u_2 and v_2, respectively. Inductively, since $r_i = p_1^{\alpha_1} \cdots p_i^{\alpha_i}$ and $p_{i+1}^{\alpha_{i+1}}$ are coprime, there exists $m_i, n_i \in \mathbb{Z}$ such that $m_i p_{i+1}^{\alpha_{i+1}} + n_i r_i = 1$, by the Euclidian algorithm. Then
Let D be a noetherian ring and I any ideal of R. Prove that there exist prime ideals p_1, \ldots, p_m of R such that
\[p_1 p_2 \cdots p_m \subset I. \]
Proof. Let X be a collection of ideals that does not contain a finite product of prime ideals. Suppose, towards a contradiction, that X is nonempty. Then as R is noetherian, there is a maximal element J with respect to inclusion. Obviously J is not prime and is proper, thus there are $a, b \not\in J$ but $ab \in J$. Notice then that the ideals (J,a) and (J,b) properly contain J, and at the same time $(J,a) \cdot (J,b) \subset J$. Thus by maximality, each of them contain a finite product of prime ideals. But then the product of these two products give a finite product of prime ideals contained in J, a contradiction. □

R7f1. Let F be a field and A be a commutative F-algebra. Suppose A is of finite dimension as a vector space of F.

(a) Prove that if A is a domain, A is a field.

Proof. It is obvious that a finite-dimensional vector space is artinian. Let $x \in A$ with $x \neq 0$. Notice that $(x) \supset (x^2) \supset \ldots \supset (x^n) \supset \ldots$ is a descending chain. Thus for some n, $(x^n) = (x^{n+1})$. In particular, there exists y such that $x^n = x^{n+1}y$. By cancellation (A a domain), we get $1 = xy$, so x is invertible. □

(b) Prove that even if A is not a domain, there are only finitely many prime ideals of A.

Proof. By Qual Problem R5w2, a commutative artinian ring has only finitely many prime ideals. □

R7f2. Let A be a commutative ring with identity, and write V for the set of all prime ideals of A. Put $D(x) = \{ p \in V : x \notin p \}$ for $x \in A$. Prove

(a) $D(a) = D(a^n)$ for integers $n > 0$.

Proof. Since $a \in p \iff a^n \in p$ by induction, the result follows. □

(b) $V = D(a) \cup D(b) \cup D(c)$ if $a^3 + b^3 + c^3$ is invertible in A.

Proof. Suppose not, and $p \in V$ is not in $D(a) \cup D(b) \cup D(c)$. Then p contains a, b, and c, hence $a^3 + b^3 + c^3$, an invertible, hence $p = A$, a contradiction. □

Remark. The $D(x)$, $x \in A$, are known as principal open sets and form a basis of open sets in the Zariski topology.

R7f3. Determine all isomorphism classes of modules over the polynomial ring $\mathbb{F}_2[x]$ which are of dimension 2 over \mathbb{F}_2. Here \mathbb{F}_2 is a field of two elements.

Proof. See Qual Problem R2s3. Here instead of order 8 we have order 4, which gives $(\mathbb{F}_2[x]/x)^2$, $(\mathbb{F}_2[x]/(x+1))^2$, and the $\mathbb{F}_2[x]/f$ where f is any of the four polynomials of degree 2. □

R.1. R7s1. Let D be a division ring (a ring with identity in which every nonzero element is invertible). Let $R = M_n(D)$ be the ring of $n \times n$ matrices with entries from D. Prove that R has no two-sided ideals other than R itself and $\{0\}$.
Proof. Let I be a nonzero two-sided ideal. Then there exists a nonzero element $A \in I$. That is, there exists a position (i, j) such that $A(i, j) \neq 0$. Let $E_k(a, b) = \delta_{ak}\delta_{bk}$ be a $(0, 1)$-matrix with only a single 1 at position (k, k). Then $B = E_iAE_j \in I$ is a matrix with only one nonzero entry x at (i, j). Since $x \in D$ has an inverse, multiplying B by the diagonal matrix $x^{-1}I$ gives a $(0, 1)$-matrix with only one 1 at position (i, j). Now apply permutation matrices to move the 1 to any arbitrary position. It is obvious that these matrices generate R. \[\square\]

R.2. R7s2. Let $R = \text{End}(V)$ be the ring of all linear endomorphisms of an infinite dimension complex vector space V with countable basis $\{e_1, e_2, \ldots\}$. Prove that R and $R \oplus R$ are isomorphic as left R-modules.

Proof.

R.3. R7s3.

(a) Give a description of all maximal ideals of the ring $\mathbb{C}[x, y]$. You may use the Nullstellensatz.

Proof. By the Nullstellensatz, since \mathbb{C} is algebraically closed, m is a maximal ideal if and only if there exists $a, b \in \mathbb{C}$ such that $m = (x - a, y - b)$. \[\square\]

(b) Let $m = (x^2 - y, y^2 - 5)$ be an ideal in $R = \mathbb{Q}[x, y]$. Prove that m is a maximal ideal.

Proof. First notice that $m = (x^2 - y, x^4 - 5)$. It suffices to show that R/m is a field. To that end, consider a polynomial f in R. It is obvious that it has a form $\bar{f} = a_0 + a_1x + a_2x^2 + \ldots + a_3x^3$ in R/m. Suppose $\bar{f} \neq 0$, and consider it as an element in $\mathbb{Q}[x]/(x^4 - 5)$, which is a field as $x^4 - 5$ is irreducible by Eisenstein. Thus there exists a polynomial $g = b_0 + b_1x + b_2x^2 + b_3x^3$ such that $\bar{f}g = 1$ in $\mathbb{Q}[x]/(x^4 - 5)$. This implies $fg = 1$ in $\mathbb{Q}[x, y]/(x^4 - 5, x^2 - y)$, which then means $fg = 1$ in the same ring as well. \[\square\]

R.4. R6f1. Determine all prime ideals in the polynomial ring $\mathbb{Z}[x]$.

Proof. Let p be a prime ideal in $\mathbb{Z}[x]$, then $p \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z}. The prime ideals in \mathbb{Z} consists of the zero ideal and $p\mathbb{Z}$ for p prime. Thus we may consider the preimages of prime ideals in \mathbb{Z}. The preimage of the zero ideal consists of the zero ideal and ideals with only polynomials and no constant terms. The preimage of the ideal generated by p consists of the same ideal and those with polynomials with constant term a multiple of p. If there are multiple polynomials, and if any two are relatively prime, then by Euclidean algorithm we can extract a constant term, which is contradictory. Thus a prime ideal with polynomials is either a principal one generated by an irreducible, or generated by f and p where f is irreducible modulo p. TODO: More details? \[\square\]

R.5. R6f2. Let R be a noetherian domain. A nonzero element x in R is called a prime element if (x) is a prime ideal. Prove all of the following:

