
Page x, line 11 bis: Replace “Weighted Norm Inequalities” by “Weighted Norm Inequalities for Maximal Functions and Conjugate Functions”.

Page xi, line 8: Put “Appendix: The Koszul Complex 354” between lines 8 and 9.

Page xiv, line 3 bis: Replace $F$ by $\mathcal{F}$.

Page 4, formula (1.12) should read $|w'(z_0)| = \frac{1-|w_0|^2}{1-|z_0|^2}$.

Page 13, line 3: Replace $(P_y * f)(t)$ by $(P_y * f)(x)$.

Page 15, Part (b) of Theorem (3.1): Replace $(P_y * f)$ by $(P_y * f)(x)$.

Page 17, Equation (3.7): Replace $\int ||u(x+y)||_{L^p(dx)}$ by $||u(x+iy)||_{L^p(dx)}$, but keep the rest of the display, i.e. $\sup_y$ and $< \infty$.

Page 23, line 7 bis: Replace $f = 0$ by $||f||_1 \neq 0$.

Page 24, line 12: Replace $\alpha_1 \leq \alpha_2 \leq \ldots \alpha_n$ by $\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n$.

Page 24, line 7 bis: Replace $\int_1$ by $\int_I$.

Page 24, Equation (4.4): Replace $\int_I$ by $\int_I$.

Page 29, line 13bis: Replace $u_2(z)$ by $u_2(z)$.

Page 35, Corollary 6.4: Replace $\frac{1}{2\pi} \int v(z_0 + re^{i\theta})d\theta = -\infty$ by $\frac{1}{2\pi} \int v(z_0 + re^{i\theta})d\theta > -\infty$.

Page 35, line 10b. In the definition of $v_r(z)$ replace $|z| \leq r$ by $|z| \geq r$.

Page 39, Exercise 1. Replace $\left(\frac{\delta - \eta}{\delta - \eta}\right)$ by $\left(\frac{\delta - \eta}{\delta - \eta}\right)$.

Page 41, line 2 bis should read:
discs $K(f(z_n), r_n)$ converge to $W_{Ak}$. But by Schwarz’s lemma, $f(K(z_n, r_n)) \subset$

Page 43, line 7b. $B \leq 1/\mu(\{0\})$.

Page 45, line 9 bis: Replace $\frac{C}{X}|f|d\mu$ by $\frac{C}{X} \int |f|d\mu$.

Page 50, lines 6 should read:

$$\int |F(x+iy)|^p dx \leq \frac{c}{1+y} + \frac{1}{1+y} \int P_{1+2y}(t)d\mu(t)$$
\[
\leq c + \frac{2}{\pi} \int \frac{d\mu(t)}{1 + t^2}.
\]

Page 50, line 13 should read:

\[
||F||^p_{H^p} = \lim_{y \to 0} \left( \frac{c}{1 + y} + \frac{u((1 + 2y)i) - c(1 + 2y)}{1 + y} \right) = u(i). \quad \square
\]

Page 54, line 9: \( H^\infty(D), ||f||_\infty \leq 1. \)

Page 59, line 16: Replace \( d\mu = f(t) = dt \) by \( d\mu = f(t)dt. \)

Page 60, line 15: Replace \( e^{-2\pi xy} \hat{\mu}(s) \) by \( e^{-2\pi sy} \hat{\mu}(s). \)

Page 65, line 1: Replace \( \log |f(z)| \) by \( \log |f(t)|. \)

Page 65, line 18: Replace \( \text{arc} \) by \( \text{arc} \)

Page 65, line 12 bis: Replace \( \text{Re} f \leq 0 \) by \( \text{Re} f \geq 0. \)

Page 67, line 12: Replace \( 2\mu_s \) by \( d\mu_s. \)

Page 67, line 4 bis: Replace \( e^{(-u_2 + iv_2)} \) by \( e^{-(u_2 + iv_2)}. \)

Page 68, line 17: Replace \( d\mu, \) by \( d\mu_s. \)

Page 68, line 6 bis: Replace \( \log^+ |f(\theta)| \) by \( \log^+ |f(z)|. \)

Page 73, line 12 bis: Replace \( E \) by \( E. \)

Page 78, line 12 bis: Replace \( (b) \) by \( (b). \)

Page 80, lines 4 bis and 3 bis and page 81, line 1: Replace script L by script S.