(a) Every nonzero non-unit in R is a product of irreducible elements.
Proof. Let X be the set of nonzero non-units in R that cannot be written as a product of irreducible elements. We will show X is empty. Suppose otherwise, and let $x_0 = x \in X$. Obviously x is not irreducible, otherwise $x = x$ is a (product) decomposition into irreducibles. So there exists $a, b \in R$ such that $x = ab$ with a, b non-units (and obviously nonzero). If both of them have decomposition into irreducibles, and not both a, b admit decompositions into irreducibles, then so does x. Thus one of them is in X, call it x_1. Notice $(x_0) \subset (x_1)$. Repeating, we get a sequence $\{x_i\}$ in X such that $(x_0) \subset (x_1) \subset \ldots \subset (x_n) \subset \ldots$ is an ascending chain in R. Since R is noetherian, for some n, $(x_n) = (x_{n+1})$. Recall that for some z non-unit, $x_n = zx_{n+1}$. But then if $x_{n+1} \in (zx_{n+1})$, some w gives $x_{n+1} = wzx_{n+1}$. As R is a domain, cancellation gives $1 = wz$, a contradiction to z not a unit. Therefore X is empty, as desired. □

(b) Every nonzero ideal $I \neq R$ in R contains a (finite) product of nonzero prime ideals.

Proof. Follow the proof of Qual Problem R8s3, replacing prime ideals by nonzero prime ideals. □

(c) If every nonzero prime ideal in R contains a prime element then every irreducible element in R is a prime element.

Proof. [You may not use theorems about UFDs.]

R.6. R6f3. Let R be a commutative ring and M a finitely generated R-module. Suppose there exists a positive integer n and a surjective R-module homomorphism $\varphi : M \to R^n$. Show that $\ker \varphi$ is also a finitely generated R-module.

Proof.

R.7. R6s1. Suppose D is an integral domain and suppose that $D[x]$ is a principal ideal domain. Show D is a field.

Proof. Let $a \in D$ be nonzero. It suffices to prove that a is a unit. Consider the ideal (a, x) in $D[x]$. It consists of polynomials whose constant term is in (a). As $D[x]$ is principal, there exists y such that $(y) = (a, x)$. Since y divides a, it is a constant, hence is in (a). Since y is a constant dividing x, it must be a unit. Thus there is a unit in (a), and hence a is also a unit. □

R.8. R6s2. Let R be a commutative noetherian ring with unit, and suppose M is a finitely generated R-module. Suppose $f : M \to M$ is an R-module homomorphism which is onto. Show that f is an isomorphism.

Proof. Recall that a finitely generated R-module is left noetherian. Indeed, recall that if we have a short exact sequence of R-modules

$$0 \to M' \to M \to M'' \to 0,$$

then M is noetherian if and only if M' and M'' are noetherian. Thus as we have

$$0 \to R^n \to R^{n+1} \to R \to 0,$$

R^n is noetherian (as R-module) by induction. If M is finitely generated then there exists $R^n \to M \to 0$. So M is noetherian. This then becomes a special case of Qual Problem R3f2. □
R.9. **R6s3.** Let R be a commutative ring with unit and \mathfrak{m} a maximal ideal of R.

(a) Suppose I_1, \ldots, I_n are ideals of R and that

$$\mathfrak{m} \supset I_1 \cdot \ldots \cdot I_n,$$

where $I_1 \cdot \ldots \cdot I_n$ is the product of the ideals. Show

$$\mathfrak{m} \supset I_k$$

for some k.

Proof. Suppose not, then there exists $a_i \in I_i \setminus \mathfrak{m}$ for each i. Now $a_1 \cdot \ldots \cdot a_n \in I_1 \cdot \ldots \cdot I_n \subset \mathfrak{m}$. Since \mathfrak{m} is prime, some $a_i \in \mathfrak{m}$ by induction, a contradiction.

(b) Suppose that R satisfies the descending chain condition (dcc) on ideals, i.e., every strictly decreasing sequence of ideals is finite. Show R has only a finite number of maximal ideals. You may use part (a), but not theorems on the structure of rings satisfying the dcc.

Proof. Suppose \mathfrak{m}_i is an infinite family of distinct maximal ideals. Notice that $\mathfrak{m}_1 \supset \mathfrak{m}_2 \supset \ldots \supset \prod_{i=1}^{n} \mathfrak{m}_i \supset \ldots$ is a descending chain. Thus there exists n such that $\prod_{i=1}^{n} \mathfrak{m}_i = \prod_{i=1}^{n+1} \mathfrak{m}_i \subset \mathfrak{m}_{n+1}$. By part (a), $\mathfrak{m}_k \subset \mathfrak{m}_{n+1}$ for some $k \leq n$, contradicting the maximality of \mathfrak{m}_k.

R.10. **R5f1.** Let I and J be ideals of a commutative ring R with unit such that $I + J = R$. Prove that $I \cdot J = I \cap J$.

Proof. See Qual Problem R2f2-a.

R.11. **R5f2.** Prove that the factor ring $R = \mathbb{R}[x, y]/(y^2 - x^3)$ is not a P.I.D.

Proof. A factorial domain is integrally closed. Indeed, let R be factorial, and suppose $\frac{a}{b}$ satisfies $x^n + a_1 x^{n-1} + \ldots + a_n \in R[x]$. Since R is factorial, we may require gcd$(a, b) = 1$, where $= \in$ is up to a unit. Substituting $\frac{a}{b}$ for x and multiplying by b^n, we get $a^n + a_1 a^{n-1} b + \ldots + a_n b^n = 0$. Thus $b \mid a^n$ as it divides all other terms. As gcd$(a^n, b) = 1$, we get that $b = 1$ (again, up to a unit), hence $\frac{a}{b} \in R$, and R is integrally closed, as desired.

Notice that $\frac{x}{y}$ satisfies $t^3 - x \in R[t]$, so $\frac{y}{x}$ is integral. Suppose there exists $f \in \mathbb{R}[x, y]$ such that $\frac{a}{b} = f$ in R, then $y - x f = 0$ in R. That is, $y^2 - x^3 \mid y - x f$ in $\mathbb{R}[x, y]$, which is impossible by degree considerations. Therefore R is not integrally closed. Thus R is not even factorial, much less principal.

R.12. **R5f3.** Let x, y, z, t be elements of a (non-commutative) ring R such that $xz = yt = 1$, $xt = yz = 0$, and $zx + ty = 1$. Prove that the left R-modules R and $R \oplus R$ are isomorphic.

Proof. Let $f : R \rightarrow R \oplus R$ be given by $f(r) = (rz, rt)$. Notice that $f(x) = (xz, xt) = (1, 0)$ and $f(y) = (yz, yt) = (0, 1)$ give surjectivity. If $f(r) = (rz, rt) = (0, 0)$, then $r = (zx + ty) = r(x + ty) = 0$, giving injectivity.

R.13. **R5w1.** Let R be an integral domain. If \mathfrak{m} is a maximal ideal in R, view the localization $R_{\mathfrak{m}} := S^{-1}R$, with $S = R \setminus \mathfrak{m}$, in the quotient field of R. Show that

$$R = \bigcap_{\mathfrak{m} \in \text{Max}(R)} R_{\mathfrak{m}}.$$
Proof. It is obvious that $R \subset R_m$ for any maximal ideal m. Conversely, consider $\frac{y}{x}$ in the quotient field of R. If y is not invertible in R, then y generates a proper ideal, contained in some maximal ideal m, hence $\frac{y}{x} \notin R_m$. Otherwise, y is invertible yields $\frac{y}{x} = \frac{xy^{-1}}{1} \in R$, as desired.

Remark. I am uncertain whether this is correct. Indeed, perhaps we should allow $\frac{y}{x}$ to be amplified (by different elements) for each R_m.

R.14. **R5w2.** Let R be a commutative Artinian ring. Show that there are only finitely many prime ideals in R and every one of them is maximal.

Proof. Let p be a prime, then R/p is integral and artinian. Recall that p is maximal if and only if R/p is a field. So let $x \in R/p$ be nonzero. It suffice to show that x is a unit. Notice that (x^n) is a descending chain, thus for some n, $(x^n) = (x^{n+1})$. Namely, there exists y such that $x^n = x^{n+1}y$. As R/p is integral, by cancellation we get $1 = xy$, as desired. By Qual Problem **R6s3**, there are only finitely many maximal (hence prime) ideals.

R.15. **R5w3.** Let $R \subset A \subset B$ be commutative rings. Suppose that R is noetherian and B is a finitely generated R-algebra. Suppose that as an A-module B is finitely generated. Show that A is a finitely generated R-algebra.

Proof. (See Atiyah–MacDonald §7.) Let x_1, \ldots, x_m generate B as an R algebra, and let y_1, \ldots, y_n generate B as an A-module. Then we have $a_{ij}, a_{ijk} \in A$ such that

\begin{align*}
x_i &= \sum_j a_{ij}y_j \quad (1) \\
y_iy_j &= \sum_k a_{ijk}y_k. \quad (2)
\end{align*}

Let A' be an R-algebra generated by the a_{ij} and the a_{ijk}, thus $R \subset A' \subset A$. An element in B is a polynomial in the x_i with coefficients from R. Replacing the x_i using (1) and repeatedly using (2), we write it as a linear combination of the y_i with coefficients from A'. Thus B is finitely generated as an A'-module. Since R is noetherian, thus so is A', a finitely generated R-algebra (Hilbert’s Basis Theorem). Therefore B is a noetherian A'-module, as it is finitely generated over a noetherian ring A'. Thus A is finitely generated as an A'-module, as it is a submodule of a noetherian A'-module B. But since A' is finitely generated as an R-algebra, we conclude that A is also finitely generated as an R-algebra.

R.16. **R4f1.** Let X be a finite set and let A be the ring of all functions from X to the field \mathbb{R} of real numbers. Prove that an ideal m of A is maximal if and only if there is an element $x \in X$ such that

\[m = \{ f \in A : f(x) = 0 \}. \]

Proof. Let $x \in X$ and $m = \{ f \in A : f(x) = 0 \}$. Now m is maximal if and only if A/m is a field. Take $f \in A \setminus m$. Then $f(x) \neq 0$, thus we may define $g(y)$ to be $1/f(x)$ if $x = y$ and 0 otherwise. Then $(fg)(x) = f(x)g(x) = 1$, so fg is 1 modulo m.

Conversely, let m be maximal and suppose, towards a contradiction, that m does not vanish on any $x \in X$. Then for each $x \in X$, there is $f_x \in m$ such that $f_x(x) \neq 0$. Define $g_x(y)$ to be $1/f_x(x)$ if $x = y$ and 0 otherwise. Then f_xg_x is 1 on x and 0
otherwise. Since \(m \) is an ideal, \(f_x g_x \in m \). But it is apparent that the \(f_x g_x \) for \(x \in X \) generate \(A \), so \(m \) is not proper, a contradiction. \(\square \)

R.17. **R4f2.** Describe all \(n \in \mathbb{Z} \) such that the ring \(\mathbb{Z}/n \) has no idempotents other than 0 and 1.

Proof. Suppose \(n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \) where the \(p_i \) are distinct primes and \(\alpha_i \geq 1 \). For \(e \in \mathbb{Z} \), if \(e^2 = e \) in \(\mathbb{Z}/n \), then \(e(e-1) \in n\mathbb{Z} \), that is, \(n \mid e(e-1) \). Since \(p_i \) is prime, it cannot divide both \(e \) and \(e-1 \). Thus either \(p_i^{\alpha_i} \mid e \) or \(p_i^{\alpha_i} \mid e-1 \). So for each idempotent \(e \), we have a set \(I \subset \{1, \ldots, k\} \) such that \(a = \prod_{i \in I} p_i^{\alpha_i} \mid e \) and \(b = \prod_{j \in J} p_j^{\alpha_j} \mid e-1 \), where \(J = \{1, \ldots, k\}\setminus I \). Notice that two different choices of \(I \) cannot yield the same idempotent. The point is to show that any choice of \(I \) does indeed yield an idempotent. Then we will have a bijection between the idempotents and the power set of \(\{1, \ldots, k\} \). Notice that \(a \) and \(b \) are coprime, hence by the Chinese Remainder Theorem, we have an isomorphism \(\mathbb{Z}/n \cong \mathbb{Z}/a \times \mathbb{Z}/b \). That \(a \mid e \) and \(b \mid e-1 \) gives a unique pair in \(\mathbb{Z}/a \times \mathbb{Z}/b \), hence a unique \(e \in \mathbb{Z}/n \). Thus we have precisely \(2^k \) idempotents in \(\mathbb{Z}/n \). Therefore \(\mathbb{Z}/n \) has no idempotents other than 0 and 1 if and only if \(n \) is a prime power. \(\square \)

R.18. **R4f3.** A (non-commutative) ring \(R \) is called local if for every \(a \in R \) either \(a \) or \(1-a \) is invertible. Prove that non-invertible elements of a local ring form a (two-sided) ideal.

Proof. Let \(R \) be a local ring and \(m \) the set of non-invertible elements. If \(m \in m \) and \(r \in R \), then \(mr \in m \). Indeed, if \(mr \) were invertible, then \(m(r(mr)^{-1}) = 1 \), making \(m \) invertible. Similarly for \(rm \). It remains to check that \(m \) is closed additively, that is, if \(a, b \in m \), then \(a+b \in m \). Indeed, if \(a+b \) were invertible, then it has inverse \(y \), yielding \(ay + by = 1 \), so either \(ay \) or \(by \) is invertible (\(R \) local), a contradiction. \(\square \)

Remark. The converse is also true. Furthermore, \(m \) is both the unique maximal left and right ideal, hence it is two-sided. Moreover, if \(R \) is commutative, then conversely if \(R \) admits a unique maximal (two-sided) ideal then \(R \) is local. But this is not true in general, see Qual Problem R2w2 for an example, where there is a unique maximal two-sided ideal, but infinitely many maximal left ideals.

R.19. **R4s1.** Let \(R \) be a commutative noetherian ring with unity 1 and \(f : R \rightarrow R \) a surjective ring homomorphism, i.e., \(f(1) = 1 \). Show \(f \) is an isomorphism.