Page 94, line 5 bis: Replace \( \lim_{x \to 1} \) by \( \lim_{r \to 1}. \)

Page 99, line 3: Replace \( \log 1(1 - r) \) by \( \log(1/(1 - r)). \)

Page 107, line 4: Replace \( \text{Im} w \geq \lambda \) by \( |\text{Im} w| \geq \lambda. \)

Page 111, display (3.2): Replace \( \sup_{y<1} \) by \( \sup_{r<1}. \)

Page 115, line 11 bis. Replace \( 2|u\tilde{v}| \) by \( 2|u\tilde{u}|. \)

Page 120, line 9 bis: Replace \( \int_E e^{i\theta} d\mu \) by \( \int_E e^{i\theta} d\mu. \)

Page 124, line 5: Replace \( \leq \) by \( =. \)
Page 124, line 6: Add the line “Now \(|H^* f|_p \leq C_p |f|_p\), \(2 < p < \infty\), follows by duality from part (b).”

Page 137, line 12: Replace \(|\log |g_r(\theta)|| \) by \(|\log |g_r(\theta)|| \), i.e. replace \(|\) by \(|\) with more space.

Page 137, line 2 bis should read: \(\leq 2\eta(\delta) + C|e^{i\tau} - z| + C|e^{i\sigma} - z|\).

Page 142, line 16: Replace \(|F|_1\) by \(|F|_1^{1/2}\).

Page 158, line 3 bis: extreme right side should be \(\frac{2E}{|\frac{1+n}{1+n} + \frac{2n}{1+n}|}\).

Page 205, line 15 bis: Lemma 5.1. Mooney

Page 238, line 5 bis: Replace \(H^2\) by \(H^2\).

Page 269, line 12: Replace \(I_m \cdot j\) by \(I_m \cdot j\).

Page 269, line 18: Replace \(\Sigma I_{m+x,j} \subset I_{m+k}\) by \(\Sigma I_{m+x,j} \subset I_{m,k}\)

Page 280, line 6: \(\sum_{S_n} y_j \leq A2^{n+1} y_k\).

Page 305, line 2 bis: The second assertion in Exercise 8 is false as stated. It is correct however if \(X\) is a dual space and the functionals \(z_j\) are weak-star continuous on \(X\). See also P. Gorkin and R. Mortini, J. London Math. Soc. (2) 67, (2003) 481-498 for further results.

Page 312, line 10: Replace Theorem 3.8 by Theorem 3.9.

Page 318, line 14: Replace \(-\sum_{j=0}^{N} \int \int_{\partial \Delta_j}\) by \(-\sum_{j=0}^{N} \int \int_{\partial \Delta_j}\), i.e. replace \(\int \int\) by \(\int\) on the right of the display.

Page 321, line 9: Replace \(\partial / \partial z(g^3 G_{j,k})\) by \(\partial / \partial z(g^3 G_{j,k}) \log(1/|z|)dx dy\).

Page 332, Figure VIII.4, caption: Add “The bottom row has twice the number of zeros as pictured.”

Page 357, line 12 bis: Replace Theorem 2.2 by Theorem 4.2.

Page 359, line 3 bis: Replace \((\overline{J}_l J_k - J_k J_l)\) by \((\overline{J}_l J_k - J_k J_l)\)

Page 360, line 9: Replace \(\int\) by \(\int\) on the left of the display

Page 367, line 1 bis: \(K_n = k_1 + \ldots + k_{n-1}\)

Page 368, line 2: \(F_n = f_n - K_n\) instead of \(f_n = F_n - K_n\)

Page 368, lines 10 bis to 12 bis: \(\varphi\) and \(\phi\) should be the same symbol, preferably \(\varphi\).
Page 371, line 12: Replace $\partial f / \partial z = \partial \hat{f} / \partial \sigma$ by $\partial f / \partial z = \partial \hat{f} / \partial \tau$.

Page 385, line 12. Add ) at end of $f \in B$.

Page 389, line 9 bis: Replace $U_A$ by $\mathcal{U}_A$.

Page 392, line 15 bis: Replace $\|f\|_\infty \leq 1$ by $\|f\|_\infty < 1$.

Page 392, line 11 bis: Replace $\|f_n\|_\infty \leq 1$ by $\|f_n\|_\infty < 1$.

Page 402, lines 4 and 5: $a = \text{Min}\left(\exp(-C_1/C_2), \exp(-C_1/c(\delta))\right)$ and $b = C_2/c(\delta)$.

Page 404, line 3: Replace $B_{1,1}(z_n)$ by $B'_{1,1}(z_n)$.

Page 422, line 5: Replace $2 \arctan\left(\frac{x-x_k}{y}\right)$ by $2 \arctan\left(\frac{x-x_k}{y_k}\right)$, i.e. replace $y$ by $y_k$.

Page 422, line 3 bis: Replace $(s-t)^2$ by $(x-t)^2$.

Page 423, line 8 bis: Replace $4/Ny, 2$ by $4/Ny$.

Page 432, line 2: Replace $k_j$ by $K_j$.

Page 453, line 4: $A_0$ should be $A_o$. 