Proof. Recall that \(R \) is noetherian means \(R \) is a noetherian (left) \(R \)-module over itself. Thus this is a special case of Qual Problem R3f2. \(\square \)

R.20. **R4s2.** Let \(R \) be the ring \(\mathbb{Q}[x] \) and let \(M \) be the submodule of \(R^2 \) generated by the elements \((1-2x, -x^2) \) and \((1-x, x-x^2) \). According to the theory of modules over principal ideal domains, \(R^2/M \) is a direct sum of cyclic \(R \) modules of the form \(R/P(x) \) for monic polynomials \(P(x) \). Find such a direct sum decomposition explicitly in this case.
Proof. Consider the exact sequence \(0 \to M \to R^2 \to R^2/M \to 0 \). We put the matrix associated with \(\alpha \) in Smith Normal Form and take the kernel to get a decomposition of \(R^2/M \) as a direct sum of cyclic modules. The calculation gives
\[
\begin{pmatrix}
1 - 2x & 1 - x \\
-2x + x^2 & x - x^2
\end{pmatrix} \sim \begin{pmatrix}
-1 & 1 - 2x \\
-2x + x^2 & -x^2
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 \\
2x - x^2 & -2x + 4x^2 - 2x^3
\end{pmatrix}.
\]
Hence \(R^2/M \cong R/(x - 2x^2 + x^3) \). \(\square \)

R.21. R4s3. Suppose we are given a collection of polynomials in \(r \) variables with rational coefficients:
\[f_1, \ldots, f_N \in \mathbb{Q}[T_1, \ldots, T_r]. \]
We define the complex algebraic set \(V_C \subseteq \mathbb{C}^r \) by
\[V_C = \{(a_1, \ldots, a_r) : f_i(a_1, \ldots, a_r) = 0 \text{ for all } i \text{ from } 1 \text{ to } N\}. \]
Suppose \(V_C \) is not empty. Show that there is a finite extension \(K \) of \(\mathbb{Q} \) and a point \((a_1, \ldots, a_r) \in V_C \) with all \(a_k \in K \).

Proof.

R.22. R3f1.

(a) Let \(R \) be a commutative ring with 1. Suppose \(f \in R[x] \) is a nonzero 0-divisor in the polynomial ring \(R[x] \). Assume that \(R \) has no nonzero nilpotent elements. Show there is a nonzero element \(a \in R \) so that \(a \cdot f = 0 \).

Proof. Let \(f(x) = a_0 + a_1 x + \ldots + a_n x^n \) be a zero divisor in \(R[x] \). Let \(g(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_m x^m \in R[x] \) such that \(g(x) f(x) = 0 \) and \(g \neq 0 \) has the minimal degree. Now it is clear that the coefficient of \(x^{n+m} \) is \(a_n c_m = 0 \). Since \(gf = 0 \), we also have \(a_n g f = 0 \). But \(a_n g = a_n c_0 + \ldots + a_n c_{m-1} x^{m-1} \) since the coefficient of \(x^m \) is \(a_n c_m = 0 \). Now \(a_n g \) is another polynomial that kills \(f \). By minimality of the degree of \(g \), we conclude that actually \(a_n g = 0 \). That is, \(a_n c_i = 0 \) for all \(i \leq m \). Therefore \((f(x) - a_n x^n)g = 0 \), and thus \((a_0 + a_1 x + \ldots + a_n x^{n-1})g = 0 \). By repeating this process \(n \) more times, we get that \(a_n c_m = 0 \) for all \(i \leq n \), as desired. \(\square \)

(b) Give an example of an \(R \) and \(f \) so that all coefficients of \(f \) are 0-divisors in \(R \), but \(f \) is not a 0-divisor in \(R[x] \).

Proof. Let \(R = \mathbb{Z}/6 \) and \(f(x) = 2x + 3 \). By above, we need only test to see if \(a \cdot f = 0 \) for some \(a \neq 0 \), which does not happen. \(\square \)

R.23. R3f2. Let \(R \) be a ring, not necessarily commutative, and \(M \) a noetherian left \(R \)-module. Suppose \(f : M \to M \) is a surjective \(R \)-module map from \(M \) to \(M \). Prove that \(f \) is an isomorphism.

Proof. Consider the ascending chain \(\ker(f) \subseteq \ker(f^2) \subseteq \ldots \subseteq \ker(f^n) \subseteq \ldots \) in \(M \). As \(M \) is noetherian, there exists some \(n \) such that \(\ker(f^n) = \ker(f^{n+1}) \). Let \(x \in \ker(f) \). Since \(f \) is surjective, by induction, there exists \(y \in M \) such that \(f^n(y) = x \). Therefore \(f^{n+1}(y) = f(x) = 0 \), so \(y \in \ker(f^{n+1}) = \ker(f^n) \), and thus \(x = f^n(y) = 0 \), yielding \(\ker(f) = 0 \), as desired. \(\square \)
(a) Let \(R \) be a commutative ring with 1, and \(S \) a multiplicatively closed subset of \(R \) not containing 0. Suppose \(I \) is an ideal of \(R \) maximal with respect to exclusions of \(S \) (i.e., \(I \cap S \) is empty and \(I \) is largest such). Prove that \(I \) is a prime ideal of \(R \).

Proof. [The statement is obviously false if \(S \) is empty.] Let \(I \) be maximal with respect to exclusions of \(S \). Suppose, towards a contradiction, that \(I \) is not prime. Then there exists \(a, b \notin I \) such that \(ab \in I \). Consider the ideal \((I, a) \) generated by \(I \) and \(a \). As \(I \) is properly contained in \((I, a) \), by maximality of \(I \), we have \(s \in S \cap (I, a) \). Similarly \(t \in S \cap (I, b) \). Notice \((I, a)(I, b) \subset (I, ab) = I \), hence \(st \in I \). But as \(S \) is multiplicatively closed, \(st \in S \) as well, a contradiction. \(\Box \)

(b) Show that every prime ideal of \(R \) arises as in part (a).

Proof. Let \(\mathfrak{p} \) be a prime ideal. Let \(S = R \setminus \mathfrak{p} \). Notice that \(S \) is multiplicatively closed (and obviously does not contain 0). Indeed, if \(a, b \in S \), then \(a, b \notin \mathfrak{p} \), hence \(ab \notin \mathfrak{p} \) as \(\mathfrak{p} \) is prime. Then \(\mathfrak{p} \) is obviously maximal with respect to exclusions of \(S \). \(\Box \)

R.25. R3w1. Give an example of two integral domains \(A \) and \(B \) which contain a field \(F \) such that \(A \otimes_F B \) is not an integral domain.

Proof. Let \(A = B = \mathbb{F}_p(x) \), and let \(F = \mathbb{F}_p(x^p) \). Consider \(\alpha = 1 \otimes x - x \otimes 1 \). Since it is in characteristic \(p \), we have Freshmen’s dream, that is, \(\alpha^p = (1 \otimes x)^p - (x \otimes 1)^p = 1 \otimes x^p - x^p \otimes 1 = 0 \). Thus \(\alpha \) is nilpotent, thus \(A \otimes_F B \) is not integral. \(\Box \)

R.26. R3w2. Let \(\mathbb{F}_q \) be the finite field of \(q \) elements, and put \(F = \mathbb{F}_q \) and \(K = \mathbb{F}_{q^2} \).

Write \(\sigma : K \rightarrow K \) for the field automorphism given by \(x^q = x^q \). Let

\[B = \left\{ \begin{pmatrix} a & b \\ db^\sigma & a^\sigma \end{pmatrix} : a, b \in K \right\} \]

for a given \(d \in F^\times \). Prove the following three facts:

(a) \(B \) is a subalgebra of dimension 4 over \(F \) inside the \(F \)-algebra of 2x2 matrices over \(K \).

Proof. Throughout this problem, we will denote \(\begin{pmatrix} a & b \\ db^\sigma & a^\sigma \end{pmatrix} \) simply by \((a, b) \). It suffice to check closure of \(B \). By direct computation, we have \((a, b) + (c, e) = (a + c, b + e) \), using \((a + c)^q = a^q + c^q \). Recall that elements of \(\mathbb{F}_q \) satisfy \(x^q - q \). Thus \(d^q = d \), and for \(a \in K \), \((a^q)^q = a \). Using these facts, direct computation yields \((a, b) \cdot (c, e) = (ac + dbe^\sigma, ae + bc^\sigma) \). Finally, for \(c \in F \), \(c(a, b) = (ca, cb) \), as \(c^q = c \). Thus \(B \) is closed. For its dimension, notice that \(B \) has \(q^4 \) elements while \(F \) has \(q \). \(\Box \)

(b) \(B \) is a division algebra if and only if there exists no \(c \in K \) such that \(d = cc^\sigma \).

Proof. Recall that \((a, b) \) is invertible if and only if its determinant \(a^{q+1} - db^{q+1} \) is nonzero. Suppose \((a, b) \neq 0 \) is non-invertible, then \(a^{q+1} = db^{q+1} \). Since \(b \neq 0 \) (lest \(a = 0 \), a contradiction), we may divide and get \((ab^{-1})^{q+1} = d \). Thus \(c = ab^{-1} \) satisfy \(d = c^{q+1} \). Conversely, if \(d = c^{q+1} \), then \((c, 1) \) has zero determinant, thus \(B \) is not division. \(\Box \)

(c) \(B \) cannot be a division algebra.
Proof. Notice that for each \(c \in K \), \(c^{q+1} \) satisfy \(x^q - x \) (recall \(c^{q^2} = c \)), thus \(c^{q+1} \in F \). Consider the map \(f : K \to F \) defined by \(c \mapsto c^{q+1} \). By part (b), it remains to show that \(f \) is surjective. Since \(F \) is a field, \(\ker f \) is trivial. Furthermore, besides that, each fibre has size at most \(q+1 \), since it is the solution set of \(x^{q+1} - d \), \(d \in F \), some polynomial of degree \(q+1 \). As such, the preimage of \(F \) under \(f \) has size at most \((q+1)(q-1)+1 = q^2 = |K| \). Obviously the preimage should be the entirety of \(K \), this proves that each fibre attains the maximal size, and in particular, \(f \) is surjective. \(\square \)

R.27. **R3w3.** Let \(A \) be a discrete valuation ring with maximal ideal \(\mathfrak{m} \), and define

\[B = \{(a,b) \in A \times A : a \equiv b \mod \mathfrak{m}\} \]

Prove the following facts:

(a) \(B \) has only one maximal ideal.

Proof. \(a \)

(b) \(B \) has exactly two non-maximal prime ideals.

Proof. \(b \)

R.28. **R2f1.** Let \(R \) be a commutative ring with 1, and let \(S = R[x] \) be the polynomial ring in one variable. Suppose \(\mathfrak{m} \) is a maximal ideal of \(S \). Prove that \(\mathfrak{m} \) cannot consist entirely of 0-divisors.

Proof. By Qual Problem **R3f1**, a nonzero polynomial \(f \) is a 0-divisor if and only if there is some \(a \in R \) such that \(a \cdot f = 0 \), that is, the coefficients are all killed by the same element. Thus \(x \) is not a 0-divisor as 1 is not. Suppose, towards a contradiction, that \(\mathfrak{m} \) only has 0-divisors. Then \(x \notin \mathfrak{m} \), hence \((\mathfrak{m},x) = S \) by maximality. As such, there exists \(m \in \mathfrak{m} \) and \(f \in S \) such that \(m + fx = 1 \). But then the constant term of \(m \) is 1, unbecoming of a 0-divisor. \(\square \)

R.29. **R2f2.** Let \(R \) be a commutative ring with 1, and suppose \(I \) and \(J \) are ideals of \(R \) so that \(I + J = R \). Show that:

(a) \(IJ = I \cap J \).

Proof. It is obvious that \(I \cdot J \subseteq I \cap J \). Conversely, since \(I + J = R \), there exists \(a \in I \) and \(b \in J \) such that \(a + b = 1 \). If \(x \in I \cap J \), then \(x = x \cdot 1 = x(a + b) = ax + xb \in I \cdot J \), as desired. \(\square \)

(b) \(R/IJ \cong R/I \oplus R/J \).

Proof. Let \(f : R \to R/I \oplus R/J \) be given by \(r \mapsto (r + I, r + J) \), the product of the projection maps. Since \(I + J = R \), we have some \(a \in I \) and \(b \in J \) such that \(a + b = 1 \). Notice that \(a \mapsto (0,1) \) and \(b \mapsto (1,0) \). As such, \(f \) is surjective. Its kernel is obviously \(I \cap J \), so by part (a), and the first isomorphism theorem, we are done. \(\square \)

R.30. **R2f3.** Let \(R \) be a commutative ring with 1, and let \(S = R[x] \) be the polynomial ring in one variable. Let \(f \in S \). If \(f \) is a unit of \(S \) (that is, \(f \) is invertible in \(S \)), show that \(f \) has the form \(f = u + g \) where \(u \) is a unit in \(R \) and \(g \in S \) is a nilpotent element without constant term.
Proof. By Qual Problem R13, if \(f = a_0 + a_1 x + \ldots + a_n x^n \) is invertible in \(S \), then \(a_0 \) is invertible and the \(a_i \) are nilpotent, \(i \geq 1 \). By the binomial theorem, \(g = a_1 x + \ldots + a_n x^n \) is nilpotent. \(\square \)

R.31. R2s1. Let \(R \) be a ring and \(A \) and \(B \) be two non-isomorphic simple, left \(R \)-modules (a left-module is simple if it has no proper submodules, i.e., submodules other than \(\{0\} \) and itself). Show that the only proper submodules of \(M = A \oplus B \) are \(\{(\alpha, 0) : \alpha \in A\} \) and \(\{(0, \beta) : \beta \in B\} \).

Proof. Let \(N \subseteq M \) be a proper submodule. Then \(N \cap A \) is a submodule of \(A \), hence is either \(0 \) or \(A \). Thus \(N \) is either disjoint from \(A \) or contains \(A \). Similarly for \(B \). If \(N \) is disjoint from both, then \(N \) is zero and not proper. If \(N \) contains both, then \(N = M \) is also not proper. Thus \(N = A \) or \(N = B \), which are different as \(A \) and \(B \) are non-isomorphic. \(\square \)

R.32. R2s2. Let \(R \) be a commutative local ring, that is, \(R \) has a unique maximal ideal \(\mathfrak{m} \).

(a) Show that if \(x \) lies in \(\mathfrak{m} \), then \(1 - x \) is invertible.

Proof. Let \(x \in \mathfrak{m} \). If \(1 - x \) is non-invertible, then the ideal it generates is proper, hence is in some maximal ideal, namely \(\mathfrak{m} \). But then \(\mathfrak{m} \) contains the sum of \(x \) and \(1 - x \), namely \(1 \), and is not proper, a contradiction. \(\square \)

(b) Show that if \(R \) is noetherian and \(I \) is an ideal satisfying \(I^2 = I \), then \(I = 0 \).

Proof. Suppose, towards a contradiction, that \(I \neq 0 \). As \(R \) is noetherian, \(I \) is finitely generated. (Indeed, otherwise we would have a non-stationary infinite chain \((x_1) \subset (x_1, x_2) \subset \ldots \) by progressively adding generators of \(I \).) Let \(I = (x_1, \ldots, x_m) \), with \(m \geq 2 \) minimal. Since \(I^2 = I \), we have \(x_1 = \sum_{i=2}^m m_i x_i \) for \(m_i \in I \). Then \((1 - m_1) x_1 = \sum_{i=2}^m m_i x_i \). But \(1 - m_1 \) is invertible by part (a), so \(x_1 = (1 - m_1)^{-1} \sum_{i=2}^m m_i x_i \), contradicting the minimality of \(n \). \(\square \)

R.33. R2s3. Let \(\mathbb{F}_2 \) be the field with 2 elements and let \(R = \mathbb{F}_2[X] \). List, up to isomorphism, all \(R \)-modules of order 8.

Proof. Since \(\mathbb{F}_2 \) is a field, \(R \) is principal. As such, the fundamental theorem of finitely generated modules over PID gives us unique isomorphism classes. A finite module is the direct sum of \(R/a_i \), \(i = 1, \ldots, n \), where \(a_1 \mid a_2 \mid \ldots \mid a_n \), where the \(a_i \) are polynomials of degree \(d_i \geq 1 \). The order of the module is \(2^d \), where \(d = \sum d_i \). As such, the possible cases are \(d_1 = d_2 = d_3 = 1; d_1 = 1, d_2 = 2 \); and \(d_1 = 3 \). The first one gives \((R/x)^3 \) or \((R/(x + 1))^3 \); the second one gives \(R/x \oplus R/x^2 \), \(R/x \oplus R/(x(x + 1)) \), \(R/(x + 1) \oplus R/(x + 1)^2 \), or \(R/(x + 1) \oplus R/(x(x + 1)) \); while the last gives \(R/a \) where \(a \) is the 8 polynomials of degree 3. \(\square \)

R.34. R2w1. Let \(F \) be a field and \(A \) be a commutative \(F \)-algebra. Suppose \(A \) is of finite dimension as a vector space of \(F \).

(a) Prove all prime ideals of \(A \) are maximal.
Proof. Notice that the submodules of A are its vector subspaces, so A is artinian. By Qual Problem R5w2, primes ideals in an artinian ring are maximal.

(b) Prove that there are only finitely many maximal ideals of A. By Qual Problem R6s3, there are only finitely many maximal ideals in an artinian ring.

R.35. R2w2. Let $A = M_n(F)$ be the ring of $n \times n$ matrices with entries in an infinite field F for $n > 1$. Prove the following facts:

(a) There are only 2 two-sided ideals of A.

Proof. Since a field is a division ring, by Qual Problem R7s1, A has only the trivial two-sided ideals. □

(b) There are infinitely many maximal left ideals of A.

Proof. Notice that for $x, y \in A$, $Ax = Ay$ implies the row spaces of x and y are the same, which in turn implies the null spaces are the same. Contrapositively, if x and y have different null space, then $Ax \neq Ay$ are different left ideals. If, moreover, the null spaces are 1-dimensional, then the left ideals are maximal. But there are infinitely many 1-dimensional subspaces, as F is infinite. □

R.36. R2w3. Let F_2 be the field with 2 elements and $A = F_2[T, \frac{1}{T}]$ for an indeterminate T. Prove the following facts:

(a) The group of units in A is generated by T.

Proof. It is obvious that $\langle T \rangle \subset A^\times$. Conversely, let x be a unit. An element of A is of the form $a_n(T^n) + \cdots + a_1(T) + a_0$ for some $a_i \in F_2$. Factoring out $(\frac{1}{T})^n$, we can write each element as f/T^n for $f \in F_2[T]$ and for some suitably large n. Thus if $x = f/T^n$ is a unit, then there exists $g/T^m, g \in F_2[T], m \geq 0$ such that $fg/T^{n+m} = 1$, that is, $fg = T^{n+m}$. But then that means f is T^k for some k. So $x = T^{k-n}$ is a power of T. As x was arbitrary, we conclude that $A^\times \subset \langle T \rangle$, as desired. □

(b) There are infinitely many distinct ring endomorphisms of A.

Proof. It is easy to check that $T \mapsto T^n$ (and $\frac{1}{T} \mapsto (\frac{1}{T})^n$) is a ring endomorphism of A for any n, and that they are distinct for different n. □

(c) The ring automorphism group $\text{Aut}(A)$ is of order 2.

Proof. A ring automorphism induces a group automorphism of $A^\times \cong Z$. Automorphisms of Z are given by $1 \mapsto \pm 1$. As such, we have either the identity map or $T \mapsto \frac{1}{T}$. It is obvious that each one extends uniquely to a ring automorphism of A (as F_2 is fixed), thus $\text{Aut}(A)$ is of order 2. □

R.37. R1f1. Let R be a commutative ring, $I \subset R$ a nonzero ideal. Prove that if I is a free R-module then $I = aR$ for an element $a \in R$ which is not a zero divisor in R.
Proof. Let I be a free R-module, thus it has a minimal generating set $E \subset R$. Then E is a basis, that is, every element in I can be written uniquely as a linear combination of elements of E. If $a, b \in E$ are distinct, then $ba + 0b = 0a + ab$, a contradiction. Thus $E = \{a\}$ is a singleton, hence $I = Ra$. If a is a zero divisor, then there exists nonzero $b \in R$ such that $ba = 0 = 0a$, a contradiction. □

R.38. R1f2.

(a) Give an example of a prime ideal in a commutative ring that is not maximal.

Proof. Take an integral domain that is not a field, say \mathbb{Z}. Then the zero ideal is prime (there are no zero divisors), but is not maximal (a nonunit generate a nonzero proper ideal).

(b) Let R be a commutative ring with identity. Suppose for every element $x \in R$ there exists an integer $n = n(x) > 1$ such that $x^n = x$. Show that every prime ideal in R is maximal.

Proof. Let \mathfrak{p} be a prime ideal, and take $x \in R \setminus \mathfrak{p}$. Let \bar{x} be the projection of x in R/\mathfrak{p}. As R/\mathfrak{p} is integral, $\bar{x}^n = \bar{x}$ gives $\bar{x}^{n-1} = 1$, thus \bar{x} is invertible. Hence R/\mathfrak{p} is a field, thus \mathfrak{p} is maximal. □

Remark. Since this problem is so elementary, perhaps we should not hide behind the (equally elementary) fact that R/\mathfrak{p} is integral, and that R/\mathfrak{p} is a field if and only if \mathfrak{p} is maximal. We may unravel the wonders explicitly: As $x^n = x$, we get $x(x^{n-1} - 1) = 0 \in \mathfrak{p}$, yielding $x^{n-1} - 1 \in \mathfrak{p}$. Thus (\mathfrak{p}, x) contains both x^{n-1} and $x^n - 1$, thus containing 1 and is not proper. Since this holds for any $x \notin \mathfrak{p}$, we conclude that \mathfrak{p} is maximal.

R.39. R1f3. Let R be a ring. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ be a polynomial in $R[x]$ of degree n, that is $a_n \neq 0$.

(a) Prove that if a is a nilpotent element in a ring R with identity, then the element $1 + a$ is invertible.

Proof. As a is nilpotent, there exists some $k \geq 0$ such that $a^{k+1} = 0$. Notice that $(1 + a) \cdot (1 - a)(1 + a^2)(1 + a^4) \cdot \ldots (1 + a^{2^k}) = 1 - a^{2^{k+1}} = 1$, hence $1 + a$ is invertible. □

(b) Show that if R is an integral domain, then $f(x)$ is invertible in $R[x]$ if and only if $n = 0$.

Proof. By part (c) below, if f is invertible, then a_i is nilpotent for $i \geq 1$. In particular, if $n > 0$, then a_n is nilpotent. But as R is integral, there are no nonzero nilpotents, hence $a_n = 0$, a contradiction. Thus $n = 0$. The converse statement is false: f is invertible if and only if $f \in R^\times$. □

(c) Show that if R is a commutative ring, $f(x)$ is invertible in $R[x]$ if and only if a_0 is invertible and all a_i are nilpotent in R for every $i \geq 1$.

Proof. Suppose a_0 is invertible and all a_i are nilpotent for $i \geq 1$. It is clear that the $a_i x^i$ are nilpotent for $i \geq 1$ as well. Therefore $f - a_0$ is nilpotent by the Binomial Theorem. Now $a_0^{-1}(f - a_0)$ is also nilpotent, so $1 + a_0^{-1}(f - a_0)$ is invertible by part (a). Multiplying by a_0, we get that f is invertible.

Conversely, suppose f is invertible and take $g = c_0 + c_1 x + \ldots + c_m x^m$ as above. We may obviously assume $n > 0$. It is obvious that the constant
term is \(a_0c_0 = 1\), hence \(a_0\) is invertible. It remains to show that the \(a_i\) are nilpotent for \(i \geq 1\). We claim that for \(r \leq m\), \(a_i^{r+1}c_j = 0\) for \(j \geq m - r\). Proceed by induction on \(r\). When \(r = 0\), \(a_n c_m\) is the coefficient of \(x^{n+m}\) in \(gf\) hence is zero. Now look on the coefficient of \(x^{n+m-r}\) in \(gf\). It is \(a_n c_m + a_{n-1} c_{m-1} + \ldots + a_{m-r} c_m\), which is zero (we adopt the convention that \(a_0 = 0\) for \(i < 0\)). Now multiplying by \(a_n^r\) we get \(a_n^{r+1}c_m + a_{n-1} a_n c_{m-r+1} + \ldots + a_{m-r} a_n c_m = 0\). All the summands beside the first one is zero by induction, hence \(a_n^{r+1}c_m = 0\), as desired. Therefore we know that \(a_n^{m+1}c_0 = 0\), which implies that \(a_n^{m+1} = 0\) since \(c_0\) is invertible. We have concluded that \(a_n\) is nilpotent. Of course, then \(a_n x^n\) is also nilpotent, hence as above, \(f - a_n x^n\) is still invertible. By induction on the degree of \(f\) (or by doing this \(n - 1\) more times, taking the minimum counter-example, etc.), we are done. \(\square\)

R.40. R1s1. A commutative ring \(R\) with unit is said to be a local ring if it has a unique maximal ideal. Show that a commutative ring \(R\) with unit is a local ring if and only if for any two elements \(u, v \in R\) satisfying \(u + v = 1\) at least one of \(u, v\) is a unit of \(R\).

Proof. Let \(R\) be local with maximal ideal \(m\). If \(u\) is not a unit, then \(Ru\) is proper, hence is contained in \(m\). In particular, the non-units are all in \(m\). Let \(u, v \in R\) satisfying \(u + v = 1\). If \(u, v\) are not units, then \(1 = u + v \in m\), a contradiction.

Conversely, if for all \(u \in R\), at least one of \(u\) and \(1 - u\) is a unit, then by Qual Problem **R4f3**, the non-units form an ideal \(m\). Since proper ideals do not contain units, any proper ideal is contained in \(m\), hence \(m\) is the unique maximal ideal. \(\square\)

R.41. R1s2. Let \(R = \mathbb{R}[x, y]\). Find a finitely generated \(R\)-module \(M\) that is not a direct sum of cyclic \(R\)-modules.

Proof.

R.42. R1s3. Let \(f_1(z_1, \ldots, z_n), f_2(z_1, \ldots, z_n), \ldots, f_n(z_1, \ldots, z_n)\) be \(n\) polynomials in \(\mathbb{C}[z_1, \ldots, z_n]\). Assume that \(f_i(0, 0, \ldots, 0) = 0\) for all \(i = 1, \ldots, n\). Prove that the origin is the only point of \(\mathbb{C}^n\) where all of the \(f_i\) vanish if and only if the ideal \(I\) generated by \(f_1, \ldots, f_n\) contains all monomials of degree \(N\) for some sufficiently large \(N\).

Proof. Let \(V(I)\) be the affine variety, that is, \(V(I) = \{\bar{x} = (x_1, \ldots, x_n) \in \mathbb{C}^n : f(\bar{x}) = 0, f \in I\}\). First notice that \(V(I)\) is also the common zero set of the \(f_i\). If \(I\) contains \(z_i^N\), then \(I\) can only vanish at \(\bar{x}\) if \(x_i = 0\). Thus \(V(I)\) consists only of the origin. Conversely, if \(V(I)\) consists only of the origin, then \(z_i\) vanishes on \(V(I)\). Thus by the Nullstellensatz, there exists some \(N\) such that \(z_i^N \in I\). \(\square\)

R.43. R0f1. Let \(M\) be a module over a commutative ring \(A\). If every strictly increasing (resp., decreasing) sequence of \(A\)-submodules of \(M\) terminates after finite steps, the \(A\)-module \(M\) is called noetherian (resp., artinian).

(a) Prove that the \(\mathbb{Z}\)-module \(\mathbb{Z}\) is noetherian and not artinian.
Proof. Recall that a ring R is noetherian if and only if it is noetherian as an R-module. Furthermore, since \mathbb{Z} is principal, it is noetherian as a ring, hence noetherian as a \mathbb{Z}-module. It is not artinian as the descending chain of submodules $2\mathbb{Z} \supset 4\mathbb{Z} \supset 8\mathbb{Z} \supset \ldots \supset 2^n\mathbb{Z} \supset \ldots$ is not stationary. □

(b) Prove that the \mathbb{Z}-module $M = \bigcup_{n=1}^{\infty} (p^{-n}\mathbb{Z}/\mathbb{Z})$ is artinian and not noetherian.

Proof. Notice that $p^{-1}\mathbb{Z}/\mathbb{Z} \subset p^{-2}\mathbb{Z}/\mathbb{Z} \subset \ldots \subset p^{-n}\mathbb{Z}/\mathbb{Z} \subset \ldots$ provide an ascending chain of submodules that is not stationary. Now consider a descending chain of submodules $q_1^{-1}\mathbb{Z}/\mathbb{Z} \supset q_2^{-1}\mathbb{Z}/\mathbb{Z} \supset \ldots q_n^{-1}\mathbb{Z}/\mathbb{Z} \ldots$. Notice that if $q_2^{-1}\mathbb{Z}/\mathbb{Z} \subset q_1^{-1}\mathbb{Z}/\mathbb{Z}$, then $q_2 | q_1$. So in general, we have a descending chain of integers q_i one dividing the previous one. This must be stationary at some point. Equivalently, if we have strict inclusion, then this must terminate. Therefore M is artinian. □

R.44. R0f2. Let A be a commutative ring with indentity. Suppose that $a \in A$ is not nilpotent (that is, $a^n \neq 0$ for all $n > 0$).

(a) Prove that there exists a prime ideal $p \subset A$ such that $a \notin p$.

Proof. Let $S = \{1, a, a^2, \ldots, a^n, \ldots\}$. Notice that S is a multiplicative subset not containing 0. Let p be an ideal of A maximal with respect to exclusions of S. This p exists as 0 is one such ideal. Then by Qual Problem R3f3, p is prime. □

(b) Give an example of a ring A and a non-nilpotent $a \in A$ such that a is contained in m for all maximal ideals $m \subset A$.

Proof. Consider the ring of formal power series $\mathbb{Q}[x]$. This is a local ring with maximal ideal generated by x, which is a non-nilpotent element. □

R.45. R0f3. Let A be a commutative noetherian ring with identity $1 \neq 0$. Write $V(a)$ for the set of prime ideals of A containing a given ideal a. Suppose that $V(0) = V(a) \cup V(b)$ and $V(a) \cap V(b) = \emptyset$ for two ideals a and b. Prove the following facts:

(a) $A = a + b$.

Proof. We will prove a (seemingly) stronger statement that $A = a^n + b^n$ for $n \geq 1$. Let $I = a^n + b^n$, and suppose, towards a contradiction, that it is proper. Then by Zorn, there exists a maximal ideal m containing I. But maximal ideals are prime ideals, so $m \supset a^n$ contains a. Similarly for b, a contradiction to the disjointness of $V(a)$ and $V(b)$. □

(b) $a \cap b = ab$.

Proof. Use $a + b = 1$, $a \in a$, $b \in b$ to write $x \in a \cap b$ as $ax + xb \in ab$ (See Qual Problem R2f2). □

(c) The ideal ab consists of nilpotent elements.

Proof. Notice $x \in ab \subset a \subset \bigcap V(a)$, and similarly for b. So if $x \in ab$ then x is in the intersection of all prime ideals (which is the nilradical). If x is not nilpotent, then by Qual Problem R0f2-a, some prime does not contain x. Thus ab consists of nilpotent elements, that is, ab is a nil ideal. □

(d) There exists a positive integer n such that A is isomorphic to the product ring $(A/a^n) \times (A/b^n)$.
Proof. In a commutative noetherian ring, nil ideals are nilpotent. [Indeed, let I be a nil ideal. As A is noetherian, I is finitely generated, say, by $E = \{x_1, \ldots, x_m\}$. For each i, we have $n_i \geq 1$ such that $x_i^{n_i} = 0$. Let $n = \sum_{i=1}^{m} n_i$ and $y_1, \ldots, y_n \in I$. Write each y_i as linear combination of the x_i, and expand $y_1 \leq \cdots \leq y_n$. Each monomial has degree (in E) at least n, hence by the pigeon hole principle, some $x_i^{n_i}$ occurs, forcing each monomial to be zero, thus yielding $I^n = 0$, as desired.]

By part (c), ab is nil, thus there exists $n \geq 1$ such that $(ab)^n = 0$. Furthermore, by part (a), a^n and b^n are coprime. Thus by the Chinese Remainder Theorem (see Qual Problem R2F2), $A \cong A/a^n b^n \cong A/a^n \times A/b^n$. □

R.46. R0s1. List, up to isomorphism, all commutative rings with 4 elements.

Proof. Let $(R, +, \cdot)$ be a commutative ring with 4 elements. Then $(R, +)$ is an abelian group of order 4. By the fundamental theorem of finitely generated abelian groups, this is either $\mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$. In the former case, \cdot is forced. In the latter, write $1, a, 1 + a$ as the three elements of (additive) order 2. Recall that in a ring, 0 and 1 are distinguished, and multiplication involving those are forced. The remainder of the multiplication table is determined completely by value of a^2, which can be 0, 1, a, or $1 + a$. Since a and $1 + a$ are indistinguishable algebraically, the case $a^2 = 0$ forcing $(1 + a)^2 = 1$ is isomorphic with $a^2 = 1$ forcing $(1 + a)^2 = 0$. This is obviously distinct from the cases $a^2 = a$ and $a^2 = 1 + a$. We can then check that these indeed define ring structures by checking the (finitely many) required relations by hand. Thus we get 4 isomorphism classes of rings with 4 elements. □

R.47. R0s2. Let p be a prime number. Show that a free \mathbb{Z}-module of rank 2 has $p + 1$ submodules of index p.

Proof. Recall that a \mathbb{Z}-module is simply an abelian group. Thus this problem asks to find the number of subgroups of index p in the free abelian group \mathbb{Z}^2. By Qual Problem G7s2 or Qual Problem G2w1, we have that the number is $(p^2 - 1)/(p - 1) = p + 1$, as desired. □

R.48. R0s3. Let R be a commutative noetherian ring in which each ideal I is principal and satisfies $I^2 = I$. Show that R is isomorphic to a finite product of fields.

Proof.